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Received June 16 2000

pacs ref: 03.67.Lx, 05.45.Mt, 24.10.Cn

Abstract

The standard generic quantum computer model is studied analytically and

numerically and the border for emergence of quantum chaos, induced by

imperfections and residual inter-qubit couplings, is determined. This

phenomenon appears in an isolated quantum computer without any external

decoherence. The onset of quantum chaos leads to quantum computer hard-

ware melting, strong quantum entropy growth and destruction of computer

operability. The time scales for development of quantum chaos and ergodicity

are determined. In spite the fact that this phenomenon is rather dangerous for

quantum computing it is shown that the quantum chaos border for inter-qubit

coupling is exponentially larger than the energy level spacing between quan-

tum computer eigenstates and drops only linearly with the number of qubits

n. As a result the ideal multi-qubit structure of the computer remains rather

robust against imperfections.This opens a broad parameter region for a poss-

ible realization of quantum computer. The obtained results are related to the

recent studies of quantum chaos in such many-body systems as nuclei,

complex atoms and molecules, ¢nite Fermi systems and quantum spin glass

shards which are also reviewed in the paper.

1. Introduction

On the border between two Millennia it is natural to ask the

question, what will be the origin of future human power? Even
thirty or twenty years ago the standard answer would be:

nuclear. But now in the view of the amazing computer devel-

opment all over the world it becomes clear that the future

power will be related to ability to count as fast as possible.

In Millennium I this ability was basically comparable with

¢nger counting, while at the end of Millennium II it made

an enormous jump with computer creation which led to a

qualitative change in human society. During last two

decades the power of modern computers demonstrated a

constant impressive growth due to technological progress

and creation of chips of smaller and smaller size. In a near

future this size should reach a scale at which the quantum

nature of physical laws will become dominant. As a result,

we unavoidably come to the problem of creating a quantum

computer. Such a computer should be essentially based

on quantum mechanics and operate with unitary trans-

formations and quantum logic. The unitary nature of

transformations allows to exclude energy dissipation that

should play an important role on small scales. At the same

time, as stressed by Feynman [1], the classical computer

has enormous di¤culty in simulation of many-body quan-

tum systems due to exponential growth of the Hilbert space

with the number of particles and hence, of the computational

e¡orts. Due to that can be expected that a computer com-

posed of quantum elements will be much more e¤cient

for solution of quantum, andmaybe other, problems. At pre-

sent the quantum computer is viewed as a system of n
coupled qubits, being two-level quantum systems or one-half

spins (see recent review [2] and references there in). The com-

puter operation is based on a controlled series of two-qubit

coupling switches, on and o¡ which together with one-qubit

rotations allow to realize any unitary operation in the

Hilbert space of size NH � 2n [3,4]. In this respect the

inter-qubit coupling becomes an unavoidable property of

quantum computer.

Recently a great increase of interest in quantum

computing has been generated by the work of Shor [5]

who constructed a quantum algorithm which performs large

number factorization into primes exponentially faster than

any known classical algorithm. Also Grover showed [6] that

a search of an item in a long list is done much faster by

a quantum computer. The enormous gain in the compu-

tation rate is reached due to high parallelism of multi-qubit

quantum evolution and quantum interference. Together

with a recent theoretical development of quantum error-

correcting codes [7,8] these exciting results stimulated vari-

ous experimental proposals for realization of a quantum

computer. The variety of physical systems proposed is really

amazing and includes: ion traps [9], nuclear magnetic

resonance systems [10], nuclear spins with interaction con-

trolled electronically [11,12] or by laser pulses [13], quantum

dots [14], Cooper pair boxes [15], optical lattices [16] and

electrons £oating on liquid helium [17]. At present two-qubit

gates were experimentally realized with cold atoms [18], and

the Grover algorithm has been performed for three qubits

made from nuclear spins in a molecule [19].

Thus there are two main lines in the present day quantum

computer research: construction and development of

e¤cient quantum algorithms and search for an optimal

physical system with a future experimental realization of

few coupled qubits. The ¢rst line has a strong mathematical

shade: indeed, it assumes that all qubits are perfectly ident-

ical and the couplings between them can be operated in a

perfect way. The second line, in a large respect, is a part

of experimental physics with few qubits. As a result, there

is a broad open ¢eld for physical studies of a realistic quan-

tum computer with many qubits. Indeed, in reality the qubits

are never perfect, the level spacing £uctuates from one qubit

to another due to di¡erent environment, there is also a

residual interaction between qubits which cannot be

eliminated completely, the two-qubit gate operations are

also not perfect. In practice, at least around n � 1000 of such

qubits are required to make a quantum computer more

e¤cient than the existing computers today [2]. In addition

to the above internal imperfections there is also decoherence

due to coupling to the external world which produces noise

and dissipation. The e¡ects of decoherence and two-qubit

gates pulse broadening were numerically tested on Shor's

algorithm [20,21] and were shown to play an important role.* http://w3-phystheo.ups-tlse.fr/�dima
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At the same time the estimates show that it is possible to

have physical qubits with very long relaxation time, during

which many gate operations can be realized [22]. One of

the most promising systems seems to be nuclear spins in two-

dimensional semiconductor structures [11,12,23].

