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Emergence of quantum chaos in the quantum computer core and how to manage it

B. Georgeot and D. L. Shepelyansky*
Laboratoire de Physique Quantique, UMR 5626 du CNRS, Universite´ Paul Sabatier, F-31062 Toulouse Cedex 4, France

~Received 2 May 2000!

We study the standard generic quantum computer model, which describes a realistic isolated quantum
computer with fluctuations in individual qubit energies and residual short-range interqubit couplings. It is
shown that in the limit where the fluctuations and couplings are small compared to the one-qubit energy
spacing, the spectrum has a band structure, and a renormalized Hamiltonian is obtained which describes the
eigenstate properties inside one band. Studies are concentrated on the central band of the computer~‘‘core’’ !
with the highest density of states. We show that above a critical interqubit coupling strength, quantum chaos
sets in, leading to a quantum ergodicity of the computer eigenstates. In this regime the ideal qubit structure
disappears, the eigenstates become complex, and the operability of the computer is quickly destroyed. We
confirm that the quantum chaos border decreases only linearly with the number of qubitsn, although the
spacing between multiqubit states drops exponentially withn. The investigation of time evolution in the
quantum computer shows that in the quantum chaos regime, an ideal~noninteracting! state quickly disappears,
and exponentially many states become mixed after a short chaotic time scale for which the dependence on
system parameters is determined. Below the quantum chaos border an ideal state can survive for long times,
and an be used for computation. The results show that a broad parameter region does exist where the efficient
operation of a quantum computer is possible.

PACS number~s!: 05.45.Mt, 03.67.Lx, 24.10.Cn
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I. INTRODUCTION

During the last decade, remarkable progress has b
achieved in the fundamental understanding of the main
ments necessary for the creation of a quantum compu
Indeed, as stressed by Feynman@1#, classical computers hav
tremendous problems to simulate very common quan
systems, since the computation time grows exponenti
with the number of quantum particles. Therefore, for su
problems it is natural to envision a computer composed
quantum elements~qubits! which operate according to th
laws of quantum mechanics. In any case, such devices w
a sense be unavoidable since technological progress will
to chips of smaller and smaller size which will eventua
reach the quantum scale. At present a quantum comput
viewed as a system ofn qubits~two-level quantum systems!,
with the possibility of switching a coupling between them
and off ~see the detailed reviews in Refs.@2–4#!. The opera-
tion of such computers is based on reversible unitary tra
formations in the Hilbert space, whose dimensionNH52n is
exponentially large inn. It was shown that all unitary opera
tions can be realized with two-qubit transformations@5,6#.
This makes the existence of a coupling between qubits n
essary. Any quantum algorithm will be a sequence of s
fundamental transformations, which form the basis of a n
quantum logic.

An important next step was the discovery of quantu
algorithms which can make certain computations much fa
than on a classical computer. The most impressive of the
the problem of factorization of large numbers in prime fa
tors, for which Shor constructed@7# a quantum algorithm
which is exponentially faster than the classical ones. It w

*ULR: http://w3-phystheo.ups-tlse.fr/;dima
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also shown by Grover@8# that searching for an item in a lon
list is parametrically much faster on a quantum compu
The recent development of error-correcting codes@9,10#
showed that a certain amount of noise due to external c
pling could be tolerable in the operation of a quantum co
puter.

All these exciting developments motivated a great body
experimental proposals to effectively realize such a quan
computer. They include ion traps@11,12#, nuclear magnetic
resonance systems@13#, nuclear spins with interaction con
trolled electronically@14,15# or by laser pulses@16#, elec-
trons @17# or excitons@18# in quantum dots, Cooper pai
boxes@19#, optical lattices@20# and electrons floating on liq
uid helium @21#. As a result, a two-qubit gate was expe
mentally realized with cold ions@22#, and the Grover algo-
rithm was performed for three qubits made from nucle
spins in a molecule@23#. However, to have a quantum com
puter competitive with a classical one will require a mu
larger number of qubits. For example, the minimal numb
of qubits for which Shor’s algorithm will become useful is o
the order ofn51000 @4#. As a result, a great experiment
effort is still needed to achieve quantum computer reali
tion.

