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Ground-state properties of the two-dimensional disordered Hubbard model
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We study the ground state of the two-dimensional disordered Hubbard model by means of the projector
guantum Monte Carlo method. This approach allows us to investigate the ground-state properties of this model
for lattice sizes up to 1810, at quarter filling, for a broad range of interaction and disorder strengths. Our
results show that the ground state of this system of épieFmions remains localized in the presence of the
short-ranged Hubbard interaction.

I. INTRODUCTION mean-field approximation, which led to a number of impor-
tant results, for example the Efros-Shklovskii gap in the den-
The electronic transport properties of disordered systemsity of states near the Fermi levélbut could not take into
have been the subject of much investigation in physics. FrorAccount quantum interference effects, important in this
the pioneering work of Anderso1958,! it is known thatin ~ Many-body system. The investigation of a simple model of
three dimensiong3D) the eigenstates of a noninteracting WO interacting particlesTIP) in the localized phase showed
electron gas in a random potential become localized at th at short-range attractive/repulsive interactions can lead to
Fermi energy above a critical value of the disorder strengt lestruction of localization and propagation of pairs of par-

W, . In this regime, the eigenstates decay exponentially irf'des on a length scale much larger than the one-particle

space and hence cannot carry a current: thus the svstem is ocalization IengtHL.2 Thus, the effects of interaction on the
P Y ’ y BLalized phase are nontrivial and deserve a detailed study.

insulator. For disorder 5”9?9“".1 lower thanW, the I9€N-  This, however, is not an easy task. Indeed, even the analyti-
states are extended and diffusive transport takes place in the| expressions for the matrix elements of the interaction in
system in accordance with Ohm's law. However, for two-ie |ocalized phase are not knowhhence numerical studies
dimensional (2D) systegns, it was shown by the scaling f the problem become important.

theory of Abrahamet al” that all states are localized forany  Recent numerical approaches to the question have in-
disorder strength. Thus, it appears that there is no metatjuded the studies of persistent currents by exact diagonal-
insulator transitiofMIT) for noninteracting electrons in 2D. jzation of small 2D clustefé and Hartree-Fock-based calcu-
The properties of noninteracting electrons in random potentations without® and with residual interactiof:!” These
tials have since been studied systematically and the maiapproaches led to some interesting indications but did not
physical effects have been understddd. this context, the allow the study of sufficiently large systems and/or suffi-
experimental observation by Kravchenkoal® of a transi-  ciently many particles. Other approaches based on level
tion from insulating to metallic behavior, as seen in the re-spacing statistics of many-body states made possible the
sistivity as a function of temperature of the 2D electron gasstudy of larger systems and showed the existence of ergodic
came as a great surprise to the community. The existence éfielocalized states for low-energy excitations, but not at the
this transition from insulating to metallic behavior as a func-ground staté” All these studies were carried out for spinless
tion of density has been confirmed by other grotiisThe  fermions. Recently, the properties of fermions with spin on a
experiments were carried out on very high mobility, low disordered 2D lattice were investigated usmglga finite-
electron densityrf.) samples which correspond to a regime [€mperature quantum Monte Carl@MC) method™ The
where the electron-electron interactiong,( are much temperature dependence of the resistivity obtained numeri-

stronger than the Fermi energg4), such that the dimen- cally indicated a transition from insulating to metallic behav-

. . TR . ior for sufficiently strong interactions and weak disorder
sionless paramete(~Ee./E) lies in the range 5-50. This strength. However, these calculations were carried out at fi-

indicates the importancg of electron—electro.n interactions irﬁite albeit low temperatured & Er/24), and technical prob-
thesg systems. F'urther, it was sh'ow'n expenmentally that th@ s (“fermion sign problem”) did not permit the analysis
application of an in-plane magnetic fielB() drives the sys-  of the ground state. This is not completely relevant to the
tem insulating’ Since such a field can only couple to the experiments which were carried out at temperatures much
spin, this experiment indicates the important role played bypelow the Fermi enerd) and thus require a better under-
the spin degrees of freedom. While the early experimentstanding of the properties of the ground state, as in the gen-
have stimulated a spate of new experimental results, thergral scenario of quantum phase transitions.
has been no satisfactory theoretical explanation of the phe- To investigate the properties of the ground state of the
nomenon of the 2D MIT, to date. disordered interacting fermionic system, we choose the Hub-
The effects of interactions in disordered systems havéard model with site-diagonal disorder. This could be con-
been studied from the metallic side in great detail, where thaidered as an important first step on the way to investigations
interactions are relatively wedR.The study of interactions of more complicated models with Coulomb interactions,
in the localized phase were mainly carried out within thewhich might be more appropriate for experiments at low
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densities. We study the ground state of our model on thearry out Monte CarloMC) simulations of this quantum
square lattice by the projector QME®QMC) method. We  Hamiltonian, it is first necessary to map it onto an effective
use different characteristics to investigate the extent of thelassical Hamiltonian. Thus, the projection operator