However, the absence of external decoherence does not

yet mean that the computer will operate properly. Indeed,

internal imperfections with inter-qubit residual couplings

J can strongly modify the ideal quantum register represented

by noninteracting many-body (multi-qubit) states of ideal

qubits. A simple estimate [24] shows that the residual inter-

action J will be unavoidably much larger than the energy

level spacing Dn between adjacent eigenstates of a realistic/

generic quantum computer. Let us assume that J is relatively

weak comparing to the one-qubit level spacing D0. Then all

NH eigenenergies will be located in an energy band of size

DE � nD0 and the average multi-qubit level spacing is

Dn � DE=NH � D02
ÿn � D0. For the experimental pro-

posals [11,12] we have D0 � 1 K so that for n � 1000, when

Shor's algorithm becomes useful, the multi-qubit spacing

is incredibly small Dn � 103 � 2ÿ103D0 � 10ÿ298 K. This

value will de¢nitely be much smaller than any physical

residual interaction J. For the proposal [12] with a distance

between nuclear spins of r � 200 �A and an e¡ective Bohr

radius of aB � 30 �A ( Eq. (2) of [12]), the coupling between

qubits (spin-spin interaction) is J � D0 � 1 K. By changing

the electrostatic gate potential, an e¡ective barrier between

nuclei can be modi¢ed that can be viewed as a change of

e¡ective electron mass possibly up to a factor of two. Since

J / �r=aB�5=2 exp�ÿ2r=aB�=aB, and aB is inversely propor-

tional to the e¡ective mass, this gives a minimal residual

spin-spin interaction of J � 10ÿ5 K� Dn. On the ¢rst glance

this would lead to a natural/naive conclusion that at such

residual interaction the ideal quantum computer eigenstates

are strongly mixed and completely modi¢ed resulting in

destruction of quantum computer hardware. In spite of this

expectation it has been shown recently that the ideal qubit

structure is much more robust and in reality the quantum

hardware melting and quantum chaos induced by inter-qubit

interaction takes place at J > Jc � D0=n being exponentially

larger than Dn [24]. This result for quantum chaos border in

quantum computing is recently con¢rmed by more extended

studies [25] and opens a broad regime of parameters for

which realization of a quantum computer is possible. For

example, at D0 � 1 K and n � 1000 the critical coupling

Jc � 1 mK is compatible with the experimental proposal

[12].

The above result is closely related to the long term

research of quantum many-body systems, started by Wigner

[26] interested in ``the properties of the wave functions of

quantum mechanical systems which are assumed to be so

complicated that statistical consideration can be applied

to them''. As a result, the random matrix theory (RMT)

has been developed to explain the generic properties of

complex eigenstates and energy spectra of many-body

interacting systems such as heavy nuclei, many electron

atoms and molecules [27]. The success of RMT was so

impressive [28] that the conditions of its applicability to

many-body systems were not really realized until recently.

Indeed, for example, in nuclei the density of states grows

exponentially with excitation energy and at a ¢rst glance

the RMT is valid as soon as the interaction matrix elements

U become comparable to the level spacing between many-

body states Dn. However, in nature we have only two-body

interaction and therefore, while the size of the Hilbert space

grows exponentially with the number of particles n, the

number of nonzero interaction induced matrix elements

grows not faster than n2. To study the spectral statistics

in this situation a two-body random interaction model

(TBRIM) was introduced and it was shown [29,30] that

in the limit of strong interaction the RMT remains valid even

if the full Hamiltonian matrix is exponentially sparsed.

However, much more time was needed to understand the

case of relatively weak interaction and to ¢nd the critical

Uc above which quantum chaos and RMT set in. Contrary

to the naive expectation U � Dn assumed by many authors

until recently (see e.g. [31^33]) it now became clear that

the quantum chaos border is exponentially larger than Dn

since only transitions between directly coupled states, and

not the bulk density of states, are important for level mixing.