A serious obstacle to the physical realization of such co
puters is quantum decoherence due to couplings with
external world, which gives a finite lifetime to the excite
state of a given qubit. This question was discussed by sev
groups for different experimental qubit realization
@4,6,24,25#. The effects of decoherence and laser pulse sh
broadening were numerically simulated in the context
Shor’s algorithm@26,27#, and shown to be quite importan
for the operability of the computer. However, in a number
physical proposals, for example nuclear spins in tw
dimensional semiconductor structures, the relaxation t
due to this decoherence process can be many orders of
6366 ©2000 The American Physical Society
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nitude larger than the time required for the gate opera
@2,14,15,25#, so that there are hopes of managing this o
stacle.

Here we will focus on a different obstacle to the physic
realization of quantum computers that was not stressed u
now. This problem arises even if the decoherence time
infinite and the system is isolated or decoupled from
external world. Indeed, even in the absence of decohere
there are always imperfections in physical systems. Due
this the spacing between the two states of each qubit
fluctuate in some finite detuning intervald. Also, some re-
sidual static interactionJ between qubits will be unavoidabl
present~we point out that an interqubit coupling is require
to operate the gates!. Extensive studies of many-body inte
acting systems, such as nuclei, complex atoms, quan
dots, and quantum spin glasses@28–37#, showed that generi
cally in such systems interaction leads to quantum ch
characterized by ergodicity of the eigenstates and level s
ing statistics as in random matrix theory@38,39#. In a sense
the interaction leads to dynamical thermalization witho
coupling to an external thermal bath. If the quantum co
puter were in such a regime, its operability would be effe
tively destroyed since the noninteracting multiqubit sta
representing the quantum register states will be elimina
by quantum ergodicity.

In this respect, it is important to stress that the resid
interactionJ will unavoidably be much larger than the e
ergy spacingDn between adjacent eigenstates of the quan
computer. Indeed, the residual interactionJ is relatively
small, so that allNH computer eigenenergies are distribut
in an energy band of sizeDE;nD0, whereD0 is the average
energy distance between the two levels of one qubit, andn is
the total number of qubits in the computer. As a con
quence, the spacing between multiqubit states isDn
'DE/NH;nD022n!D0. Let us consider a realistic est
mate forDn andJ for the case withn51000, as required for
Shor’s algorithm to be useful. ForD0;1 K, which corre-
sponds to the typical one-qubit spacing in the experime
proposals@14,15#, the multiqubit spacing becomesDn;103

322103
D0;102298 K. This value will definitely be much

smaller than any physical residual interaction. In the cas
Ref. @15#, for example, with a distance between donors or
5200 Å and an effective Bohr radius ofaB530 Å @Eq. ~2!
of Ref. @15##, the coupling between qubits~spin-spin interac-
tion! is J;D0;1 K. By changing the electrostatic gate p
tential, the effective electron mass can be modified up t
factor of 2. SinceJ}(r /aB)5/2exp(22r/aB)/aB , andaB is in-
versely proportional to the effective mass, this gives a m
mal residual spin-spin interaction ofJ;1025 K@Dn . In this
situation, one would naturally and naively expect that le
mixing, quantum ergodicity of eigenstates, and chaos are
avoidable, since the interaction is much larger than the
ergy spacing between adjacent levels (J@Dn).

In spite of this natural expectation, it was shown recen
in Ref. @40# that in a quantum computer the quantum cha
sets in only for couplingsJ exponentially stronger thanDn .
In fact, it was shown that a critical couplingJc for the tran-
sition to quantum chaos decreases only linearly with
number of qubitsn ~for short-range interqubit coupling!: Jc
;D0 /n. This result opens a broad parameter region whe
n
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quantum computer can be operated below the quantum c
border, when noninteracting multiqubit states are very cl
to the exact quantum computer eigenstates. For exampl
n51000 andD0;1 K, the critical residual interaction isJc
;1 mK, compatible with the proposal discussed above@15#.
We note that for other experimental proposals the value
D0 might differ ~e.g., 1 eV for excitons in semiconducto
quantum dots@18#!, and will accordingly lead to differen
requirements for the residual interaction.

