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We study numerically and analytically the dynamics of charged particles on the Galton board, a regular
lattice of disk scatters, in the presence of constant external force, magnetic field, and friction. It is shown
that under certain conditions friction leads to the appearance of a strange chaotic attractor. In this regime
the average velocity and direction of particle flow can be effectively affected by electric and magnetic
fields. We discuss the applications of these results to the charge transport in antidot superlattices and the
stream of suspended particles in a viscous flow through scatters.
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It is well known that dissipation can lead to the
appearance of strange chaotic attractors in nonlinear
nonautonomous dynamical systems [1,2]. In this case the
energy dissipation is compensated by an external energy
flow so that stationary chaotic oscillations set in on the
attractor. Such an energy flow is absent in the Hamiltonian
conservative systems and therefore the introduction of
dissipation or friction is expected to drive the system to
simple fixed points in the phase space. This rather general
expectation is surely true if the system phase space is
bounded. However, a much richer situation appears in the
case of unbounded space, where unexpectedly a strange
attractor can be induced by dissipation in an originally
conservative system. To investigate this situation we
study the dynamics of particles on the Galton board
in the presence of constant external fields and friction.
This board, introduced by Galton in 1889 [3], represents
a triangular lattice of rigid disks with which particles
collide elastically. For the case of free particle motion,
the collisions with disks make the dynamics completely
chaotic on the energy surface, as was shown by Sinai
(see, e.g., [4]). In this paper we study how the dynamics
of a charged particle in the presence of electric and
magnetic fields is affected by a friction force Ff � 2gv
directed against particle velocity v (see Fig. 1). Without
disks an external in-plane electric field E and a perpendicu-
lar magnetic field B create a stationary particle flow with
the velocity vf � �f 1 FL��g. Here f � eE is the
effective force, FL � evf 3 B is the Lorentz force, and
e, m are the particle charge and mass, respectively. All
perturbations decay to this flow with a rate proportional
to g so that this laminar flow can be considered as a
simple attractor. The effects of friction inside one cell of
the Galton board at B � 0 have been studied in Ref. [6]
and it has been found that friction leads to the appearance
of a nontrivial strange attractor. At present the effects
of energy dissipation are actively investigated with the
aim to construct equilibrium and nonequilibrium steady
states in a deterministic way (see [7,8], and references
therein). Here the Nosé-Hoover and Gaussian thermostats
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with variable friction coefficients lead to a number of
interesting results with applications to molecular dy-
namics and nonequilibrium liquids [7]. In our studies,
contrary to [6], we concentrate mainly on the spatial
structure of the turbulent chaotic particle flow appearing
in the presence of friction. We show that the flow di-
rection can be efficiently affected by a magnetic field.
The obtained results describe the electron dynamics in
antidot superlattice which has been experimentally re-
alized in semiconductor heterostructures [9]. In such
structures the effects of classical chaos play an important
role [10] and the effects of friction we discuss here can
appear for relatively strong electric fields.

To study numerically the dynamics of this model, we
fix the disk radius a � 1 and e � m � 1 so that the sys-
tem is characterized only by the distance R between disks
packed into equilateral triangles all over the �x, y� plane,
the friction coefficient g, the external force of strength

FIG. 1 (color). Chaotic flow on the Galton board. Here the
distance between disks is R � 2.24, f � �20.5, 20.5�, B � 2,
and g � 0.1. Initially 200 particles are distributed homoge-
neously along a straight line segment in the upper right corner,
their color homogeneously changes from red to green along this
segment [5].
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f � jfj, and the cyclotron frequency vc � B [11]. For
R # Rc � 4�

p
3 a particle cannot cross the whole plane

without collisions (at f � 0, B � 0, g � 0), and we start
the discussion from this case. The particle dynamics is
simulated numerically by using the exact solution of New-
ton equations between collisions, and by determining the
collision points with the rapidly converging Newton algo-
rithm. This way the trajectories are computed with high
precision, and, for example, for g � 0 the total energy
is conserved with a relative precision of 10214. A typi-
cal example of the chaotic flow formed by an ensemble of
particle trajectories is shown in Fig. 1. To illustrate the
mixing properties of the flow we attributed a color to each
trajectory that allows one to follow their interpenetration
and spreading. This figure shows that there is a certain
penetration depth of one color into another; however, this
depth is finite since on average the initial color repartition
is still visible.