ground-state wave function for a broad range of model pagxp(—@H) is first decomposed using the Trotter formula as
rameters: disorder strengthM), interaction strength(U), [exp(—Aﬂ:IA)exp(—AﬂQ,)]L with ®=A+xL. This intro-

and filling factor (). The studies were carried out in the duces a systematic error of ordek4)2 due to noncommu-
S,=0 sector, with equal numbers of particles with up and™ y

down spins. This is thus the first numerical study to ourtation ofH, andH, . The interaction is then decoupled by a
knowledge of the ground state of a disordered, interactingliscrete Hubbard-StratonoviotiS) transformation, by the
system of fermions with spin. introduction of N>X L Ising-like fields. Since the complete
This paper is organized as follows. In the next section, wesummation over these degrees of freedom is too time-
describe the model and the method used. In the third sectiofPnsuming to be practical, the method reduces to a MC sam-
we present our results for the averaged Green function, theling of physical properties, which is the second source of
charge densities, and the inverse participation ratios, all ofTor, the statistical error. It is important to note that during
which we use to characterize the ground state. We presenttBe MC process, each configuration of Ising spins is assigned

summary of our conclusions in the final section. a weight, represented as a product of up- and down-spin
determinants in this algorithm, which is interpreted as a
Il. MODEL AND METHOD probability. This quantity is positive definite only at half-

filling for the uniform Hubbard model. The problems that
The two-dimensional disordered Hubbard model on aarise from the nonpositive-definite nature of this quantity are

square lattice is given by referred to as the “fermion sign problem” in the literature
and are known to be particularly severe slightly away from
H=Hx+H, half-filling in finite temperature methods and restrict the low-
est temperature that can be attained in the simuldtiothe
= —t(%: al 20t 2 €@l 8, +U2 mny clean limip.
, T ,a

We have studied system sizes of up to<t® at quarter
(o and one-eighth filling$50 and 25 particles We carried out

here thea! _ (3 th fiofannihilation i extensive checks on the MC parameters to assure ourselves
where thea; , (a; ;) are the creatioannihilation operators ¢ convergence, as described in Ref. 22, but in the presence

for a fermion of spino at sitei with periodic boundary of disorder. Thus. we chos®=3.0. with L=30. to have

conditions,n;,, is the number operator for spinat sitei, tis A r=0.1. The symmetric Trotter decomposition then reduces
the hopping parameter, the Hubbard paramélemeasures  the systematic error taX(r)3~0.001. We checked for statis-
the strength of the screened interaction, andthe energy of  tical convergence of our data in several ways. By varying the
sitei, is a random number drawn from a uniform distribution number of sweeps after equilibration, we determined that
[ —W/2,W/2], which parametrizes the disorder. The first two 1000 MC sweeps are sufficient for equilibration and 2000
terms represent the Anderson Hamiltonian and the last terrﬂjrther sweeps for property estimates. We carried out mea-
represents the interactidth . In the limit W=0, this Hamil-  surements until the standard deviations on our values were of
tonian reduces to the usual Hubbard model. The filling factothe order of the systematic error. We also tested our results
v=N,/(2XN?), whereN, is the number of fermion§par-  against results obtained from exact diagonalizations for small
ticles) andN is the linear dimension of the system; thus thesystem sizes, and the results for the charge densityn;

H a2 ~
total number of sites il N ==,(Ni,), presented in Fig. 1 show good agreement

- . . +
We obtain the ground-state properties O.f f[hls model by thitn the exact results. Convergence is of course the best for
PQMC method. The PQMC method was initially developedine orund-state energy as compared to other physical quan-
for the Hubbard model and has been used to obtain re“ablﬁties and we have a relative accuracy of avhen com-
results for large latticeS. The method can be generalized in o104 1o exact calculations. As for the effect of disorder on

a straightforward manner to include random site energies;,o sign problem, it was possible to study the<D lattice
We now present some details of the calculation for complete ’

d refer th der to the literature f detail for U/t=6 for disorder strengthsV/t of up to 7—10. Our
ggiguar‘]?s reter the reader to the literature tor more detallefhosure of the severity of the sign problem is to consider the