In the present paper, we study in more detail the transit
to chaos, and how it affects the time evolution of the syste
The effects of residual interaction in the presence or abse
of fine fluctuations of individual qubit energy spacing a
analyzed in great detail. The paper is arranged as follows
Sec. II we describe the standard generic quantum comp
model, introduced in Ref.@40#. In Sec. III, we present the
results of numerical and analytical studies of eigenenerg
and eigenstate properties of this model. Section IV is
voted to the analysis of the time evolution of this system, a
typical time scales for the development of quantum chaos
presented as a function of the system parameters. We
some concluding remarks in Sec. V.

II. STANDARD GENERIC QUANTUM COMPUTER
MODEL

In Ref. @40# the standard generic quantum compu
~SGQC! model was introduced to describe a system on
qubits containing imperfections which generate a resid
interqubit coupling and fluctuations in the energy spacin
between the two states of one qubit. The Hamiltonian of t
model reads

H5(
i

G is i
z1(

i , j
Ji j s i

xs j
x , ~1!

wheres i are the Pauli matrices for the qubiti, and the sec-
ond sum runs over nearest-neighbor qubit pairs on a t
dimensional lattice with periodic boundary conditions a
plied. The energy spacing between the two states of a q
is represented byG i randomly and uniformly distributed in
the interval@D02d/2,D01d/2#. The detuning parameterd
gives the width of the distribution near the average valueD0,
and may vary from 0 toD0. Fluctuations in the values ofG i
appear generally as a result of imperfections. For example
the framework of the experimental proposals@14,15#, the de-
tuning d will appear for nuclear spin levels as a result
local magnetic fields and density fluctuations. For electro
floating on liquid helium@21#, it will appear due to fluctua-
tions of the electric field near the surface. The couplingsJi j
represent the residual static interaction between qubits w
is always present for reasons explained in Sec. I. They
originate from spin-exciton exchange@14,15#, Coulomb in-
teraction@11#, dipole-dipole interaction@21#, etc. To catch
the general features of the different proposals, we choseJi j
randomly and uniformly distributed in the interval@2J,J#.
We note that a similar Hamiltonian, but without coupling
detuning fluctuations, was discussed for a quantum comp
based on optical lattices@20,41#. This SGQC model de-
scribes the quantum computer hardware, while the gate
eration in time should include additional time-depende
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6368 PRE 62B. GEORGEOT AND D. L. SHEPELYANSKY
terms in Hamiltonian~1!, and will be studied separately. A
J50 the noninteracting eigenstates of the SGQC model
be presented asuc i&5ua1 , . . . ,an&, where ak50 or 1
marks the polarization of each individual qubit. These are
ideal eigenstates of a quantum computer, and we will
them quantum register states. ForJÞ0, these states are n
longer eigenstates of the Hamiltonian, and the new eig
states are now linear combinations of different quantum r
ister states. We will use the term multiqubit states to den
the eigenstates of the SGQC model with interaction, but a
for the caseJ50.

While in Ref. @40# the main studies concentrated on t
case whered is relatively large and comparable toD0, here
we will focus on the cased!D0, which corresponds to the
situation where fluctuations induced by imperfections
relatively weak. In this case, the unperturbed energy sp
trum of Eq. ~1! ~corresponding toJ50) is composed ofn
11 well separated bands, with interband spacing 2D0. An
example of the density of multiqubit statesrn51/Dn in this
situation is presented in Fig. 1. SinceG i randomly fluctuate
in an interval of sized, each band atJ50, except the ex-
treme ones, have a Gaussian shape with width'And. The
number of states in the bandj is equal to the binomial coef
ficient (j

n) whose value is approximatelyNH /n in the central
bands, so that the energy spacing between adjacent mul
bit states inside one band is exponentially small (dn
;n3/222nd), in line with the general estimate in Sec. I.

In the presence of a residual interactionJ;d, the spec-
trum will still have the above band structure with expone
tially large density of states. ForJ;d!D0, the interband
coupling is very weak and can be neglected. In this situat
the SGQC Hamiltonian@Eq. ~1!# is to a good approximation
described by the renormalized HamiltonianHP

5Sk51
n11P̂kHP̂k whereP̂k is the projector on thekth band, so

that qubits are coupled only inside one band. We will the
after concentrate our studies on the band nearest toE50.
For an evenn this band is centered exactly atE50, while for
oddn there are two bands centered atE56D0, and we will

FIG. 1. Density of multiqubit states of Eq.~1! as a function of
the total system energyE for J50. Heren516 andd/D050.2. The
two extreme bands atE/D0'616 contain only one state, and a
not seen at this scale.
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use the one atE52D0. Such a band corresponds to th
highest density of states, and in a sense represents the q
tum computer core. It is clear that quantum chaos and erg
icity will first appear in this band, which will therefore se
the limit for operability of the quantum computer. Inside th
band, the system is described by a renormalized Hamilton
HP which depends only on the number of qubitsn and the
dimensionless couplingJ/d.