As a result the interaction should be larger than the energy

level spacing Dc between directly coupled states

U > Uc � Dc � Dn to change the level spacing statistics

P�s� from the Poisson distribution to the Wigner-Dyson

one and to generate quantum ergodicity and chaos for

eigenstates. As for my knowledge, for the ¢rst time this con-

dition for quantum chaos in many-body systems had been

formulated by �Aberg who also by numerical simulations

for a nucleus model had found the change in the level stat-

istics across this border [34]. Due to that I will call this con-

dition Ðberg criterion.
In spite of other papers �Aberg (e.g. [35]) his result was not

broadly known for the community probably because his

studies were mainly addressed to nuclear physicists and

the numerical results were not con¢rmed at that time. Also

in nuclei the interaction is usually quite strong and quantum

chaos sets in rather quickly. In fact it was shown by numeri-

cal simulations of other models that in an isolated

many-body Fermi system a su¤ciently strong interaction

can induce dynamical thermalization with the Fermi-Dirac

distribution [31,32]. Independently, the line of research

related to the problem of two interacting particles in a ran-

dom potential [36] showed that a two-body interaction

can lead to a number of unexpected results and that

disorder/chaos can strongly enhance the interaction. The

latter property had in fact been known from the spectacular

Sushkov-Flambaum enhancement of weak interaction in

nuclei [37]. The analytical studies of few particles with

two-body random interactionU [38] showed that the mixing

of levels, quantum chaos and RMT statistics appear only if

U > D2, where D2 � D3 � D4::: are the level spacings

between 2-,3-,4-particle levels respectively. This result was

generalized for many particles and the quantum chaos

border Uc � Dc was proposed and con¢rmed by extensive

numerical studies of the TBRIM model [40], independently

of �Aberg's papers. As it will be seen from the present paper

the knowledge obtained for quantum many-body systems

can be successfully used for such a new direction of research

as quantum computing.

In this paper I review the recent developments of quantum

chaos theory in many-body systems obtained in Toulouse

and show their links and importance for a quantum com-

puter which also represents a many-body system with

exponentially large Hilbert space. The paper is organized
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as follows. In the next Section the analytical and numerical

results are presented for emergence of quantum chaos in

many-body systems. In Section 3 the standard generic quan-

tum computer (SGQC) model is described and the results of

Section 2 are generalized for quantum chaos border for

quantum computing. In Section 4 the time evolution in

the regime of quantum chaos is studied and di¡erent time

scales imposed by chaos and decoherence on quantum

computing are discussed. The paper ends by the concluding

remarks in the last Section.

2. Ðberg criterion for emergence of quantum chaos in
many-body systems

Following [38] let us consider ¢rst a case of three particles

located on m one-particle orbitals with energy level spacing

D � V=m. For simplicity we assume the particles to be dis-

tinguishable which however is not of principal importance

for m � 1. The level spacing between 2,3-particle states is

D2 � V=m2; D3 � V=m3 respectively with D � D2 � D3.

The two-body matrix elements written in the noninteracting

eigenbasis are supposed to be random with typical values

U12 � U and U23 � U for interaction between 1st/2d and

2d/3d particles respectively. At the same time the interaction

matrix element U13 between 1st/3d is taken to be zero for

simplicity (the ¢nal result remains the same for U13 � U).

For two interacting particles, e.g. 1st/2d, the levels become

mixed by interaction and RMT spectral statistics sets in

when the interaction becomes larger than the level spacing

between two-particles states: U12 > D2. On the contrary

for U12 � D2 the perturbation theory is valid and the

eigenstates with interaction are determined by one

noninteracting eigenstate. In the case of three particles

the situation is more complicated since the three-particle

states are not directly coupled by two-body interaction.

The matrix element U3 between 3-particle levels can be

found by the second order perturbation theory. In this

way the matrix element between initial state j123 > and ¢nal

state j102030 > is given by the diagram presented in Fig. 1 with

intermediate state j10 �23 >.

U3 �
X

�2

< 12jU12j10 �2 >< �23jU23j2030 >
�E1 � E2 � E3 ÿ E10 ÿ E�2 ÿ E3�

� U2

D
: �1�

It is important that the summation is carried out only over

single particle states �2 and the sum is mainly determined

by a term with a minimal detuning in the denominator being

of order D. As a result the level mixing sets in for U3 > D3

which gives the quantum chaos border [38]:

U � Uc � D2 � D3 �2�

This means that the 3-particle levels are mixed only when the

interaction mixes two-particle levels that is the consequence

of the two-body nature of interaction. In a similar way

for few particles n � 3 the border Uc � D2. This conclusion

was con¢rmed in [39].

Let us now consider a more general case of TBRIM

[29^31] with n Fermi particles distributed over m energy

orbitals em0 , m0 � 1; 2; :::;m. These energies are randomly

and homogeneously distributed in the interval �0;mD� with
spacing D. The total number of many-body states is

N � m!=�n!�mÿ n�!� and they are coupled by random

two-body matrix elements with values uniformly distributed

in the interval �ÿU;U �. Due to the two-body nature of inter-

action the number of multi-particle states coupled by

interaction, or the number of direct transitions, is

K � 1� n�mÿ n� � n�nÿ 1��mÿ n��mÿ nÿ 1�=4 [31]. All

these transitions occur inside a two-body energy interval

B � �2mÿ 4�D around the energy of the initial multi-particle

state. For large m and n the number of transitions K is much

smaller than the size of the matrix N but much larger than

the number of di¡erent two-body matrix elements

N2 � m2=2. The Fermi energy of the systems is eF � nD
and the level spacing in the middle of the total energy band

is exponentially small Dn � �mÿ n�nD=N.