The properties of color penetration can be understood
from the analysis of single trajectory dynamics. Such a
typical example is presented in Fig. 2. It shows that the
particle moves with an average constant velocity yf under
some angle a to the external force f, except for B � 0,
where a � 0. This drift velocity is constant only on aver-
age since on a smaller scale the particle moves chaotically
between scatters following a strange chaotic attractor. In
Fig. 2 for g � 0.1, the drift velocity is relatively large and
the particle does not have enough time to move around
many scatters in the direction perpendicular to the flow.
As a result the penetration depth for color mixing is not
very large. Surprisingly, for smaller friction, the drift ve-
locity becomes smaller and the penetration depth increases
so that the particle makes many turns around disks, as is
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FIG. 2. Example of a single trajectory for the case of Fig. 1
shown on small (main figure) and large (lower inset) scales.
The drift velocity of the flow yf � 0.13 is directed at angle a �
0.48 to f. The upper inset shows a single trajectory in the region
�2160 # x # 2140, 2190 # y # 2170� for g � 0.004 with
yf � 0.05.
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shown in Fig. 2 for g � 0.004. This dependence is oppo-
site to the case without scatters, where yf drops with the
g growth.

This result can be understood on the basis of the
following physical arguments (for B � 0 see also [6]). In
the regime with weak friction the particles start to diffuse
among disks in a chaotic manner with the diffusion rate
D � yl�2, where y is the particle velocity and l is the
mean-free path [12]. For R � 1 we have l � R � 1,
while the dependence of l on R will be discussed in
more detail later. During the dissipative time scale tg �
m�g, this diffusion leads to the particle displacement
Dr �

p
Dm�g along the direction of the drift velocity

vf . This gives the change in the potential energy U �
fDr cosa � feff

p
Dm�g, where feff � f cosa. In the

stationary regime at time t ¿ tg , this potential energy
should be comparable with the kinetic energy of the
particle so that U � my2, where y2 � �y2

x 1 y2
y� is the

average velocity square. Hence

y2 � �f cosa�4�3�l�gm�2�3. (1)

This relation allows one to determine the drift velocity
of the flow vf. Indeed during the time tc between col-
lisions the particle is accelerated by average forces f and
FL � evf 3 B that gives the average drift velocity vf �
�f 1 FL�tc�m. Since the dynamics is chaotic, the direc-
tion of velocity is changed randomly after each collision so
that vf is accumulated only between collisions. The time
tc is determined by the mean-free path l and the average
velocity y: tc � l�y � 2D�y2. Thus for the angle a

between vf and f we obtain the relation,

tana � eBtc�m �
eBl2�3g1�3

�mf cosa�2�3 . (2)

The amplitude of fluctuations around this direction is
Dr �

p
Dm�g which also determines the color mixing

depth (see Fig. 1).
From (1) and (2) we obtain the drift velocity amplitude

yf � fefftc�m � l2�3�gfeff�m2�1�3, (3)

with feff � f cosa. For B � 0 the particles flow in the
f direction. In this case their mobility is m � yf�f �
tc�m � D��my2�2�. This is in fact the Einstein relation
according to which the mobility is given by the ratio of the
diffusion rate to the average kinetic energy (temperature)
[13]. At B � 0 the relations (1)–(3) are in agreement
with those in [6] and with the numerical data shown in
Fig. 3. The values of yf and y2 are obtained from one very
long trajectory (with a length of 103 104R) or ten shorter
trajectories. Within statistical fluctuations this gives the
same yf and y2 independent of their initial values.

The relations (1)–(3) allow one to estimate the value
of the Lyapunov exponent l. Indeed, the particle moves
with a typical velocity y and, as in the case of the Sinai
034101-2
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FIG. 3. Dependences of y2 and yf (inset) on f and g for R �
2.24, f�jfj � �21, 21�, B � 0, and 0.001 # g # 0.4; 0.5 #
f # 32: circles show numerical data and lines show the slopes
from (1) (main figure) and (3) (inset).

billiard, with l � R � 1 we have l � y�l. Therefore, in
the regime when

g , gc �
q

mfeff�l , (4)

the value of l is much larger than the dissipation rate
g�m. As a result for g ø gc the strange attractor is fat
and its fractal dimension is close to the maximal dimen-
sion 4, which is determined by the number of degrees of
freedom (we remember that, contrary to the nondissipa-
tive case, the energy is not conserved). For g ¿ gc the
dissipation time tg becomes much shorter than the time
between collisions tc. In this case the dissipation domi-
nates chaos and the strange attractor degenerates into a
simple attractor. For g , gc our numerical simulations
performed with high computer accuracy show that trajecto-
ries remain chaotic for displacements from the origin being
larger than 105R. Also at B � 0 it can be shown that gc �
my�l �

