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Ground-state properties of the two-dimensional disordered Hubbard model
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We study the ground state of the two-dimensional disordered Hubbard model by means of the projector
quantum Monte Carlo method. This approach allows us to investigate the ground-state properties of this model
for lattice sizes up to 10310, at quarter filling, for a broad range of interaction and disorder strengths. Our
results show that the ground state of this system of spin-1

2 fermions remains localized in the presence of the
short-ranged Hubbard interaction.
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I. INTRODUCTION

The electronic transport properties of disordered syste
have been the subject of much investigation in physics. F
the pioneering work of Anderson~1958!,1 it is known that in
three dimensions~3D! the eigenstates of a noninteractin
electron gas in a random potential become localized at
Fermi energy above a critical value of the disorder stren
Wc . In this regime, the eigenstates decay exponentially
space and hence cannot carry a current; thus the system
insulator. For disorder strength,W lower thanWc , the eigen-
states are extended and diffusive transport takes place in
system in accordance with Ohm’s law. However, for tw
dimensional ~2D! systems, it was shown by the scalin
theory of Abrahamset al.2 that all states are localized for an
disorder strength. Thus, it appears that there is no me
insulator transition~MIT ! for noninteracting electrons in 2D
The properties of noninteracting electrons in random pot
tials have since been studied systematically and the m
physical effects have been understood.3 In this context, the
experimental observation by Kravchenkoet al.4 of a transi-
tion from insulating to metallic behavior, as seen in the
sistivity as a function of temperature of the 2D electron g
came as a great surprise to the community. The existenc
this transition from insulating to metallic behavior as a fun
tion of density has been confirmed by other groups.5–8 The
experiments were carried out on very high mobility, lo
electron density (ns) samples which correspond to a regim
where the electron-electron interactions (Eee) are much
stronger than the Fermi energy (EF), such that the dimen
sionless parameterr s('Eee/EF) lies in the range 5–50. This
indicates the importance of electron-electron interactions
these systems. Further, it was shown experimentally that
application of an in-plane magnetic field (Bp) drives the sys-
tem insulating.9 Since such a field can only couple to th
spin, this experiment indicates the important role played
the spin degrees of freedom. While the early experime
have stimulated a spate of new experimental results, th
has been no satisfactory theoretical explanation of the p
nomenon of the 2D MIT, to date.

The effects of interactions in disordered systems h
been studied from the metallic side in great detail, where
interactions are relatively weak.10 The study of interactions
in the localized phase were mainly carried out within t
PRB 620163-1829/2000/62~16!/10680~7!/$15.00
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mean-field approximation, which led to a number of impo
tant results, for example the Efros-Shklovskii gap in the d
sity of states near the Fermi level,11 but could not take into
account quantum interference effects, important in t
many-body system. The investigation of a simple model
two interacting particles~TIP! in the localized phase showe
that short-range attractive/repulsive interactions can lea
destruction of localization and propagation of pairs of p
ticles on a length scale much larger than the one-part
localization length.12 Thus, the effects of interaction on th
localized phase are nontrivial and deserve a detailed st
This, however, is not an easy task. Indeed, even the ana
cal expressions for the matrix elements of the interaction
the localized phase are not known,13 hence numerical studie
of the problem become important.

Recent numerical approaches to the question have
cluded the studies of persistent currents by exact diago
ization of small 2D clusters14 and Hartree-Fock-based calcu
lations without15 and with residual interaction.16,17 These
approaches led to some interesting indications but did
allow the study of sufficiently large systems and/or su
ciently many particles. Other approaches based on le
spacing statistics of many-body states made possible
study of larger systems and showed the existence of erg
~delocalized! states for low-energy excitations, but not at t
ground state.18 All these studies were carried out for spinle
fermions. Recently, the properties of fermions with spin o
disordered 2D lattice were investigated using a fini
temperature quantum Monte Carlo~QMC! method.19 The
temperature dependence of the resistivity obtained num
cally indicated a transition from insulating to metallic beha
ior for sufficiently strong interactions and weak disord
strength. However, these calculations were carried out a
nite albeit low temperatures (T>EF/24), and technical prob-
lems ~‘‘fermion sign problem’’! did not permit the analysis
of the ground state. This is not completely relevant to
experiments which were carried out at temperatures m
below the Fermi energy20 and thus require a better unde
standing of the properties of the ground state, as in the g
eral scenario of quantum phase transitions.