At the middle of the spectrum the density of directly
coupled states is rc � K=B. According to the usual per-

turbation theory, these states, if they would be alone, are

mixed if the coupling U is larger than their level spacing

Dc � 1=rc. This is the �Aberg criterion [34,35], which was also

independently proposed in [40]. This relation is also in agree-

ment with the arguments given above for few particles. As a

result, the onset of quantum chaos is expected for U > Uc:

Uc � CDc � C
B

K
� 2C

r2n2
�3�

where C is a numerical constant to be found and

r2 � N2=B � m=4D is the two-particle density at

m � n � 1. It is important to stress that the critical coupling

Uc is exponentially larger than the level spacing Dn between

multi-particle states.

The most direct way to detect the emergence of quantum

chaos is by the change in the probability distribution P�s�
of nearest level spacings s, where s is measured in units

of average spacing. Indeed, for integrable systems the levels

are noncorrelated and characterized by the Poisson distri-

bution PP�s� � exp�ÿs�, while in the quantum chaos regime

the statistics is close to the Wigner surmise PW �s� �
�ps=2� exp�ÿps2=4� [41]. To identify a transition from one

limiting case to another it is convenient to introduce the

parameter Z �
R s0
0
�P�s� ÿ PW �s��ds=

R s0
0
�PP�s� ÿ PW �s��ds,

where s0 � 0:4729::: is the intersection point of PP�s� and

PW �s�. In this way Z varies from 1 (P�s� � PP�s�) to 0

(P�s� � PW �s� ) and the critical value of Uc can be deter-

mined by the condition Z�Uc� � Zc � 0:3 [40]. In fact the

choice of Zc a¡ects only the numerical constant C in (3).

The chosen Zc � 0:3 is close to the value Zc � 0:2 for the criti-

cal statistics at the Anderson transition on a 3-dimensional

disordered lattice [42]. The results of extensive numericalFig.1. Diagram for the e¡ective 3-particle matrix elementU3 in (1), after [38].
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studies, performed in [40], are presented in Fig. 2 and con-

¢rm the �Aberg criterion (3) in a large parameter range with

C � 0:58 [43]. Of course, the data [40] are obtained for a

much larger parameter range than in [34,35]. Nevertheless,

the above C value is in good agreement with a numerical

factor found in [35] (see Eq. 22 there), which gives

C � 0:7, if to take into account thatC is de¢ned via the same

average values of square matrix element. A similar value is

also found in more advanced studies for n � 3; 4 in the layer

model approximation with the states selected in the energy

interval D (see insert in Fig. 3) [44]. Also the above studies

[34,35,40,44] show that contrary to the sharp Anderson

transition [42] a smooth crossover from one statistics to

another takes place at U � Uc (see, however, [45] and

references therein).

The �Aberg criterion can be applied not only to excited

states but also to low energy excitations near the Fermi level.

Suppose we have a Fermi gas with a temperature T � eF.

Then, according to the Fermi-Dirac distribution, the

number of e¡ectively interacting particles is dn � Tn=eF with

the density of these two-particle states r2 � T=D2 and

rc � r2dn
2 � D�T=D�3. The total excitation energy is

dE � Tdn � T2=D. As a result the interaction induced/

dynamical thermalization and the quantum chaos set in [40]

only for

dE > dEch � D�D=U�2=3; T > Tch � D�D=U�1=3: �4�
These relations follow also from the �Aberg papers [34,35]

even if they were not written directly there. The numerical

constant in (4) corresponds to Zc � 0:3 [40]. Below the

border (4) the eigenstates are not ergodic and the interaction

is too weak to thermalize the fermions even if the

multi-particle level spacing is exponentially small

(Dn / exp�ÿ2:5�dE=D�1=2 [47]). After [34,35,40] the depen-

dence (4) was also obtained in [46].

In the quantum chaos regime U > Uc the local density of

states is described by the Breit-Wigner distribution with

the energy width G given by the Fermi golden rule

G � 2pU2rc=3 [44]. The value of G determines the spreading

width of eigenstates mixed by interaction. The number of

noninteracting eigenstates contributing to a given eigenstate

can be measured through the inverse participation ratio

(IPR) x � 1=
P

i jaij4, where ai are probability amplitudes

in the noninteracting eigenbasis. The mixing of all levels

in the interval G gives [44]

x � Grn � 2U2rcrn: �5�
where the numerical factor is taken in analogy with the

known result for band random matrices. This analytical

relation is in a good agreement with the numerical data

shown in Fig. 3. It is important to note that at U � Uc

exponentially many states are mixed by interaction. The

width G has also another important physical meaning: it

determines the chaotic time scale tw � 1=G after which an

initial noninteracting eigenstate disintegrates over expo-

nentially many (x) eigenstates of the interacting system (here

and below T � 1).

