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Exponential Gain in Quantum Computing of Quantum Chaos and Localization
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We present a quantum algorithm which simulates the quantum kicked rotator model exponentially
faster than classical algorithms. This shows that important physical problems of quantum chaos, local-
ization, and Anderson transition can be modeled efficiently on a quantum computer. We also show that
a similar algorithm simulates efficiently classical chaos in certain area-preserving maps.
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The massive parallelism of quantum evolution allows
one to manipulate simultaneously exponentially many
states through entanglement (see reviews [1,2]). That
opens new horizons for computations based on quantum
mechanics, as was stressed by Feynman [3]. Nevertheless,
it is not so obvious if this parallelism can be used to
speed up exponentially any given computational algo-
rithm. There is certainly no systematic way to do this,
and that is why so much interest has been generated by
the Shor quantum algorithm [4] which factorizes large
numbers exponentially faster than any known classical
algorithm. At present very few other quantum algorithms
have been found in which substantial computational gain
is achieved compared to classical computing. Among
them is the Grover algorithm [5] which significantly
accelerates the problem of searching an unsorted database,
although the gain is not exponential. In addition, quantum
computers can be used as analog machines to simulate
some many-body quantum systems which are hardly
accessible in usual computer simulations [6]. In this way
some systems such as spin lattices can be modeled very
naturally, for example, by cold atoms in optical lattices
[7]. However, this kind of simulation is restricted to
systems whose physical elements are related or similar
to the qubits (spin halves) of a quantum computer. At
present apart from these natural examples there are no
developed quantum algorithms which would allow one to
reach exponential gain in the computation of the quantum
dynamics of physical systems.

It is therefore desirable to find a quantum algorithm cor-
responding to a physical model with rich and complex
quantum dynamics. During the last decades, it has been
understood that generally the dynamics of classical non-
linear systems is chaotic [8]. The corresponding quantum
dynamics, called quantum chaos, demonstrates a rich and
complex behavior even for systems with only a few degrees
of freedom and rather simple Hamiltonians [9]. One of the
cornerstone models in the study of quantum chaos is the
kicked rotator. In the classical limit, this model reduces to
an area-preserving map called the Chirikov standard map
[10] which has applications in different fields of physics,
such as particle confinement in magnetic traps, beam dy-
namics in accelerators, comet trajectories, and many others
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[8]. The map depends on only one parameter, and depend-
ing on its value the system can be in the near-integrable
bounded regime, with Kolmogorov-Arnold-Moser (KAM)
curves, or in the fully chaotic regime with diffusive growth
of momentum which statistically can be described by the
Fokker-Planck equation. In between these two regimes
the phase space of the system has a complex hierarchical
structure with integrable islands surrounded by a chaotic
sea at smaller and smaller scales. The quantum dynamics
corresponding to these different regimes have been inten-
sively studied by different groups in the field of quantum
chaos [11]. Many phenomena of general importance are
present in this model, including quantum ergodicity, spec-
tral statistics as in random matrix theory, quantum KAM
regime, and many others. However, the most unexpected
quantum effect is the phenomenon of dynamical localiza-
tion, in which quantum interference suppresses chaotic dif-
fusion in momentum, leading to exponentially localized
eigenstates. This effect has close analogy with Anderson
localization of electrons in disordered materials [12], and
therefore this model enables one to study also the proper-
ties of Anderson localization, a solid-state problem still un-
der intense investigation nowadays. The quantum kicked
rotator describes also the properties of microwave ioniza-
tion of Rydberg atoms [13]. It has been realized experi-
mentally with cold atoms, and the effects of dynamical
localization, external noise, and decoherence have been
studied experimentally [14].

In this paper we present a quantum algorithm which
computes the evolution of the quantum kicked rotator
exponentially faster than any classical computation. It
simulates the kicked rotator with N levels in O����log2 N�3���
operations instead of O�N log2 N� for the classical
algorithm.

The classical dynamics of the system is given by the
Chirikov standard map

n̄ � n 1 k sinu; ū � u 1 Tn̄ , (1)

where �n, u� is the pair of conjugated momentum (action)
and angle variables, and the bars denote the resulting
variables after one iteration of the map. In this way the
dynamics develops on a cylinder (periodicity in u) which
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can also be closed to form a torus of length N � 2pL�T
where L is an integer. The classical dynamics depends
only on one single chaos parameter K � kT , so that
the motion is globally chaotic for K . 0.9716 . . . . For
K ¿ 1 the orbits spread diffusively in n with diffusion
rate D � n2�t � k2�2 where t is measured in number of
iterations (kicks) [8,10]. In the chaos regime, the dynam-
ics is characterized by positive Kolmogorov-Sinai entropy
h � ln�K�2� . 0, due to which trajectories diverge
exponentially and round-off errors grow exponentially
with t [15].