III. QUANTUM COMPUTER EIGENENERGIES
AND EIGENSTATES

The first investigations in Ref.@40# showed that the quan
tum chaos border in the SGQC model@Eq. ~1!# corresponds
to a critical interactionJc , given by

Jc'
Cd

n
, ~2!

whereC is a numerical constant. This border is exponentia
larger than the energy spacing between adjacent multiq
statesDn . The physical origin of this difference is due to th
fact that the interaction is of a two-body nature. As a res
one noninteracting multiqubit stateuc i& has nonzero cou-
pling matrix elements only with 2n other multiqubit states
@this is for nearest-neighbor interaction; if all qubits a
coupled, this number becomesn(n21)/2#. In the basis of
quantum register statesuc i&, the Hamiltonian is represente
by a very sparse nondiagonal matrix with only 2n11 non-
zero matrix elements by line of lengthNH52n ~one diagonal
element plus 2n coupled states!. For d'D0 all these transi-
tions take place in an energy intervalB of width of order
6D0, since flipping two qubits changes the energy by t
order of 63D0. Therefore, the energy spacing between
rectly coupled states isDc'B/2n'3D0 /n. According to
studies of quantum chaos in many-body systems@29,32–
37,40#, the transition to chaos takes place when the ma
elements become larger than the energy spacing betwee
rectly coupled states. This givesJ.Dc which leads to rela-
tion ~2!. For the cased!D0 on which we focus here, still in
the renormalized HamiltonianHP the number of nonzero
matrix elements in one line is of the order ofn, andB;d, so
that Dc;d/n, that leads to result~2! @42#.

The transition to quantum chaos and ergodicity can
clearly seen in the change of the spectral statistics of
system. One of the most convenient is the level spacing
tistics P(s), which gives the probability of finding two adja
cent levels whose spacing is in@s,s1ds#. Heres is the en-
ergy spacing measured in units of average level spacing.
well known that while the average density of states is
sensitive to the presence or absence of chaos, fluctuation
the energy spacings between adjacent levels around the m
value, determined byP(s), are sensitive to it. In the presenc
of chaos, eigenstates are ergodic, overlap of wave funct
gives a finite coupling matrix element between nearby sta
and the spectral statisticsP(s) follows the Wigner-Dyson
~WD! distribution PW(s)5(ps/2)exp(2ps2/4) typical of
random matrices. This distributionPW(s) shows level repul-
sion at smalls, due to the fact that overlap matrix elemen
between adjacent levels tend to move them away from e
other. Conversety, in the integrable case atJ!Jc , the over-
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lap coupling matrix element between nonergodic state
very small. As a result, energy levels are uncorrelated,
P(s) follows the Poisson distributionPP(s)5exp(2s)
known to be valid for integrable one-particle systems@38#.

In the SGQC model, we expect a transition fromPP(s) at
small J to PW(s) above the quantum chaos border@Eq. ~2!#.
An example of such a transition is shown in Fig. 2. To d
crease the statistical fluctuations, we averaged over sev
independent realizations ofG i andJi j in Eq. ~1!, which is the
standard procedure used in random matrix theory@38,39#.
We used up toND553104 realizations so that the tota
statistics 1.53105>NS.1.23104. It is interesting to note
that in the limit J/d→`(d!J!D0) the system remains in
the regime of quantum chaos with WD statistics@43#, as
illustrated in Fig. 3. This means that in the absence of in
vidual qubit energy fluctuations, the residual coupling alo
leads to chaotic eigenstates.