To investigate the properties of the ground state of
disordered interacting fermionic system, we choose the H
bard model with site-diagonal disorder. This could be co
sidered as an important first step on the way to investigati
of more complicated models with Coulomb interaction
which might be more appropriate for experiments at lo
10 680 ©2000 The American Physical Society
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PRB 62 10 681GROUND-STATE PROPERTIES OF THE TWO- . . .
densities. We study the ground state of our model on
square lattice by the projector QMC~PQMC! method. We
use different characteristics to investigate the extent of
ground-state wave function for a broad range of model
rameters: disorder strength (W), interaction strength~U!,
and filling factor (n). The studies were carried out in th
Sz50 sector, with equal numbers of particles with up a
down spins. This is thus the first numerical study to o
knowledge of the ground state of a disordered, interac
system of fermions with spin.

This paper is organized as follows. In the next section,
describe the model and the method used. In the third sec
we present our results for the averaged Green function,
charge densities, and the inverse participation ratios, a
which we use to characterize the ground state. We prese
summary of our conclusions in the final section.

II. MODEL AND METHOD

The two-dimensional disordered Hubbard model on
square lattice is given by

H5HA1HI

5S 2t (
^ i j &,s

âi ,s
† â j ,s1(

i ,s
e i âi ,s

† âi ,sD 1U(
i

n̂i↑n̂i↓ ,

~1!

where theâi ,s
† (âi ,s) are the creation~annihilation! operators

for a fermion of spins at site i with periodic boundary
conditions,n̂is is the number operator for spins at sitei, t is
the hopping parameter, the Hubbard parameter,U, measures
the strength of the screened interaction, ande i , the energy of
site i, is a random number drawn from a uniform distributio
@2W/2,W/2#, which parametrizes the disorder. The first tw
terms represent the Anderson Hamiltonian and the last t
represents the interactionHI . In the limit W50, this Hamil-
tonian reduces to the usual Hubbard model. The filling fac
n5Np /(23N2), whereNp is the number of fermions~par-
ticles! andN is the linear dimension of the system; thus t
total number of sites isN2.

We obtain the ground-state properties of this model by
PQMC method. The PQMC method was initially develop
for the Hubbard model and has been used to obtain reli
results for large lattices.21 The method can be generalized
a straightforward manner to include random site energ
We now present some details of the calculation for comple
ness and refer the reader to the literature for more deta
accounts.

The PQMC method consists in obtaining the true grou
stateuc0& of the Hamiltonian~1! by projection from a trial
wave functionuf& that is not orthogonal to the true groun
state of the system,

uc0&5 lim
Q→`

e2QĤuf&

A^fue22QĤuf&
. ~2!

The trial wave function is usually formed from the eige
states of the noninteracting Hamiltonian~orbitals filled up to
the Fermi level!. In this case, we choose the eigenstates
the HamiltonianHA , thus including the random potential. T
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carry out Monte Carlo~MC! simulations of this quantum
Hamiltonian, it is first necessary to map it onto an effecti
classical Hamiltonian. Thus, the projection opera
exp(2QĤ) is first decomposed using the Trotter formula

@exp(2DtĤA)exp(2DtĤI)#
L with Q5Dt3L. This intro-

duces a systematic error of order (Dt)2 due to noncommu-

tation of ĤA andĤI . The interaction is then decoupled by
discrete Hubbard-Stratonovich~HS! transformation, by the
introduction ofN23L Ising-like fields. Since the complet
summation over these degrees of freedom is too tim
consuming to be practical, the method reduces to a MC s
pling of physical properties, which is the second source
error, the statistical error. It is important to note that duri
the MC process, each configuration of Ising spins is assig
a weight, represented as a product of up- and down-s
determinants in this algorithm, which is interpreted as
probability. This quantity is positive definite only at hal
filling for the uniform Hubbard model. The problems th
arise from the nonpositive-definite nature of this quantity
referred to as the ‘‘fermion sign problem’’ in the literatur
and are known to be particularly severe slightly away fro
half-filling in finite temperature methods and restrict the lo
est temperature that can be attained in the simulation~in the
clean limit!.