The quantum evolution during one period is described
by a unitary operator acting on the wave function c

c̄ � Ûc � e2ik cosûe2iTn̂2�2c , (2)

where n̂ � 2i≠�≠u, h̄ � 1. In this way the classical
limit corresponds to k ! `, T ! 0 while keeping K �
kT � const [11]. The quantum interference leads to expo-
nential localization of the eigenstates xm�n� of the opera-
tor Û in the momentum space n with envelope xm�n� �
exp�2jn 2 mj�l��

p
l where m marks also the center of

the eigenstate and l is the localization length. In the regime
of quantum chaos (k ¿ K ¿ 1) this length is determined
by the classical diffusion rate l � D�2 � k2�4 [11]. The
evolution takes place on N levels with periodic boundary
conditions. For l ¿ N the eigenstates become ergodic and
the level spacing statistics is described by random matrix
theory [11]. Therefore depending on the parameters vari-
ous regimes of quantum chaos can be investigated in this
single model.

The evolution operator Û is the product of two unitary
operators Ûk � exp�2ik cosû� and ÛT � exp�2iTn̂2�2�
which represent, respectively, the effects of a kick and free
rotation. These operators are diagonal in the u and n repre-
sentations, respectively. Because of that the most efficient
way to simulate the quantum dynamics of this system on
a classical computer is to perform forward/backward fast
Fourier transforms (FFT) to go from one representation to
the other [16], doing diagonal multiplications by Uk and
UT between each FFT. In this way, for a system with
N levels, the FFT requires O���N log2�N���� operations and
the diagonal multiplications take O�N� operations, so that
evolution on one period is performed in O���N log2�N���� op-
erations [17]. Our construction of the quantum algorithm
keeps the global structure of this classical algorithm, and
uses quantum parallelism to speed up exponentially each
algorithmic step.

Step I: Preparation of the input state.—We consider
a system of nq qubits; the Hilbert space of dimension
N � 2nq is used to describe N momentum states (eigen-
states of the operator ÛT for 0 # n # N 2 1 in binary
code) on which evolves the kicked rotator. An initial state
c�0� �

PN21
n�0 anjn� at time t � 0 is prepared by rotations

of individual qubits and two-qubit gates from the ground
state j0, . . . , 0�. For example, a typical initial state used
in the studies of the kicked rotator dynamics [11], such as
c�0� � jN�2�, requires only one individual rotation. We
need also auxiliary registers which will be used later; at
the moment they are all in the ground state.

Step II: Action of free propagation operator ÛT .— In
the n representation ÛT is diagonal so that ÛT jn� �
exp�2iTn2�2� jn�. The simultaneous multiplication of the
N coefficients can be done in n2

q gate operations. Indeed,

if n �
Pnq21

j�0 aj2j , then n2 �
P

j1,j2
aj1aj22

j11j2 . There-
fore exp�2iTn2�2� � Pj1,j2 exp�2iTaj1aj22

j11j221� with
aj1,2 � 0 or 1. As a result, this step can be realized with n2

q
operations of the two-qubit gate applied to each qubit pair
� j1, j2� which keeps the states j00�, j01�, j10� unchanged
while j11� is transformed to exp�2iT2j11j221� j11� [18].

Step III: Change from n to u representation.— In anal-
ogy with the classical algorithm, we can use the quantum
Fourier transform (QFT) (described in detail, for example,
in [1]). The QFT requires O�n2

q� operations with one-qubit
rotations and two-qubit gates similar to the ones described
above. After the QFT, we obtain the wave function in the
u representation,

PN21
i�0 bijui�, where the ui are the binary

codes of N � 2nq discretized angles. We note that the
QFT was discussed in [19] for simulating a rather specific
model, the quantum baker map.