To characterize the variation ofP(s) from one limiting
distribution to another it is convenient to use the parame
h5*0

s0
„P(s)2PW(s)…ds/*0

s0
„PP(s)2PW(s)…ds @33#, where

s050.4729 . . . is theintersection point ofPP(s) andPW(s).
In this way PP(s) corresponds toh51, and PW(s) to h
50. Studies of different systems have already shown
this parameter well characterizes the transition from one
tistics to the other@33,35,37,40#. Indeed, according to the
data of Fig. 4,h changes from 1 at smallJ to h'0 at large
J. To characterize this transition, we chose the critical va
Jc by the conditionh(Jc)50.3. The dependence ofh on the
rescaled coupling strengthJ/Jc shows that the transition be
comes sharper and sharper whenn increases~Fig. 4!.

The dependence of the critical coupling strengthJc on the
number of qubitsn is shown in Fig. 5. It clearly shows tha
this critical strength decreases linearly withn, and follows
the theoretical border@Eq. ~2!# with C'3. For comparison,

FIG. 2. Transition from Poisson to Wigner-Dyson statistics
the renormalized Hamiltonian of the SGQC model in the cen
band. The statistics is obtained for the states in the middle of
energy band (66.25% around the center! for n516: J/d
50.05,h50.99 ~dashed line histogram!; J/d50.32,h50.047 ~full
line histogram!. Full curves show the Poisson distributionPP(s)
and the Wigner-Dyson distributionPW(s); ND58 and NS.1.2
3104.
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in the same figure we also show the dependence of the m
tiqubit spacingDn ~computed numerically! on n. This defi-
nitely demonstrates thatJc@Dn .

The transition in the level spacing statistics reflects
qualitative change in the structure of the eigenstates. W
for J!Jc the eigenstates are expected to be very close to
quantum register statesuc i&, for J.Jc each eigenstateufm&
becomes a superposition of an exponential number of st
uc i&. It is convenient to characterize the complexity of
eigenstateufm& by the quantum eigenstate entropySq
52( iWim logWim , whereWim is the quantum probability to
find the quantum register stateuc i& in the eigenstateufm& of
the Hamiltonian (Wim5u^c i ufm&u2). In this way Sq50 if
ufm& is one quantum register state (J50), Sq51 if ufm& is
equally composed of twouc i& ’s, and the maximal value is

r
l
e

FIG. 3. Level spacing statistics for the renormalized Ham
tonian of the SGQC model in the central band ford50. The sta-
tistics is obtained for the states in the middle of the energy ba
(66.25% around the center! for n515: h50.023~histogram!. Full
curves showPP(s) andPW(s); ND520 andNS.1.63104.

FIG. 4. Dependence ofh on the rescaled coupling strengthJ/Jc

for the states in the middle of the energy band forn56 (*),9 ~o!,12
~triangles!, 15 ~squares!, and 16~diamonds!.



s

o

f
ch
t
e

iled
en-

is-
f.

is

e,
,
n-

ed

w-

n.

n-
ne

g

or

6370 PRE 62B. GEORGEOT AND D. L. SHEPELYANSKY
Sq5n if all 2 n states contribute equally toufm&. We average
Sq over the states in the center of the energy band, andND
realizations ofG i andJi j .

The variation of this averageSq as a function ofJ for
different values ofn is shown in Figs. 6 and 7. This show
that indeed the entropySq grows withJ until it saturates to a
large value corresponding to an exponential number
mixed states. These data show that the critical couplingJcs at
which Sq51 ~two states mixed! is proportional toJc . In-
deed, Fig. 7 shows a small dispersion nearSq51 when n
changes from 6 to 16, whileDn varies by three orders o
magnitude. This is confirmed by the data in Fig. 5, whi
give Jcs'0.13 andJc'0.4d/n. This result is in agreemen
with the results@40# obtained by direct diagonalization of th

FIG. 5. Dependence of log(Jc /d) ~diamonds! and log(Jcs/d) ~tri-
angles! vs log(n); the variation of the scaled multiqubit spacin
@ log(Dn /d)# with log(n) is shown for comparison~1!. The Dashed
line gives the theoretical formulaJc5Cd/n with C53.3; the solid
line is Jcs50.41d/n; the dotted curve is drawn to guide the eye f
~1!. Logarithms are decimal.