We have studied system sizes of up to 10310 at quarter
and one-eighth fillings~50 and 25 particles!. We carried out
extensive checks on the MC parameters to assure ourse
of convergence, as described in Ref. 22, but in the prese
of disorder. Thus, we choseQ53.0, with L530, to have
Dt50.1. The symmetric Trotter decomposition then redu
the systematic error to (Dt)3'0.001. We checked for statis
tical convergence of our data in several ways. By varying
number of sweeps after equilibration, we determined t
1000 MC sweeps are sufficient for equilibration and 20
further sweeps for property estimates. We carried out m
surements until the standard deviations on our values wer
the order of the systematic error. We also tested our res
against results obtained from exact diagonalizations for sm
system sizes, and the results for the charge density,ni5ni↑
1ni↓5(s^n̂is&, presented in Fig. 1 show good agreeme
with the exact results. Convergence is of course the bes
the ground-state energy as compared to other physical q
tities, and we have a relative accuracy of 1023 when com-
pared to exact calculations. As for the effect of disorder
the sign problem, it was possible to study the 10310 lattice
for U/t56 for disorder strengthsW/t of up to 7–10. Our
measure of the severity of the sign problem is to consider
quantity f 512~number of negative determinants!/~total
number of determinants!. In all the cases considered, w
have f 50.999, which indicates that the sign problem is u
der control.

From the simulations, it is possible to obtain ground-st
expectation values of the single-particle Green functi
Gi j 5(s^âi ,s

† â j ,s&, where the average is a MC average. F
ther, we can obtain ground-state expectation values of o
one- and two-body operators, such as the charge density
the charge-charge correlation functions. Each disorder r
ization constitutes a full PQMC calculation. The properti
are averaged over 16 disorder realizations. Thus, we h
obtained the evolution of the Green function with distan
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10 682 PRB 62CALDARA, SRINIVASAN, AND SHEPELYANSKY
the charge densities, and the inverse participation ratios.
results will be described in the following section.

III. RESULTS AND DISCUSSION

To characterize the properties of the ground state,
study the correlation function defined as

C~r !5
1

N2 K (i , j u^âi ,↑
† â j ,↑&1^âi ,↓

† â j ,↓&u2d i 2 j ,rL , ~3!

FIG. 2. The decay of the direction averaged correlation funct

C̄(r ) vs r for a 30330 system forU/t50, with W/t52 ~circles!, 7
~squares!, 10 ~diamonds!, 15 ~up-triangles!, and a 50350 system at
W/t515 ~down-triangles!, averaged over 16 disorder realization
at quarter filling.

FIG. 1. Comparison of exact diagonalization~circles! and
PQMC ~squares! results for the charge density (ni) per site~i! for a
two-chain Hubbard model, dotted lines correspond to the up
chain and dashed lines to the lower chain, with system size 632,
U/t52, W/t510, and filling at four particles. The site energi
usede i /t are(4.28,23.39,20.45,21.03,0.99,24.35) for the up-
per chain and~1.47,3.61,20.78,1.99,20.56,4.58! for the lower
chain, which account for the low charge densities on the low
chain.
ur

e

where r5 i2 j is the vector in the plane between the sit
labeled i and j, and the averages are carried out over
ground-state eigenfunction and the different disorder real
tions for all possible initial positions ofr , i.e., all corre-
sponding i and j. C(r ) can be calculated from the Gree
function, Gi j 5(s^âi ,s

† â j ,s&, already defined in Sec. II. Ou
present work is restricted to the study of equal-time char
teristics. Thus, our study is complementary to the ot
finite-temperature QMC calculation19 that concentrated on
approximate dynamical quantities and not on the structur
the ground-state wave function itself. We note thatC(0)
5N22^( i(ni↑1ni↓)2&;4n2 in the limit of weak disorder
and C(0);4n in the strongly localized limit. The depen
dence ofC(r ) on distancer is related to the localization o
the eigenstate, i.e., we expect exponential decay of this q
tity for localized states and slow decay at long distances
extended states, as discussed in greater detail in the
paragraph. We also study the direction-averaged correla
function C̄(r ) which now depends only on the distancer
5ur u.

In Fig. 2, we show the decay ofC̄(r ) with r, for the 2D
Anderson model, system~1! at U/t50, for various disorder
strengths. The change from flat behavior withr at weak dis-

n

FIG. 3. Decay ofC(r ) for Hamiltonian ~1! with U/t50, W/t
57, N510, andn51/4 ~50 fermions on a 10310 lattice!, averaged
over 16 disorder realizations. The upper part~a! shows the decay in
3D form for the interval 0<C(r )<0.01, the lower part~b! is a
contour plot of the same data.

er

r



ite
r

e
t

itio
th
s
la
ve
g
he
nd

n
n

e
-

in

th

el
te
.