3. Standard generic quantum computer model

In [24] the standard generic quantum computer (SGQC)

model was introduced to describe a system of n qubits con-

taining imperfections which generate a residual inter-qubit

coupling and £uctuations in the energy spacings between

the two states of one qubit. The Hamiltonian of this model

reads:

H �
X

i

Gis
z
i �

X

i<j

Jijs
x
i s

x
j ; �6�

where the si are the Pauli matrices for the qubit i and the

second sum runs over nearest-neighbor qubit pairs on a

two-dimensional lattice with periodic boundary conditions

applied. The energy spacing between the two states of a qubit

is represented by Gi randomly and uniformly distributed in

the interval �D0 ÿ d=2;D0 � d=2�. The detuning parameter

d gives the width of the distribution near the average value

D0 and may vary from 0 to D0. Fluctuations in the values

of Gi appear generally as a result of imperfections, e.g. local

magnetic ¢eld and density £uctuations in the experimental

proposals [11,12]. The couplings Jij represent the residual

static interaction between qubits which is always present

Fig. 2. Dependence of the rescaled critical interaction strength Uc=B, above
which P�s� becomes close to the Wigner-Dyson statistics, on the number

of directly coupled states K for 4 � m � 80 and 1=40 � n=m � 1=2. The line

shows the theory (3) with C � 0:58, after [40].

Fig. 3. Dependence of the rescaled IPR x=U2 on rcrn : layer model data for

n � 3, D � 1 and 40 � m � 130 (o); n � 4 and 30 � m � 60 (diamonds).

The straight line gives theory (5). Insert shows Uc=D vs. rcD in log-log scale

for the same parameters; the straight line is the ¢t Uc � 0:62=rc. After [43].
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for reasons explained in the introduction. They can originate

from spin-exciton exchange [11,12], Coulomb interaction

[9], dipole-dipole interaction [17], etc... To catch the general

features of the di¡erent proposals, Jij are chosen randomly

and uniformly distributed in the interval �ÿJ; J�. This SGQC

model describes the quantum computer hardware, while the

gate operation in time should include additional

time-dependent terms in the Hamiltonian (6) and will be

studied separately. At J � 0 the noninteracting eigenstates

of the SGQC model can be presented as jci >�
ja1; :::; an > where ak � 0; 1 marks the polarization of each

individual qubit. These are the ideal eigenstates of a quan-

tum computer called quantum register states. For J 6� 0,

these states are no longer eigenstates of the Hamiltonian,

and the new eigenstates are now linear combinations of dif-

ferent quantum register states. The term multi-qubit states

is used to denote the eigenstates of the SGQC model with

interaction but also for the case J � 0. It is important to

stress that the quantum computer operates in the middle

of the energy spectrum where the density of states is

exponentially large and it is natural that the quantum chaos

initially sets in this bulk part of the spectrum. In this respect

low energy excitations are not important contrary to

fermionic systems discussed above.

It is interesting to note that when one site in (6) is coupled

with all other sites and d � 2D0 then the system becomes

equivalent to the quantum version of the classical

Sherrington-Kirpatrick spin glass model studied in [48].

For such a quantum spin glass shard in the middle of the

spectrum the coupling matrix element is U � J, the spacing
between directly coupled states is Dc � D0=n2, since each

state is coupled to n�nÿ 1�=2 states in the energy band of

the order of D0. Therefore, according to (3) the quantum

chaos and ergodicity emerge for J > D0=n2 � Dn as it

was shown analytically and numerically in [48].

A similar analysis can be done for the SGQC model (6).

Indeed, for d � D0 and J < d the total spectrum is composed

of n bands with inter-band spacing 2D0 and band width
���

n
p

d.

Within one band one quantum register state is coupled to

about n states in an energy window of 2d so that

Dc � d=n and the quantum chaos border is given by [24]

Jc � Cqd=n �7�

where Cq is a numerical factor. All above arguments remain

valid up to d � D0 when the bands become overlapped. It

is important that Jc � Dn and that Jc decreases with d.

The last property is natural since at small d the states in

one band are quasi-degenerate and it is easier to mix levels.