FIG. 6. Dependence of the quantum eigenstate entropySq on
J/Jc for n56(*), 9 ~o!, 12 ~triangles!, 15 ~squares!, and 16~dia-
monds!; 1.53105>NS.1.23104.
f

SGQC model@Eq. ~1!# at d!D0 ~lower inset in Fig. 2 of
Ref. @40#!. The quantum eigenstate entropySq characterizes
the global properties of the eigenstates, while a more deta
information about them can be obtained from the local d
sity of statesrW introduced by Wigner@44#:

rW~E2Ei !5(
m

Wimd~E2Em!. ~3!

The functionrW characterizes the average probability d
tribution of Wim ~see a numerical example in Fig. 3 of Re
@40#!. For moderate coupling strength,rW is well described
by the well-known Breit-Wigner distributionrW5rBW ,

rBW~E2Ei !5
G

2p~~E2Ei !
21G2/4!

, ~4!

whereG is the width of the distribution. This expression
valid whenG is smaller than the bandwidth (G,And), and
many levels are contained inside this width. In this regim
the Breit-Wigner widthG is given by the Fermi golden rule
G52pUs

2rc , whereUs is the root mean square of the tra
sition matrix element, andrc is the density of directly
coupled states. The validity of this formula was well check
in many-body systems with quantum chaos@30,35,36,39#. In
our caseUs;J andrc;n/d, so that

G;
J2n

d
. ~5!

This dependence is confirmed by the data in Fig. 8. Ho
ever, for largeJ, whenG.And, the shape ofrW becomes
non-Lorentzian, and is well fitted by a Gaussian distributio
The width of this modified distribution grows likeG;J.
This scaling naturally appears in the limitd50, J!D0, since
the noninteracting part of the Hamiltonian is simply a co
stant commuting with the perturbation. The change from o
dependence to the other takes place forJ.d/n1/4. Above this
limit G is still weakly dependent on the number of qubitsn.

FIG. 7. Same as Fig. 6, but on a larger scale.
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We expect that forJ@d the energy width of one band isG
;JAn ~an effective frequency of the sum ofn Rabi frequen-
cies with random signs!, and have checked this law numer
cally for d50 ~data not shown!.

According to the results obtained from many-body s
tems@35#, the number of quantum register states mixed
side the widthG is of the order ofGrn , and is exponentially
large. However, this assumes thatJ.Jc , and that the system
is already in the quantum chaos regime. In this case
quantum eigenstate entropySq is large @Sq' log(Grn);n#,
and the operability of the computer is quickly destroye
since many quantum register states become mixed. The
torial view of the quantum computer melting is shown in F
9. This image is qualitatively similar to the one in Ref.@40#
~Fig. 5 there!, which was obtained for the SGQC model
d5D0. In Fig. 9 the melting goes in a smoother way, sin
all the states belong to the same central band~quantum com-
puter core!.

The effect of quantum chaos melting in the quantum r
ister representation is shown in Fig. 10 forJ.Jc . The ideal
register structure is manifestly washed out. Conversely,
low the chaos border (J,Jc), only a few quantum registe
states are mixed. For comparison, Fig. 11 shows the s
part of the register in the regimeJ!Jcs ~no mixing of states!
and Fig. 12 that in the regimeJ;Jcs ~few states are mixed!.

IV. TIME EVOLUTION IN THE SGQC MODEL

In Sec. III we determined the properties of eigenstates
the quantum computer in the presence of residual interq
coupling. In the presence of this coupling the quantum r
ister statesuc i& are no longer stationary states, and theref

FIG. 8. Dependence of the Breit-Wigner widthG on the cou-
pling strengthJ for n515 for the states in the middle of the energ
band. The straight lines show the theoretical dependence@Eq. ~5!#
with G51.3J2n/d and the strong coupling regime withG;J; ND

520. Logarithms are decimal. Lower inset: example of the lo
density of statesrW @Eq. ~3!# for J/d50.08; the full line shows the
best fit of the Breit-Wigner form@Eq. ~4!# with G50.10d. Upper
inset: example of the local density of statesrW @Eq. ~3!# for J/d
50.4; the full line shows the best Gaussian fit of widthG50.64d.
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it is natural to analyze how they evolve in time. Indeed, if
time t50 an initial state isux(t50)&5uc i 0

&, corresponding

to the quantum register statei 0, then with time the probabil-
ity will spread over the register and at a timet the projection
probability on the register stateuc i& will be