be
to

c-
c-

in-

t

ion

er

PRB 62 10 683GROUND-STATE PROPERTIES OF THE TWO- . . .
order, when the eigenfunctions are delocalized in the fin
sized system (W/t52), to asymptotic exponential decay fo
stronger disorder,W/t>10 ~when the localization length is
smaller than the system size!, is evident. We note that th
initial nonexponential decay in the localized case is due
the fact that the ground-state eigenfunction is a superpos
of one-particle eigenstates of different energies. In fact,
one-particle localization lengthl 1 of a state depends on it
energy and therefore the many-body state, which is the S
determinant of the one-particle states up to the Fermi le
initially decays more rapidly. This is due to the low-lyin
states of smaller localization lengths and it is only in t
asymptotic limit that the decay of the many-body grou
state is determined by the maximuml 1 at EF . This physical
structure of many-body states complicates the observatio
asymptotic exponential decay corresponding to the o
particle localization lengthl 1(EF) at the Fermi level. Despite
these complications, the asymptotic slope is seen to dep
strongly onW ~Fig. 2!, which is consistent with the exponen
tial growth of l 1 with decreasingW in 2D.3 Nevertheless, the
equal-time characteristicC̄(r ) does reflect the change from
localized to delocalized eigenstates. In view of this, the
vestigation of the correlation functionC̄(r ) in the presence
of interactions should tell us the impact of interactions on
localization properties of eigenstates.

FIG. 4. Same as in Figs. 3~a! and 3~b! with U/t56 and the same
disorder realizations.
-
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The dependence ofC(r ) on r , shown in Figs. 3~a! and
3~b! for the 2D disordered, noninteracting Hubbard mod
(U/t50), also clearly shows localization of the ground-sta
eigenfunction. The decay@as seen from the contour plot Fig
3~b!# is approximately symmetric inr , which is due to aver-
aging over different disorder realizations. Hence, it should
useful to study this quantity also in the interacting case,
clarify the ground-state properties.

The behavior ofC(r ) as a function ofr , for relatively
strong interaction strength (U56t), is shown in Figs. 4~a!
and 4~b!. The comparison with the noninteracting case@Figs.
3~a! and 3~b!# clearly shows that even such a strong intera
tion produces only a slight change in the correlation fun
tion. We observe similar behavior for other disorder and
teraction strengths (5<W/t<10,0,U/t<6,n5 1

4 , 1
8 , results

not presented here!. This, in our opinion, provides direc

FIG. 5. The decay of the direction averaged correlation funct

C̄(r ) vs r for the Hamiltonian ~1! with U/t50 ~circles!, 2
~squares!, 6 ~diamonds! for W/t57, N510, and filling n5

1
4 ~50

fermions on a 10310 lattice!, averaged over the same 16 disord
realizations.

FIG. 6. Behavior of̂ lnudrxu& with x for U/t50 ~filled symbols!,
2 ~open symbols! and W/t52 ~squares!, 7 ~circles! with N510,
n5

1
4 , anda51.1, averaged over the same 16 realizations.
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10 684 PRB 62CALDARA, SRINIVASAN, AND SHEPELYANSKY
evidence that even in the presence of strong interactions
ground state of the system remains localized. This con
sion is futher supported by the data for the directio
averaged correlation function,C̄(r ), presented in Fig. 5. In
fact, this direction average further smoothes fluctuations
to disorder. Indeed, even the introduction of relatively stro
interactions (U/t56) affects this function very weakly. Evi
dently, it would be desirable to study much larger syst
sizes and stronger disorder and interaction strengths~larger
values ofW/t andU/t) to see better asymptotic exponent
decay. However, technical limitations prevent us from stu
ing larger system sizes and more extreme parameter va
However, the very weak changes induced inC̄(r ) by the
interaction indicate the localized properties of the grou
state.

As an alternative test for localization, we use anoth
more indirect method, similar to the approach presented
Ref. 23. As discussed in Ref. 23, we vary the amplitude
on-site disordere i for sites i along one vertical line of the
square lattice, ase i→a3e i with a51.1 and 1.3, correspond
ing to 10% and 30% change in disorder. We then study
charge-density differencedrx produced by this perturbation
as a function of distancex from the original line. We average
over all sites with the samex and additionally average lnudrxu

FIG. 7. Charge density (ni) at site i for U/t50 @upper figure
~a!# and 6@lower figure~b!# for a 10310 lattice,W/t57, n5

1
4 for

one realization of disorder.
he
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e
g

-
es.

d
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over 16 disorder realizations. The comparison of data
10% and 30% variation shows that we are in the line
response regime. The results are presented in Fig. 6.
U/t50, the response function shows a sharp drop from
initial peak followed by a slower decay at longer distanc
This behavior is qualitatively similar to the decay of th
correlation function~Fig. 2, Fig. 5!, for the same physica
reasons as analyzed above. Introducing interactions doe
affect the main structure of the curve at all, which drops ve
quickly from the center by more than one order of mag
tude. We interpret this as a sign of a localized ground st
At the same time, we note that there is a slight differen
introduced by interactions at the tails of the response fu
tions. However, this corresponds to a density variation l
than 0.1%, which is at the limit of the accuracy of our ca
culation. In light of the ensemble of data, we conclude t
the ground state in the presence of interactions remains
calized.