Step IV: Construction of a supplementary register
holding the cosines of angles.—This step transformsPN21

i�0 bijui� j0� into
PN21

i�0 bijui� j cosui�. The second reg-
ister is, of course, present since step I, but is used only
at that step. After these operations, it contains the binary
codes of the N values of cosui , correlated with ui in the
first register. The number of qubits p in this second reg-
ister sets the precision of the cosines at 22p , and should be
equal to or greater than nq. This register will be used in
the next step to perform the kick operator Ûk . To realize
this transformation, we need a few auxiliary registers which
can be erased at the end. First we precompute the 2nq

values cos�2p�2j�, sin�2p�2j�, for j � 1, . . . , nq with
precision 22p . This can be done quantum mechanically or
classically in polynomial time by first computing the case
of smallest angle and then using recursive relations, doub-
ling the angle each time. Also, other classical methods con-
verging superexponentially (e.g., Newton’s) can be used.
We decompose ui in binary code ui �

Pnq

j�1 bij2p�2j

and use the formula exp�iui� � P
nq

j�1 exp�ibij2p�2j� �
P

nq

j�1�cos�bij2p�2j� 1 i sin�bij2p�2j��, with bij � 0
or 1, to compute cosui and sinui in 4nq multiplica-
tions. This can be done in parallel for all N values of
ui in O�nqp2� gate operations. We need for that an auxili-
ary register with p qubits on which sinui is built. We
start therefore with

PN21
i�0 bi jui� j1� j0�, then we perform

the transformation
PN21

i�0 bijui� jc� jd� !
PN21

i�0 bi jui�
j cos�bij2p�2j�c 2 sin�bij2p�2j�d� j sin�bij2p�2j�c 1

cos�bij2p�2j�d� for j � 1, . . . , nq (initially jc� � j1�,
jd� � j0�). This transformation needs a controlled multi-
plier with the qubit j as control qubit. The quantum circuits
realizing a controlled multiplier are described in [20], and
require O�p2� gate operations for each multiplier. After
nq transformations we obtain

PN21
i�0 bijui� j cosui� j sinui�.
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The total number of gate operations for step IV is therefore
O�nqp2�. We note again that p determines the precision
with which the cosui are computed. A reasonable regime
is nq # p # 2nq which gives a total number of gate op-
erations for this step of O�n3

q�. Besides the three registers
already described, some auxiliary registers are necessary
to perform these operations. It can be done with five ad-
ditional registers of size p, but it is probably possible to de-
crease this number. After that only the registers holding ui
and cosui will be used, and all others can be erased. The
auxiliary registers holding intermediate values of cosines
and sines can be reused after each multiplication by
exp�ibij2p�2j� is performed, since they can be erased by
using multiplication by exp�2ibij2p�2j� and subtraction.

Step V: Action of kick operator Ûk .—After the previous
steps, the state of the system is c �

PN21
i�0 bi jui� j cosui�.

In the angle representation, the action of Ûk is diagonal so
that Ûkjui� � exp�2ik cosui� jui�. Each state jui� is en-
tangled with j cosui� holding the binary code of cosui �Pp

j�1 gij22j , with gij � 0 or 1. Since exp�2ik cosui� �
P

p
j�1 exp�2ikgij22j�, to perform the multiplication, it

is therefore enough to apply to each qubit of the sec-
ond register the one-qubit gate which takes j0� to j0�
and j1� to exp�2ik22j� j1�. Only p gate operations (with
nq # p # 2nq) are used for this transformation. After this
j cosui� is reversibly erased. As a result of this step, the
state of the system is now

PN21
i�0 bi exp�2ik cosui� jui� j0�.

Step VI: Change from u to n representation.—This step
is similar to step III, it performs backwards the QFT on
the first register jui� and returns the wave function to the
momentum basis in O�n2

q� operations. This gives the wave
function of the kicked rotator after one iteration of map (2)
(one kick step).

In this way one kick iteration requires O�n3
q� gate op-

erations. Subsequent kicks are realized using steps II-III-
IV-V-VI, since step I is done only once. As a result, a
quantum computer can perform the kicked rotator evolu-
tion exponentially faster than a classical computer [which
needs O�nq2nq � operations per kick]. Several successive
measurements after t iterations can give the largest proba-
bilities jaij

2 in the momentum basis from which, for ex-
ample, the localization length l can be extracted with only
a few measurements. Other average characteristics can be
obtained efficiently by performing the QFT followed only
by a few measurements, giving, for example, the largest
harmonics of the probability distribution.

Some modifications in this algorithm are possible. In-
stead of the additional register j cosui� one can use a reg-
ister holding a uniform polynomial approximation P�u� �
cosu. This is actually the technique used in classical com-
putation, where Chebychev polynomials are used. The
construction of the polynomial of degree p is done itera-
tively, starting from the lowest-degree monom and mul-
tiplying it by ui to obtain the next one. An additional
register holds the current power of ui between each step.
The coefficients of the polynomial should be precomputed
in advance. The transition from one degree to another
2892
requires O�p2� gate operations for p qubits, so that the
whole process needs O�p3� operations. For p � nq, this
is similar to step IV. After computing the register jP�ui��
the next step is unchanged and performs multiplication by
exp ���2ikP�u���� [21].