. . . tity f=1— b f ti det i $otal
The PQMC method consists in obtaining the true grouncﬂuan 'y (number of negative determinasota

e S . umber of determinantsIn all the cases considered, we
state| ) of the Hamiltonian(1) by projection from a trial havef=0.999, which indicates that the sign problem is un-
wave function|¢) that is not orthogonal to the true ground '

£ th der control.
state of the system, From the simulations, it is possible to obtain ground-state

7®|:|| expectation values of the single-particle Green function,
o) = lim e—d)?_ 2  Gij =Eo<éifgéj,a>,.where the average is a MC average. Fur-
©—on /<¢|e—2(~)H|¢> ther, we can obtain ground-state expectation values of. other
one- and two-body operators, such as the charge density and
The trial wave function is usually formed from the eigen-the charge-charge correlation functions. Each disorder real-
states of the noninteracting Hamiltoniéorbitals filled up to  ization constitutes a full PQMC calculation. The properties
the Fermi level. In this case, we choose the eigenstates ofire averaged over 16 disorder realizations. Thus, we have
the HamiltoniarH » , thus including the random potential. To obtained the evolution of the Green function with distance,
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FIG. 1. Comparison of exact diagonalizatiquircles and
PQMC (squaresresults for the charge density;{ per site(i) for a
two-chain Hubbard model, dotted lines correspond to the upper
chain and dashed lines to the lower chain, with system siz&,6
U/t=2,W/t=10, and filling at four particles. The site energies
usede; /t are(4.283.39,—0.45,—-1.030.99,—4.35) for the up-
per chain and(1.47,3.61;-0.78,1.99;-0.56,4.58 for the lower
chain, which account for the low charge densities on the lower
chain.

the charge densities, and the inverse participation ratios. Our
results will be described in the following section.

2 4 6 8 10

(b)

FIG. 3. Decay ofC(r) for Hamiltonian (1) with U/t=0, W/t
To characterize the properties of the ground state, we-7, N=10, andv=1/4 (50 fermions on a 18 10 lattice, averaged
study the correlation function defined as over 16 disorder realizations. The upper gajtshows the decay in
3D form for the interval 8=C(r)<0.01, the lower partb) is a
contour plot of the same data.

Ill. RESULTS AND DISCUSSION

1 b o~ ~y o~
cn==( > lala n+@la plPe- ). @
N=\ T wherer=i—j is the vector in the plane between the sites
labeledi andj, and the averages are carried out over the
1600} ground-state eigenfunction and the different disorder realiza-
tions for all possible initial positions of, i.e., all corre-
spondingi andj. C(r) can be calculated from the Green

1 function, G;; == (a/ ,a; ,), already defined in Sec. II. Our
present work is restricted to the study of equal-time charac-
teristics. Thus, our study is complementary to the other
finite-temperature QMC calculatibhthat concentrated on
approximate dynamical quantities and not on the structure of
the ground-state wave function itself. We note tig(t0)
=N"%Zi(n;;+n;)?)~4v% in the limit of weak disorder
- and C(0)~4v in the strongly localized limit. The depen-
dence ofC(r) on distance is related to the localization of
the eigenstate, i.e., we expect exponential decay of this quan-
tity for localized states and slow decay at long distances for
10-20 10 20 30 20 extended states, as discussed in greater detail in the next
r paragraph. We also study the direction-averaged correlation

FIG. 2. The decay of the direction averaged correlation functionfunction C(r) which now depends only on the distance

C(r) vsr for a 30X 30 system fotJ/t=0, with W/t=2 (circles, 7 =T _

(square} 10 (diamond$, 15 (up-triangle$, and a 5(< 50 system at In Fig. 2, we show the decay @(r) with r, for the 2D

W/t=15 (down-triangle§ averaged over 16 disorder realizations, Anderson model, systeifi) at U/t=0, for various disorder
at quarter filling. strengths. The change from flat behavior witht weak dis-

1e-05

c(r)

1e-10

1e-15
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C(r)

FIG. 5. The decay of the direction averaged correlation function
E(r) vs r for the Hamiltonian (1) with U/t=0 (circles, 2
(squarep 6 (diamonds$ for W/t=7, N=10, and filling v=41 (50
fermions on a 1& 10 lattice, averaged over the same 16 disorder
realizations.

