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Quantum Computing of Classical Chaos: Smile of the Arnold-Schrödinger Cat
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(January 1, 2001)

We show on the example of the Arnold cat map that classical chaotic systems can be simulated with
exponential efficiency on a quantum computer. Although classical computer errors grow exponen-
tially with time, the quantum algorithm with moderate imperfections is able to simulate accurately
the unstable chaotic classical dynamics for long times. The algorithm can be easily implemented on
systems of a few qubits.
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A great deal of attention has been attracted recently
by the possibility to perform numerical simulations on
a quantum computer. The massive parallelism allowed
by quantum mechanics enables to operate on an expo-
nential number of states using a single quantum trans-
formation, as was stressed by Feynman [1]. However,
even if exponential gain may be possible in such quantum
simulations, compared to the computations on classical
computers, only few problems have been found where
an explicit quantum algorithm displays such efficiency.
The most famous of them is the factorization of large
integers, for which Shor [2] constructed an explicit al-
gorithm which is exponentially faster than any known
classical algorithm. Another well-known algorithm, in-
vented by Grover [3], also shows that quantum mechanics
can enormously accelerate the search problem in an un-
sorted database, although the gain is not exponential.
Although quantum-mechanical problems are computa-
tionally very hard for classical simulations, at present
only few physical systems are known which can be sim-
ulated with exponential efficiency on a quantum com-
puter. Such systems include certain spin lattices [4],
some types of many-body systems [5], and since recently
the kicked rotator model of quantum chaos [6]. The ad-
vances in the field of quantum computation [7–9] gener-
ated many proposals for the experimental realization of
such a computer. This computer is viewed as a system
of qubits (two-level systems) on which one-qubit rota-
tions and two-qubit transformations allow to realize any
unitary transformation in the exponentially large Hilbert
space (see reviews [7–9]). At present operations with two
qubits were realized with cold ions [10], and the Grover
algorithm was performed on a three-qubit system built
on nuclear spins in a molecule [11].

It may seem natural that quantum computers can sim-
ulate efficiently the evolution of certain quantum sys-
tems. Such systems are very hard to simulate on clas-
sical computers due to the exponentially large Hilbert
space. However, there also exists a large class of classi-
cal Hamiltonian systems which are very hard to simulate
accurately on a classical computer. Indeed, the systems
displaying dynamical chaos are characterized by an expo-

nential local instability of trajectories in the phase space
[12,13]. As a result, standard round-off errors of an usual
computer grow exponentially with time, and give a com-
plete change of a dynamical trajectory with given initial
parameters after a few characteristic periods of the sys-
tem motion. In this situation, the simulation of a full
phase space density even for moderate times needs an
exponential number of orbits and soon exceeds the ca-
pacity of modern classical computers. To our knowledge,
the problem of performing such simulations on a quan-
tum computer was not addressed until now. Indeed, it
may look surprising that quantum mechanics may help in
simulations of classical dynamics. In this paper, we show
that a well-known example of classical chaotic system can
be simulated on a quantum computer with exponential
efficiency compared to classical algorithms. Moreover,
even if due to chaos the classical errors grow exponen-
tially with time, the quantum simulations with moderate
quantum errors still enable to reproduce accurately the
time evolution in the classical phase space. The resolu-
tion of this apparent paradox is rooted in the fundamen-
tal differences between classical and quantum mechanics.

One of the most famous example of classically chaotic
systems is the Arnold cat map, an automorphism of the
torus [12,13]. The dynamics of the map is given by:

ȳ = y + x (mod 1) , x̄ = y + 2x (mod 1) , (1)

where bars denote the new values of the variables after
one iteration. This is an area-preserving map, in which
x can be considered as the space variable and y as the
momentum. In this way, the first equation can be seen as
a kick which changes the momentum y, while the second
equation describes the free phase rotation. This map
belongs to the class of Anosov systems, with homoge-
neous exponential divergence of trajectories and positive

Kolmogorov-Sinai entropy h = ln(3+
√

5

2
) ≈ 0.96. Due to

this exponential instability, a typical computer round-off
error of order 10−16 will change completely the position
of a trajectory in the phase space torus after only 38
iterations. Although the exact dynamics of (1) is time-
reversible [14], the round-off errors make it effectively
irreversible after a short time.
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Usually computer round-off errors are not symplectic,
and destroy the area-preserving property of the map.
However, it is possible to consider a discretized map
which remains area-preserving after discretization. It is
known that such symplectic discretization describes the
continuous dynamics in the most appropriate way [15].
Such a discrete approximation remains close to the exact
map dynamics up to the time scale tE ≈ lnN/h whereN2

is the number of points of the discretized torus, so that
the discrete cells have the area 1/N2. For the cat map
(1) the discretized map is especially simple, consisting of
the dynamics through (1) of the N2 points (xi, yj) with
xi = i/N , i = 0, ..., N − 1 and yj = j/N , j = 0, ..., N − 1.
Even after discretization, the exponential instability still
manifests itself through the rapid disappearance of any
structure in phase space (for example the cat image) af-
ter few iterations, see Fig.1 (left). The discrete map pre-
serves time-reversibility [14], however any small impre-
cision at the time of inversion destroys this reversibility
as is illustrated on Fig.1 (left). Here for N = 128, the
smallest error (of one cell size) destroys reversibility al-
ready after 10 iterations. On a classical computer, one
map iteration requires O(N2) additions to simulate the
evolution of a phase-space density distribution.