Direct numerical simulations for the quantum chaos

border in a quantum computer are done in [24] for the SGQC

model. The change in the level spacing statistics P�s� in the

band center with the growth of residual interaction J can

be quantitatively characterized by the parameter Z. To sup-

press £uctuations P�s� is obtained by averaging over

5 � ND � 4� 104 random realizations of Gi; Jij so that

the total spacing statistics was 104 < NS � 1:6� 105. Also

P�s� is determined inside one of the symmetry classes of

(6) with odd or even number of qubits up. The dependence

of Z on J is presented in Fig. 4. The variation of critical

coupling with n and d can be determined from the condition

Z�Jc� � 0:3. The data obtained are in a good agreement with

(7) with Cq � 3:16 and clearly show that Jc � Dn (see inserts

in Fig. 4). According to Fig. 4 the transition is sharp in the

limit of large n in contrast to the smooth crossover in the

TBRIM. This di¡erence is due to local interaction between

particles in (6) contrary to the long range interaction in

the TBRIM.

In the limit d � D0 and J � D0 the coupling between dif-

ferent energy bands is negligibly small. In this case to a good

approximation the SGQCHamiltonian (6) can be reduced to

the renormalized HamiltonianHP � S
n�1
k�1P̂kHP̂k where P̂k is

the projector on the kth band, so that qubits are coupled only

inside one band. For an even n this band is centered exactly

at E � 0, while for odd n there are two bands centered at

E � �D0, and we will use the one at E � ÿD0. Such a band

corresponds to the highest density of states, and in a sense

represents the quantum computer core. The dependence

of critical coupling, determined via Z�Jc� � 0:3, on the

number of qubits n is shown in Fig. 5 being in good agree-

ment with the theoretical quantum chaos border (7). It is

important to note that at d � 0 the parameter Z � 0 and

the eigenstates are chaotic [25] in agreement with (7).

The drastic change in the level spacing statistics is in fact

related to a qualitative change in the quantum computed

eigenstate structure. For J � Jc the eigenstates are very

close to noninteracting multi-qubit states jci >, while for

J > Jc each eigenstate jfm > becomes a mixture of

exponentially many jci >. It is convenient to characterize

the complexity of an eigenstate jfm > by the quantum

eigenstate entropy Sq � ÿ
P

i Wim log2 Wim, where Wim is

the quantum probability to ¢nd the state jci > in the

eigenstate jfm > (Wim � j < cijfm > j2). In this way

Sq � 0 if jfm > is represented by one jci >, Sq � 1 if two

jci > with equal probability contribute to one jfm > and

the maximal value Sq � n corresponds to a mixture of all

NH states in one jfm >. A mixture of two states jci > is

already su¤cient to modify strongly the quantum register

computations and it is natural to determine the critical

Fig. 4. Dependence of Z on the rescaled coupling strength J=Jc for the states
in the middle of the energy band for n � 6���; 9(o); 12 (triangles); 15

(squares); d � D0. The upper insert shows log�Jc=D0� (diamonds) and

log�Jcs=D0� (triangles) versus log�n�; the variation of the scaled multi-qubit

spacing Dn=D0 with log�n� is shown for comparison (+). Dashed line gives

the theoretical formula (7) with Cq � 3:16; the solid line is

Jcs � 0:41D0=n. The lower insert shows log�Jcs=D0� versus log�d=D0� for

n � 6���; 9 (o), 12 (triangles); straight lines have slope 1. After [24].
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coupling Jcs by the condition Sq�Jcs� � 1. The results for the

Jcs dependence on n and d are shown in Figs. 4,5. They

clearly show that Jcs � 0:13Jc � 0:4d=n � Dn.

In the quantum chaos regime at J > Jc one eigenstate is

composed of x states jci > mixed in the Breit-Wigner width

G � J2=Dc � J2n=d. As for the TBRIM the IPR is

exponentially large and is given by (5) [49]. For J > d the

interaction becomes too strong and G � J
���

n
p

[25]. The pic-

torial image of the quantum computer melting is shown

in Fig. 6. For J > Jc the eigenstates become very complex

and the quantum computer hardware and its operability

are destroyed by residual inter-qubit interaction.

4. Time scales for quantum chaos and decoherence in
quantum computing

The results above de¢nitely show that the optimal regime for

quantum computing corresponds to the integrable region

below the chaos border J < Jc. However, it is possible that

for certain experimental proposals it will be di¤cult to avoid

the quantum chaos regime J > Jc. Therefore, it is also

important to understand during what time scale the quan-

tum chaos becomes completely developed. As for TBRIM

this chaotic time scale tw is given by the decay rate G from

one quantum register state to all others [24,25]:

tw � 1=G; G � J2n=d; G � J
���

n
p

�8�

where the expressions for G are given for J < d and J > d

respectively. For d � D0 a similar estimate for tw was given

in [50].