The dependence df(r) onr, shown in Figs. &) and
3(b) for the 2D disordered, noninteracting Hubbard model
(U/t=0), also clearly shows localization of the ground-state
eigenfunction. The decdys seen from the contour plot Fig.
3(b)] is approximately symmetric in, which is due to aver-
aging over different disorder realizations. Hence, it should be
2 4 6 8 10 useful to study this quantity also in the interacting case, to

clarify the ground-state properties.

FIG. 4. Same as in Figs(® and 3b) with U/t=6 and the same The behavior ofC(r) as a function ofr, for relatively
disorder realizations. strong interaction strengthJ(=6t), is shown in Figs. &)
and 4b). The comparison with the noninteracting c@Bays.

order, when the eigenfunctions are delocalized in the finite-e'(a) and 3b)] clearly shows that even such a strong interac-

ized /1= : al d ; tion produces only a slight change in the correlation func-
sized system\//t=2), to asymptotic exponential decay for tion. We observe similar behavior for other disorder and in-

stronger disorderW/t=10 (wh_en the localization length is  araction strengths (EW/t<10,0<U/t<6v=1,%, results
smaller than the system sizés evident. We note that the ot presented heyeThis, in our opinion, provides direct
initial nonexponential decay in the localized case is due to

the fact that the ground-state eigenfunction is a superposition 15
of one-particle eigenstates of different energies. In fact, the
one-particle localization length, of a state depends on its

energy and therefore the many-body state, which is the Slate
determinant of the one-particle states up to the Fermi level, -2t
initially decays more rapidly. This is due to the low-lying
states of smaller localization lengths and it is only in the &
asymptotic limit that the decay of the many-body ground §' 25 |
state is determined by the maximumat E¢ . This physical 2
structure of many-body states complicates the observation oV
asymptotic exponential decay corresponding to the one-
particle localization length,(Eg) at the Fermi level. Despite
these complications, the asymptotic slope is seen to depen
strongly onW (Fig. 2), which is consistent with the exponen-
tial growth ofl; with decreasingVin 2D 32 Nevertheless, the -35
equal-time characteristi€(r) does reflect the change from

localized to delocalized eigenstates. In view of this, the in-
vestigation of the correlation functio@(r) in the presence FIG. 6. Behavior of In|p,|) with x for U/t=0 (filled symbols,
of interactions should tell us the impact of interactions on the2 (open symbols and W/t=2 (square} 7 (circles with N=10,
localization properties of eigenstates. v=3% anda=1.1, averaged over the same 16 realizations.

(b)

-3

-4 -2 0 2 4 6
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(b)

FIG. 7. Charge densityn() at sitei for U/t=0 [upper figure
(a)] and 6[lower figure(b)] for a 10x 10 lattice, W/t=7, v= % for
one realization of disorder.

2 == T 4

0.5 : '

U/t

FIG. 8. IPR ) vs U/t for system sizes 1010 (circles, 8
X8 (squares and 6x6 (diamond$ and increasing disorder
strength from top to bottomW/t=0.5 (dot-dasheg 2 (long-
dashedg, 5 (dasheg 7 (dotted, and 10(solid) lines, at quarter fill-
ing, averaged over the same 16 disorder realizations.

over 16 disorder realizations. The comparison of data for
10% and 30% variation shows that we are in the linear-
response regime. The results are presented in Fig. 6. For
U/t=0, the response function shows a sharp drop from the
initial peak followed by a slower decay at longer distances.
This behavior is qualitatively similar to the decay of the
correlation function(Fig. 2, Fig. 5, for the same physical
reasons as analyzed above. Introducing interactions does not
affect the main structure of the curve at all, which drops very
quickly from the center by more than one order of magni-
tude. We interpret this as a sign of a localized ground state.
At the same time, we note that there is a slight difference
introduced by interactions at the tails of the response func-
tions. However, this corresponds to a density variation less

evidence that even in the presence of strong interactions, ththan 0.1%, which is at the limit of the accuracy of our cal-
ground state of the system remains localized. This conclueulation. In light of the ensemble of data, we conclude that
sion is futher supported by the data for the direction-the ground state in the presence of interactions remains lo-

averaged correlation functioG(r), presented in Fig. 5. In calized.

fact, this direction average further smoothes fluctuations due
to disorder. Indeed, even the introduction of relatively strong
interactions U/t=6) affects this function very weakly. Evi-
dently, it would be desirable to study much larger system
sizes and stronger disorder and interaction streng#nger
values ofW/t andU/t) to see better asymptotic exponential
decay. However, technical limitations prevent us from study-

ing larger system sizes and more extreme parameter vaIueE_,

However, the very weak changes induceddfr) by the
interaction indicate the localized properties of the ground
state.