The generalized models of kicked rotator, where k cosu
is replaced by another function V �u�, are also of interest.
In general, it is not obvious if the register jV �ui�� in step
IV can be computed in polynomial time, so uniform poly-
nomial approximations can be the only way. A case of par-
ticular interest is V �u� � 2 arctan�E 2 2k cosu�, where E
and k are parameters. In this case, the kicked rotator can
be exactly mapped on a solid-state system on a chain with
only nearest-neighbor hopping, as it had been shown in
[12]. This computation can be done via uniform poly-
nomial approximation. It may also be possible that this
V �u� can be computed directly in parallel from registers
j cosu� j sinu�.

The generalized kicked rotator can also model the local-
ization properties in higher dimensions. For example, if the
parameter E varies from kick to kick, for example, E �
22k cos�v1t� 2 2k cos�v2t� where v1��2p� and v2��2p�
are two incommensurate frequencies, then the model can
be mapped on the three-dimensional Anderson model
which displays a metal-insulator transition [22]. For k ,
kc � 0.46 the dynamics is localized in momentum space,
while for k . kc it becomes diffusive and ergodic over all
the available space of size N . Similar effects were observed
recently in quasiperiodically driven cold atoms [23].
However, this latter model is still operating on a kicked
rotator with 1 degree of freedom. One can consider a
d-dimensional version of (2) with Ûk � exp�2ik

Pd
r�1 3

cosur� and ÛT � exp�2iT
Pd

r�1 nr�nr 1
Pd

r,r 0 nr 0��2�,
which is directly related to the d-dimensional Anderson
localization problem. The simulation of this model on a
system of size N � 2nq for each momentum nr requires
O�Nd log2N� operations on a classical computer since the
total basis contains Nd levels. Even for d � 2 this model
is hardly accessible for today’s computers [24]. On the con-
trary, our quantum algorithm can be directly extended to
higher dimensions by increasing the number of registers
by a factor d, and the number of operations becomes
only O�dn3

q�. For d � 2 by changing ÛT to ÛT �

exp�2iT�n2
1 1 n2

2��2 2 igdn1,n2 � it is possible to simulate
the problem of two interacting particles in a localized
phase [25]. We note that usually one needs an exponential
number of gates to simulate a quantum map operator, and a
simulation in polynomial time is not obvious. For example,
for the extensively studied kicked top [26] the QFT cannot
be used to change representations.

It is interesting to note that on the basis of the algorithm
constructed above, one can simulate also the classical map
(1). Indeed, the discretization of the map can be done in a
symplectic way [27] on a phase space lattice of size N 3 N :

Ȳ � Y 1 SN �X�; X̄ � X 1 Ȳ �modN� (3)

with SN �X� � �NK sin�2pX�N���2p��, �. . .� being the
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integer part and X, Y integers. This map is area pre-
serving and invertible. An initial classical phase space
density can therefore be modeled by a quantum stateP

i1,i2
ai1,i2 jXi1� jYi2� j0�. Then we use step IV to trans-

form it in
P

i1,i2
ai1,i2 jXi1 � jYi2� jSN �Xi1 �� in O��� log2�N�3���

operations, performed only once at the beginning. After
that the map is reduced to simple additions in the first
two registers and require only O��� log2�N���� operations per
iteration, simulating exponentially many trajectories in
polynomial time. A simulation on a classical computer
requires O�N2� operations per iteration if one simulates
a density distributed over O�N2� lattice cells. After t
iterations ai give the density probability distribution in
phase space. QFT can be used to determine the main
harmonics of the density, which can be measured by
running the algorithm several times.

In conclusion, the algorithm presented here shows that
important systems displaying rich and complex properties
like classical and quantum chaos, quantum localization,
and ergodicity can be simulated exponentially faster on a
quantum computer. This allows one to study the time evo-
lution of these systems and the transition between classi-
cal and quantum mechanics in the limit of large quantum
numbers (semiclassical limit). Using a few tens of qubits
can probe this limit far beyond what is possible on today’s
computers. The problem of the precision of such quantum
computation is crucial, and the effects of imperfections
should be studied in detail for different physical properties
of the simulated system (some of them can be quite sensi-
tive [28]).
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