The detailed numerical studies of chaotic disintegration of

an initial state jw�t � 0� >� jci0 >, corresponding to the

quantum register state i0, are done in [25]. There for

J > Jc the behavior of the projection probability Fii0�t� �
j < cijw�t� > j2 is found and it is shown that the probability

to stay at the initial state Fi0i0 �t� decays rapidly to zero with

the time scale tw � 1=G (see Fig. 14 there). The growth of

the quantum entropy S�t� � ÿ
P

i Fii0 �t� log2 Fii0�t� with time

is shown in Fig. 7. It clearly shows that after a ¢nite time

comparable with tw exponentially many states are excited

and the computer operability is quickly destroyed.

Above we discussed the emergence of quantum chaos

induced by inter-qubit coupling in an isolated quantum com-

puter. It is possible to assume that this process can model to

a certain extent the e¡ects of decoherence induced by

coupling to the external world. Indeed, the two-body nature

of interaction is also valid for external coupling. In addition

Fig. 5. Dependence of log�Jc=d� (diamonds) and log�Jcs=d� (triangles) versus
log�n�; the variation of the scaled multi-qubit spacing (log�Dn=d�� with

log�n� is shown for comparison (+). Dashed line gives the theoretical

formula (7) with Cq � 3:3; the solid line is Jcs � 0:41d=n; the dotted curve

is drawn to guide the eye for (+). After [25].

Fig. 6. The quantum computer melting induced by the coupling between

qubits. Color represents the level of quantum eigenstate entropy Sq, from

bright red (Sq � 11) to blue (Sq � 0). The horizontal axis is the energy of

the computer eigenstates counted from the ground state to the maximal

energy (� 2nD0). The vertical axis is the value of J=D0, varying from 0 to

0:5. Here n � 12, d � D0, Jc=D0 � 0:273, and one random realization of

(6) is chosen. After [24].

Fig. 7. Time-dependence of the quantum entropy S�t� for J=d � 0:4 > Jc=d
and n � 16 (diamonds), n � 15 (squares), n � 12 (triangles), n � 9 (circles),

n � 6 (*). Average is made over 200 initial states i0 randomly chosen in

the central band. Insert shows the same curves normalized to their maximal

value. After [25].
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it is also important to discuss another type of danger for

quantum computing which is not necessary related to mixing

and complex structure of eigenstates. Indeed, the algorithms

constructed for quantum computing, e.g. Shor's or Grover's

algorithms, are based on ideal qubits which have d � 0.

However, for d > 0, and even if J � 0, there is a phase dif-

ference Df between di¡erent states in one band which grows

with time as Df � DE t, where DE is the energy di¡erence

between states in the band and its maximal value can be esti-

mated as DE � d
���

n
p

. It is natural to assume that as soon as

the accumulated phase di¡erence becomes comparable to

1 the computational errors become too large for correct

quantum simulations. Therefore, in addition to the chaotic

time scale tw, there exists the phase coherence time scale

tf which is determined by the condition Df�tf� �
DEtf � 1. This scale is ¢nite even at J � 0 and can be esti-

mated as tf � 1=�d
���

n
p

� since the band width is DE � d
���

n
p

and the computer usually operates with all states inside

the band. For small J this estimate is still valid and in this

case tf < tw for J < d=n1=4. On the contrary for d � 0

and J > 0 the energy band width isDE � J
���

n
p

and according

to (8) both scales are comparable tf � tw. While both time

scales tw and tf are important for the quantum computer

operability it is clear that the e¡ects of quantum chaos

on the scale tw are much more dangerous since after this scale

an exponentially large number of quantum register states are

mixed as it is shown in Fig. 7. On the contrary on the scale tf
only the phases are changed but not the number of states.

Therefore, it is natural to expect that phase spreading

can be more easily suppressed by error-correcting codes than

the onset of quantum chaos.

These results show that there are two important time

scales tw and tf. The e¡ect of external noise and decoherence

can be also characterized by two di¡erent scales. Indeed,

from one side the noise gives some e¡ective rate GT with

which a multi-qubit state decays to other states that deter-

mines the time scale tw � 1=GT. It is clear that GT / n since

the noise acts on all qubits independently. At the same time

the noise gives some e¡ective di¡usion in energy which

can be estimated as DE � o2GT where o is a typical energy

change induced by noise during the time 1=GT. For example,

noisy £uctuations of Jij in (6) give transitions with an energy

change o � d. As a result, DE �
�����������

DEtf
p

and Df �
DE

1=2tf
3=2 � 1. This determines two time scales for external

decoherence:

tw � 1=GT; tf � 1=�o2GT�1=3 �9�

where tw is related to the decay and relaxation, while tf
determines the phase coherence. Let us note that the phase

decoherence was discussed for electrons in metals at low

temperature [51] and was observed experimentally, see e.g.

[52]. However, there GT was independent of the number

of electrons, while for quantum computing GT is

proportional to the number of qubits since the global

coherence of multi-qubit states should be preserved.