As an alternative test for localization, we use another,
more indirect method, similar to the approach presented in
Ref. 23. As discussed in Ref. 23, we vary the amplitude of
on-site disorder; for sitesi along one vertical line of the
square lattice, ag—aXx ¢; with a=1.1 and 1.3, correspond-
ing to 10% and 30% change in disorder. We then study the
charge-density differencép, produced by this perturbation,
as a function of distancefrom the original line. We average

e S ——
SRS S =
35(} ______ o
3 L
25

over all sites with the sameand additionally average |ifp,] 4x 4 (squaresat 3 filling.

U/t

FIG. 9. Same as in Fig. 8 for system sizes 8 (circles and
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In a sense the Hubbard repulsion leads to local rearrangalisorder, the situation becomes better, but the problem per-
ments of charge and does not seem to influence the longsists, restricting the lowest accessible temperatures. Their
distance properties of the system. This is clearly illustrated irstudies of several physical characteristics, including the con-
Figs. 1a) and 7b), where the interaction leads to a more ductivity (obtained by approximate analytic continuation of
homogeneous charge distributiorote the change in the ver- the imaginary time Green functipnindicate the presence of
tical scal¢ but does not drastically change the global profile.an interaction-induced metal-insulator transition in their
At the same time, it is known that there exist situationsmodel. However, this method is not adapted to analysis of
where the short-range Hubbard interaction can qualitativelyhe ground-state properties. Our results are not in direct con-
change the situation and introduce long-range order. Howtradiction with this study, since it is fully possible that the
ever, our data show that this is not the case in the presemground state remains localized, while the low-lying excited
situation, with disorder. states become delocalized. Such a situation has been ob-

This point of view is further borne out by the data for the served in numerical studies of spinless fermions with Cou-
inverse participation rati¢lPR), £, presented in Fig. 8. The lomb interactions on a 2D lattice with disord&rOur result
IPR, defined asf=(Eini)zl([NpEi(ni)zp, gives thes aver- directly demonstrates the localized nature of the ground state
age number of sites visited per particle. While initially de- even in the presence of strong interactions. This is important
veloped for noninteracting systems, the same characteristio the framework of general studies of zero-temperature
has been used as well for many-body systéhiéThe value  quantum phase transitions.
of £ is bounded from above at fixed filling, with< &,
=(2v)*1,_corresp0nding _to the weak disorde_r Iimit_ and from IV. CONCLUSIONS
below with £=£,,,;,=0.5 in the strongly localized limit. We
note thatC(0) X é=2v. We have studied the IPR as a func- We have used the projector quantum Monte Carlo
tion of system size and interaction strength: aFig. 8 and  (PQMC) method to study the ground state of the 2D disor-
% (Fig. 9 filling. At U/t=0, the IPR naturally increases with dered Hubbard model. This method allows us to study sys-
decreasing disorder as states become more extended. #&ms of up to 50 spig- fermions on a 1&10 lattice, for
strong disorder (V/t=5), & is not sensitive to the system interaction strength&J/t up to 6 and a broad interval of
size since the states are localized and at fixed filling the IPRlisorder strengths. The comparison of several properties in
is counted per particle. The Hubbard interaction smoothlythe absence and presence of the Hubbard interaction allows
increases the IPR but does not introduce a qualitativels to conclude that interactions lead to local rearrangements
change. This corresponds to the local reorganization o6f charge but do not destroy the localized structure of the
charge introduced byJ leading to a more homogeneous ground state, within the range of parameter values studied.
charge-density distribution, as discussed above. The data These results indicate that short-range interactions are
presented forz filling in Fig. 9 show qualitatively similar ~probably insufficient to bring about a quantum phase transi-
behavior. However, the size variation is more restricted intion in the ground state of this system. Thus, it becomes
this case =10 in our studies important to consider the effect of long-range Coulomb in-

At this point, it is interesting to compare our studies with teractions for electrons on a disordered lattice.

a recent finite-temperature QMC study of a similar mddel.
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