FIG. 10. Quantum chaos in the quantum register: Grayness
resents the value of the projection probabilityWim of the quantum
register states on the eigenstates of the Hamiltonian, from g
~maximal value! to black~minimal value!. The horizontal axis cor-
responds to 150 quantum register states, and the vertical axis
resents the nearest 150 computer eigenstates~both ordered in en-
ergy!. Heren516, J/d50.4 (J/d.Jc /d50.22), and one random
realization is chosen. A color figure is available on http
xyz.lanl.gov/format/quant-ph/0005015.

l

FIG. 9. Melting of the quantum computer core generated by
interqubit coupling. Grayness represents the level of quan
eigenstate entropySq , from gray (Sq'12) ~top! to black (Sq50)
~bottom!. The horizontal axis is the scaled energyE/d of the com-
puter eigenstates in the central band counted from the band bo
to the top (E/d'6An). The vertical axis is the value ofJ/d, vary-
ing from 0 to 0.5. Heren516, Jc /d50.22, and one random rea
ization is chosen. A color figure is available on http://xyz.lanl.go
format/quant-ph/0005015 .
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Fii 0
~ t !5 z^c i ux~ t !& z2

5 (
m,m8

AimAi 0m* Aim8
* Ai 0m8exp@ i ~Em82Em!t#, ~6!

whereAim5^c i ufm&, Em is the energy of the stationary sta
ufm&, and we chose\51. For J!Jc , the probability
Fi 0i 0

(t) is very close to 1 for all times, since the states a
not mixed by the interaction. This means that all quant
register statesuc i& remain well defined, and the comput
can operate properly. ForJ;Jcs , only a few statesuc i& are
mixed by the interaction, andFi 0i 0

(t) oscillates in time regu-

larly around an average value of order 1/2. These oscillati
are similar to the Rabi oscillations between two levels w
frequencyV;J. An example is presented in Fig. 13. In th
regime, we expect that error-correcting codes@9,10# may ef-
ficiently correct the spreading over few quantum regis
states.

FIG. 11. Same as Fig. 10 below the quantum chaos bor
J/d50.001 (J/d!Jcs /d50.026).

FIG. 12. Same as Fig. 10 forJ/d50.01 (J/d;Jcs /d50.026).
e

s

r

For J.Jcs , quantum chaos sets in, and with time t
probability spreads over more and more quantum regi
states until a quasistationary regime is reached where an
ponentially large number of states is mixed. The probabi
Fi 0i 0

(t) drops approximately to zero, as shown in Fig. 1

The chaotic time scale for this decaytx can be estimated a
tx;1/G, whereG is the width determined in Sec. III. Thi
estimate is very natural in the Fermi golden rule regime, w
the Breit-Wigner local density of states@Eq. ~4!# since
Fi 0i 0

(t) is essentially the Fourier transform of the local de

sity of statesrW , and therefore decreases as exp(2Gt). We
note that the decay in this regime was recently discusse

r,
FIG. 13. Time dependence of the probability to remain in t

same quantum register state forn516 and J50.01;Jcs50.026
(Jc /d50.22); one random realization is chosen.

FIG. 14. Time dependence of the probability to remain in t
same quantum register state forJ/d50.4@Jc /d. Data are shown
for n516 ~diamonds,Jc /d50.22), n515 ~squares,Jc /d50.24),
n512 ~triangles,Jc /d50.28), n59 ~circles, Jc /d50.35), andn
56 ~stars,Jc /d50.59). An average is made over 200 states r
domly chosen in the central band. The inset shows the chaotic
scale tx @defined by Fi 0i 0

(tx)51/2# as a function of 1/G; the
straight line istx51.27/G.
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Ref. @45#. According to our data, whenG becomes compa
rable to the energy bandwidthAnd, rW is close to a Gauss
ian distribution of widthG, and its Fourier transformFi 0i 0

(t)

is also a Gaussian of width 1/G. Therefore, in both regime
we expect the time scaletx for the decay ofFi 0i 0

(t) to be

tx;1/G. The data shown in Fig. 14 correspond to the sa
ration regime for large values ofn, and the inset shows tha
tx;1/G is still valid. In fact the curve forn516 in Fig. 14 is
already close to the limiting decay curve atd50 ~data not
shown!.