p
fma�R for R ¿ a and gc �

p
mf�a3 DR for

DR � R 2 2a ø a.
The above changes in the mean-free path l at B � 0

also affect the drift velocity of the flow through the re-
lation (3). Indeed, for DR ø 1 we expect l � DR that
gives yf ~ DR2�3. This dependence is close to the numeri-
cal data shown in Fig. 4 even if the numerical value of the
exponent is approximated better by 0.5. In the other limit
R ¿ 1, we have l � R2�a that gives yf ~ R4�3. This
power dependence is in satisfactory agreement with the
data in Fig. 4 although the numerical value of the expo-
nent is closer to 1. We attribute these small deviations
in the exponent values to a restricted interval of variation
in R. Actually we can not use very large/small values
of DR since in these limits the value of g becomes com-
parable with gc and the chaotic attractor disappears. We
note that according to our data (see Fig. 4) the strange at-
tractor exists even in the case R . Rc � 4�

p
3 when at
034101-3
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FIG. 4. Dependence of yf on DR � R 2 2 for g � 0.1,
B � 0, and f � �20.5, 20.5�: the points give numerical data
and the lines show the slopes 0.5 and 1.

f � 0, g � 0 there are straight trajectories crossing the
whole plane without collision. Apparently the contribu-
tion of these orbits is not significant if g . 0 and if f is
not directed along these lines.

The introduction of the magnetic field allows one to
change efficiently the direction of the flow [14]. The
numerical data for the variation of tana with the magnetic
field and other system parameters are presented in Fig. 5.
The average dependence is in good agreement with Eq. (2)
for a large region of parameter variation, where tana

changes by 2 orders of magnitude. At the same time,
for moderate angles a , 1, the flow velocity yf is weakly
affected by B. For example, for the case of Fig. 2,
yf remains practically the same for B � 2 and B � 0
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FIG. 5. Dependence of tana on the scaled magnetic field Bs �
Bg1�3f

22�3
eff from (2) with feff � f cosa for R � 4, f�jfj �

�21, 21�, and 0.125 # B # 16, 0.14 # f # 5.65, 0.002 #
g # 0.1. The points give numerical data and the line shows
the average dependence tana � 1.6Bs .
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FIG. 6. Dependence of tana on B for f � �20.5, 20.5�, g �
0.03, R � 4 (points), and R � 2.24 (circles). Cyclotron and
disk radii are equal at B � 1.6, where y2 � 2.5.

�yf � 0.15�. For a . 1 the magnetic field starts to
change significantly y2 and yf , in agreement with (1)
and (3). While the data in Fig. 5 on average follow the
dependence (2) the fluctuations around the average are
rather large. Their origin becomes clear from Fig. 6,
where only the magnetic field is changed. In this case,
tana has a pronounced peak which is located near the
value of B, where the cyclotron radius rc � y�B is equal
to the disk radius. Indeed for rc . a a trajectory can
make a full turn around a disk that allows one to increase
a and to reach a strong deviation of the global flow from
the direction of the electric field. The growth of a leads
to a drop in current (conductivity) in the f direction and
hence to the increase of resistivity. In fact, the peaks in
resistivity near rc � a were observed experimentally [9]
and explained theoretically [10] in the linear response
regime. Our data show that the peaks should also exist in
the regime with a strange chaotic attractor and a relatively
strong electric field, where the I-V characteristics become
nonlinear. For a denser package of disks the above peak is
still present (R � 2.24 in Fig. 6) but it is less pronounced.
It is interesting to note that, in this case, a can even be
negative so that the particles flow against the average
Lorentz force. We note that the possibility of such a flow
was discussed for systems with Hamiltonian dynamical
chaos in [15]. Generally for a dense disk package the
contribution of resonant orbits with rc � a starts to be
significant and deviations from the average dependence
(2) become rather strong.

The above dynamical turbulent flow has rather interest-
ing and unusual properties and it would be interesting to
study it in experiments with antidot superlattices such as
in [9]. The regime we discussed should appear when the
steady state velocity y from (1) becomes larger than the
Fermi velocity yF of the charge carriers. Thus, in addi-
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tion to (4), the condition y . yF determines the threshold
for the appearance of a strange attractor. The experimen-
tal investigation of this phenomenon should also shed light
on the role of quantum effects in such a regime. We note
that in the derivation of (1)–(4) we didn’t use any specific
properties of the disk distribution in the plane and therefore
the results remain valid for randomly distributed disks. The
experimental measurement of the flow direction and veloc-
ity as a function of magnetic field enables one to determine
g and l via Eqs. (2) and (3). Our study also represents a
certain interest for transport properties of neutral/charged
particles suspended in a viscous flow streaming through a
system of scatters. Indeed, a laminar stream with the ve-
locity ys creates an effective force f � ysgeff, where geff
is the effective friction created by the viscosity of the liq-
uid. This type of transport can be studied experimentally
with viscous liquids and its investigation can contribute to
a better understanding of the interplay between dissipation,
turbulence, and chaos.

We thank R. Klages for constructive critical remarks
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