The time scales (9) play an important role for quantum

computing. Indeed, the gate operations should be fast

enough compared to these scales to allow to realize

error-correcting codes [7,8] and to avoid a destruction of

operability after the time scales (9). Here, it is important

to stress an important property of quantum evolution for

which there is no exponential growth of errors, contrary

to the classical dynamics. An illustration of this fact is based

on the dynamics of the Chirikov standard map [53]:

�n � n� k sin�y� Tn=2�; �y � y� T �n� �n�=2: �10�

Here, �n; y� is a pair of momentum and phase variables and

bar denotes the new values of variables after one period

of perturbation. The classical dynamics depends only on

the chaos parameter K � kT and for K > 0:9716:: the

dynamics becomes globally di¡usive in n. In this regime

the classical trajectories are exponentially unstable and have

positive Kolomogorov entropy. Due to the fact that the

computer errors grow exponentially quickly in time that

in practice destroys the time-reversibility of the map (10).

This fact is illustrated in Fig. 8 [54] where the iterations

are done on a computer with errors of the order of

10ÿ12. Due to exponential instability of classical orbits

the time-reversibility for orbits with inverted momentum

(n ! ÿn) completely disappears after 20 iterations. The situ-

ation is completely di¡erent for the corresponding quantum

dynamics described by the unitary evolution operator for

wave function c on one iteration [54]:

�c � exp�ÿiTn̂2=4� exp�ÿik cos y� exp�ÿiTn̂2=4� �11�

where n̂ � ÿid=dy and T � 1. Here the quantum dynamics

simulated on the same computer remains exactly reversible

as it is shown in Fig. 9.

The above results clearly show that there is no exponential

instability in quantum mechanics [54]. This gives a direct

indication that the errors in quantum computing can be

e¤ciently corrected since e.g. Shor's algorithm requires rela-

tively small numbers of gate operations NG for number

factorization: NG � 300L3 where L is the number of digits

in the number to be factorized [5]. In a sense the Shor algo-

rithm is exponentially fast while the errors grow only as

a power of time. This opens broad perspectives for quantum

computing but requires a development of e¤cient error-

correcting codes. There is also another general question

related to the uncertainty relation between energy and time.

Fig. 8. Time-dependence of the energy E �< n2=2 > in the Chirikov stan-

dard map (10) in the chaotic regime with K � 5; k � 20 for 1000 orbits

homogeneously distributed at n � 0 for t � 0. The straight line shows the

theoretical di¡usion E � k2t=4. All velocities are inverted after t � 150 with

computer accuracy 10ÿ12 that destroys time reversibility after 20 iterations.

After [53].
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Indeed, the quantum computing during the time Dt allows to
resolve energy levels only on the energy scale DE � 1=Dt.
This means that the resolution of exponentially small

spacing DE � Dn requires exponentially long times anal-

ogous to the Heisenberg time scale in the quantum chaos

tH � 1=Dn. Apparently only after this time scale all

exponentially large information hidden in the Hilbert space

can become available. However, it is possible that on shorter

time scales useful information can be extracted in a way

unaccessible to classical computers, e.g. Shor's factor-

ization. But the question about how many such expo-

nentially e¤cient algorithms can be found remains open.

5. Conclusion

In this paper the conditions for emergence of quantum

chaos, ergodicity and dynamical thermalization in

many-body quantum systems with interaction and disorder

are presented. The �Aberg criterion represents the main con-

dition for onset of quantum chaos and di¡erent checks

performed for various physical systems con¢rm its validity.

The generalization of these results allows to determine

the quantum chaos border for quantum computing. In par-

ticular, it is shown that the critical coupling between qubits,

which leads to quantum chaos and quantum computer hard-

ware melting, drops only linearly with the number of qubits

and is exponentially larger than the energy level spacing

between eigenstates of the quantum computer. In this sense

the ideal multi-qubit structure is rather robust with respect

to perturbations which opens broad possibilities for

realization of quantum computers.

Of course, the optimal regime for quantum computer

operability corresponds to the integrable regime below

the quantum chaos border. In this respect the quantum

chaos is a negative e¡ect for quantum computing and should

be eliminated. Here it is possible to make an analogy with the

development of classical chaos. This phenomenon also has

negative e¡ects for operability of plasma traps and

accelerators. In fact the very ¢rst Chirikov resonance-

overlap criterion had been invented in the pioneering work

[55] for the explanation of experiments on plasma con¢ne-

ment in open magnetic traps and later found broad

applications in accelerator physics [56]. Since 1959 it is

the only simple physical criterion which allows to determine

the chaos border in classical nonlinear hamiltonian systems

[55,56,53]. Indeed, the interest to the quantum chaos

appeared only after a deep understanding of classical chaos

had been reached. In a similar way it is possible to think

that the deep understanding of quantum chaos in

many-body systems in future will allow to quantum com-

puters operate in a better way.
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