At the same time scaletx the quantum entropyS(t) is
large but still growing. It reaches its maximal value on
larger time scale which seems independent ofn. At this
stage, an initial quantum register state is now spread o
most of the register@hereS(t)52( iFii 0

(t)logFii0
(t)#. This

process is shown in Fig. 15. This maximal value ofS(t) is
approximately given bySq ~see Fig. 6!, and accordingly de-
creases with decreasingJ, as illustrated in Fig. 16.

Figure 17 illustrates this mixing process in the quant
register representation, evolving in time. The quantum co
puter hardware becomes quickly destroyed due to the in
qubit coupling. It is necessary to decrease the coup
strength below the quantum chaos border to get obtain w
defined quantum register states fort.0, as illustrated in Fig.
18. The obtained data clearly show that exponentially m
quantum register states become mixed after the finite cha
time scaletx'1/G.

V. CONCLUSIONS

The results presented in this paper show that residua
terqubit coupling can lead to quantum chaos and very c
plicated ergodic eigenstates of the quantum computer.
have shown that in this regime quantum register states
integrate quickly in time over an exponentially large numb
of states, and that computer operability is destroyed. We
termined the dependence of the chaotic time scaletx of this

FIG. 15. Time dependence of the quantum entropyS(t) for
J/d50.4@Jc /d; symbols are as in Fig. 14. An average is ma
over 200 initial states randomly chosen in the central band.
inset shows the same curves normalized to their maximal valu
-

er

-
r-
g
ll-

y
tic

n-
-
e

is-
r
e-

process on coupling strengthJ, detuning fluctuationsd of
one-qubit energy spacing, and the number of qubitsn. After
a time tx the quantum computer hardware is melted.
prevent this melting one needs to introduce an efficient er
correcting code which operates on a time scale much sho
thantx , and suppresses the development of quantum ch

e

FIG. 16. Time dependence of the quantum entropyS(t) for
different values ofJ. n516, Jc /d50.22, andJcs /d50.026; one
random realization is chosen:J/d50.001!Jcs /d ~disks!, J/d
50.01,Jcs /d ~crosses!, J/d50.03'Jcs /d ~squares!, J/d50.2
'Jc /d ~diamonds!, and J/d50.4.Jc /d ~triangles!. The inset
gives the probability of remaining in the same quantum regis
state for the same values ofJ/d. Averages are made over 200 stat
randomly chosen in the central band.

FIG. 17. Time explosion of quantum chaos in the quantum r
ister: grayness represents the value of the projection probab
z^c i ux(t)& z2 of an initial state on the quantum register states orde
in energy, from white~maximal value! to black ~minimal value!.
The horizontal axis corresponds to 150 states, and the vertical
to 150 time steps fromtd50 to td52. At td50, the chosen initial
state is the superposition of two quantum register states. Hen
516, J/d50.4 (J/d.Jc /d50.22), and one random realization
chosen. A color figure is available on http://xyz.lanl.gov/form
quant-ph/0005015.
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To avoid the quantum chaos regime dangerous for quan
computing, one should engineer the quantum computer in
integrable regime below the quantum chaos borderJc
'3d/n. It is important to note that this border decreases w
the detuningd, showing that imperfections do not all con
spire against the operability of the computer. We stress a
that the transition to quantum chaos is an internal proc
which occurs in a perfectly isolated system with no coupl

FIG. 18. Same as Fig. 17 below the quantum chaos bor
J/d50.001 (J/d!Jcs /d50.026).
on
r

m
he

h

in
ss

to the external world. Nevertheless, since decoherence ca
viewed as a result of internal interactions in a larger syste
the results presented here may also apply to this problem

Our main conclusion is that although in the quantu
chaos regime a quantum computer cannot operate for lo
fortunately the border for this process happens to be ex
nentially larger than the spacing between adjacent comp
eigenstates, and therefore a broad parameter region rem
available for realization of a quantum computer. Anoth
possibility is to operate the quantum computer in the regi
of quantum chaos. However, here one should keep in m
that after the chaotic time scaletx the computer hardware
will melt due to interqubit coupling and quantum chao
Therefore, the computer operability in this regime is possi
only if many gate operations can be realized during the fin
time tx ~in a sense it becomes similar to the decohere
time!. It is clear that the most preferable regime correspo
to quantum computer operation below the quantum ch
border.
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