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Georgeot and Shepelyansky Reply: In our Letter [1], we
showed on the example of the Arnold cat map that clas-
sical chaotic dynamics of exponentially many orbits can
be simulated in polynomial time on a quantum computer.
The Liouville density distribution P�xi , yj � is encoded on a
discretized lattice (2nq 3 2nq ) using 3nq 2 1 qubits orga-
nized in three registers. After each map iteration, the dis-
tribution is coded in the quantum state

P
i,j aij jxi� j yj� j0�

with P�xi , yj� � aij and xi � i�N , yj � j�N , N � 2nq .
One measurement of qubits in this basis gives one point
in the phase space, and therefore the distribution P�xi , yj�
can be obtained approximately in polynomial number of
measurements. However, the same information can be ob-
tained via classical Monte Carlo simulation with a polyno-
mial number of orbits, as it was discussed by us in [2] and
later repeated in [3]. Based on this observation, on which
we agree, the Comment [3] makes a general claim that no
new information can be extracted efficiently from quantum
computation of such classical maps (paragraph 3 in [3]).
Here we show that this statement is incorrect. Indeed, the
quantum Fourier transform (QFT) of aij provides nondi-
agonal observables [1], namely, the Fourier components
P̃�kx ,ky� �

P
i,j exp�i2p�kxxi 1 kyyj��aij�N . They ob-

viously contain important additional information relevant
for the classical dynamics, and require O�n2

q� operations
including measurement. In contrast, all known classical al-
gorithms will require an exponential number of operations
to obtain correct probabilities at high harmonics kx,y � N .
Such harmonics are important since due to chaos a signifi-
cant part of total probability is transferred to wave vectors
with k � exp�ht�, where h is the Kolmogorov-Sinai en-
tropy, and t is the number of iterations (see [13] in [1]).
We note that the claim of [3] applies equally to the Shor
algorithm, where all information is also encoded only in
a squared moduli of amplitudes, but where the QFT gives
classically inaccessible information.

In Fig. 1 we present the probability P̃�kx, ky� in Fourier
space for different times t. We note that a two-dimensional
(2D) QFT can be efficiently implemented by application
of usual QFT to each register consecutively. The results
show that P̃ is composed of well-pronounced peaks, most
of which move with time to high wave vectors k. They
remain stable in the presence of noise in the quantum gates
(e.g., top right panel in Fig. 1 is unchanged if 1% noise
is added in each gate). The location and amplitude of
these peaks can be extracted from a polynomial number
of measurements of qubits after the 2D QFT.

For the Arnold cat map, the dynamics in �kx , ky� space
is especially simple, given by k̄x � kx 2 ky , k̄y � 2ky 2

kx�modN�. However, generally this dynamics is very com-
plicated. To exemplify this, we simulated the perturbed cat
map ȳ � y 1 x 1 x2, x̄ � x 1 ȳ�mod1� (Fig. 1). It can
be iterated in O�n2

q� operations on a quantum computer us-
ing modular multiplication. In this case, main peaks can
be seen directly for short times, while for larger times a
polynomial number of measurements of the first nf qubits
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FIG. 1. Fourier coefficients jP̃�kx , ky�j2 of Liouville distribu-
tion for 2N�2 # kx,y # N�2, initial state as in Fig. 1 of [1].
Left column: cat map at t � 3, 5, and 7 from top to bottom
for nq � 10. Top right: same at t � 5, nq � 7. Middle right:
jP̃�kx , ky�j2 for perturbed cat map (see text) at t � 5, nq � 10.
Peaks are shown by circles; maximal circle size marks peaks
with 1 . jP̃�kx , ky�j2 . 0.1, circles twice smaller those with
0.1 . jP̃�kx , ky�j2 . 0.01, etc. Bottom right: coarse-grained
image of jP̃�kx , ky�j2 (proportional to grayness) for the data of
middle right panel, nf � 4.

[2] gives a coarse-grained image of jP̃�kx ,ky�j2, including
very high harmonics, which are inaccessible to classical
computation.
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