FIG. 8. IPR (j) vs U/t for system sizes 10310 ~circles!, 8
38 ~squares!, and 636 ~diamonds! and increasing disorde
strength from top to bottom,W/t50.5 ~dot-dashed!, 2 ~long-
dashed!, 5 ~dashed!, 7 ~dotted!, and 10~solid! lines, at quarter fill-
ing, averaged over the same 16 disorder realizations.

FIG. 9. Same as in Fig. 8 for system sizes 838 ~circles! and
434 ~squares! at 1

8 filling.
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PRB 62 10 685GROUND-STATE PROPERTIES OF THE TWO- . . .
In a sense the Hubbard repulsion leads to local rearra
ments of charge and does not seem to influence the lo
distance properties of the system. This is clearly illustrate
Figs. 7~a! and 7~b!, where the interaction leads to a mo
homogeneous charge distribution~note the change in the ver
tical scale! but does not drastically change the global profi
At the same time, it is known that there exist situatio
where the short-range Hubbard interaction can qualitativ
change the situation and introduce long-range order. H
ever, our data show that this is not the case in the pre
situation, with disorder.

This point of view is further borne out by the data for th
inverse participation ratio~IPR!, j, presented in Fig. 8. The
IPR, defined asj5(( ini)

2/^@Np( i(ni)
2#&, gives thes aver-

age number of sites visited per particle. While initially d
veloped for noninteracting systems, the same character
has been used as well for many-body systems.14,17The value
of j is bounded from above at fixed filling, withj<jmax
5(2n)21, corresponding to the weak disorder limit and fro
below with j>jmin50.5 in the strongly localized limit. We
note thatC(0)3j52n. We have studied the IPR as a fun
tion of system size and interaction strength at1

4 ~Fig. 8! and
1
8 ~Fig. 9! filling. At U/t50, the IPR naturally increases wit
decreasing disorder as states become more extended
strong disorder (W/t>5), j is not sensitive to the system
size since the states are localized and at fixed filling the
is counted per particle. The Hubbard interaction smoot
increases the IPR but does not introduce a qualita
change. This corresponds to the local reorganization
charge introduced byU leading to a more homogeneou
charge-density distribution, as discussed above. The
presented for18 filling in Fig. 9 show qualitatively similar
behavior. However, the size variation is more restricted
this case (N<10 in our studies!.

At this point, it is interesting to compare our studies w
a recent finite-temperature QMC study of a similar mode19

These authors considered the Hubbard model on a sq
lattice, with off-diagonal disorder, in contrast to our stud
This is due to the fact that the method used, a fin
temperature QMC method, suffers from a severe sign pr
lem in the presence of diagonal disorder. For off-diago
V.
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disorder, the situation becomes better, but the problem
sists, restricting the lowest accessible temperatures. T
studies of several physical characteristics, including the c
ductivity ~obtained by approximate analytic continuation
the imaginary time Green function!, indicate the presence o
an interaction-induced metal-insulator transition in th
model. However, this method is not adapted to analysis
the ground-state properties. Our results are not in direct c
tradiction with this study, since it is fully possible that th
ground state remains localized, while the low-lying excit
states become delocalized. Such a situation has been
served in numerical studies of spinless fermions with C
lomb interactions on a 2D lattice with disorder.18 Our result
directly demonstrates the localized nature of the ground s
even in the presence of strong interactions. This is impor
in the framework of general studies of zero-temperat
quantum phase transitions.

IV. CONCLUSIONS

We have used the projector quantum Monte Ca
~PQMC! method to study the ground state of the 2D dis
dered Hubbard model. This method allows us to study s
tems of up to 50 spin-1

2 fermions on a 10310 lattice, for
interaction strengthsU/t up to 6 and a broad interval o
disorder strengths. The comparison of several propertie
the absence and presence of the Hubbard interaction al
us to conclude that interactions lead to local rearrangem
of charge but do not destroy the localized structure of
ground state, within the range of parameter values studie

These results indicate that short-range interactions
probably insufficient to bring about a quantum phase tran
tion in the ground state of this system. Thus, it becom
important to consider the effect of long-range Coulomb
teractions for electrons on a disordered lattice.
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