On the contrary, we found that on a quantum com-
puter the discretized Arnold cat map can be simulated
exponentially faster. Our quantum algorithm operates
on 3nq − 1 qubits. The first two quantum registers,
each with nq qubits, describe the position xi and the
momentum yj of N2 points of the discretized classical
phase space, with N = 2nq . The remaining nq − 1
qubits are used as workspace. An initial classical phase
space density can then be represented by a quantum state∑

i,j aij |xi > |yj > |0 >. The map dynamics requires ad-
ditions of integers modulo (N) (modular additions). The
quantum algorithm we use for this operation is similar
to the one described in [16] (see also [17]). The third
register holds the carries of the addition, and the result
is taken modulo (N) by eliminating the last carry. One
map iteration requires first adding the first register to the
second, and then adding the second register to the first.
After that, the coefficients aij describe the classical phase
space density after one map iteration. To perform these
additions, 8nq − 12 Toffoli gates and 8nq − 10 controlled-
not gates are needed per map iteration, giving a total of
16nq−22 operations for nq ≥ 3 [18]. This means that the
quantum computer can iterate this classical chaotic map
exponentially faster than the classical computer, which
requires O(22nq ) operations per iteration. Hence, the
quantum evolution obeying the Schrödinger equation de-
scribes the classical Arnold cat map, and we will call this
quantum dynamics the Arnold-Schrödinger cat map.

If the quantum gates are perfect, then the quantum al-
gorithm describes exactly the classical density evolution.
But physical systems are never perfect, and to be really
efficient the quantum algorithm should be stable against

FIG. 1. Dynamics of Arnold-Schrödinger cat simulated on
a classical (left) and quantum computer (right), on a 128×128
lattice. Upper row: initial distribution; second row: distribu-
tions after 10 iterations; third row: distributions at t2r = 20,
with time inversion made at tr = 10; bottom row: distribu-
tions at t2r = 400, with time inversion made at tr = 200.
Left: inversion is done with classical error of one cell size
(ǫ = 1/128) at t = tr only; right: all quantum gates operate
with quantum errors of amplitude ǫ = 0.01; color from blue
to red gives the probability |aij |

2; nq = 7.

imperfections. In view of the exponential instability of
classical computer errors in this problem, this may look
rather doubtful. To study the effects of imperfections
on this algorithm, we introduced some random unitary
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noise in the gate operations. For each gate transforma-
tion, the nondiagonal part was diagonalized, and each
eigenvalue was multiplied by a random phase exp(iη),
with −ǫ < η < ǫ. Here we assume that imperfections
due to residual static coupling between qubits are small
enough, and that the quantum computer operates below
the quantum chaos border discussed in [19].
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FIG. 2. Quantum fidelity f of Arnold-Schrödinger cat as
a function of time t for quantum errors ǫ = 0.003, 0.01, 0.03
(dashed and dotted curves from top to bottom respectively).
Initial state: cat’s smile as in Fig. 1 (dashed curves) and line
x = 1/2 (dotted curves). Full curve shows the drop of fidelity
when a minimal classical error is done at t = 200 (see text).

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

f (2t  )
c e

te

FIG. 3. Classical fidelity fc(2te) vs. time te when the min-
imal classical error (ǫ = 1/128) is made (full curve). Dashed
curve shows the same fc obtained by the quantum computer
with imperfections of amplitude ǫ = 0.01 (see text).

To investigate the stability of the algorithm with re-
spect to quantum imperfections, we used first a time-
inversion test. Namely, starting from a given classi-
cal density (representing the cat’s smile), we perform
tr iterations forwards, then invert all momenta (time-
inversion), and perform again tr iterations. Without im-
perfections, the density returns exactly to its initial dis-
tribution at t2r = 2tr. On the left of Fig.1, one can see
the dramatic effect of small random classical computer
errors (here of size ǫ = 1/N ≈ 10−2), performed only at
the moment of the time-inversion: it completely destroys
reversibility after a few iterations. On the contrary, the
quantum errors of similar amplitude, although present at

each map iteration, practically do not affect the smile of
the Arnold-Schrödinger cat after t2r = 20 iterations, and
only slightly perturb it after t2r = 400. This pictorial
image shows the power of quantum computation, which
even in presence of relatively strong imperfections is able
to simulate classical chaotic dynamics. We note that
quantum systems for which the classical limit is chaotic
(e.g. the kicked rotator) are also stable with respect to
time inversion [20].

To be more quantitative, we computed the fidelity of
the quantum state in presence of errors, namely f(t) =
| < ψǫ(t)|ψ0(t) > |2. Here |ψ0(t) > is the quantum state
after t perfect iterations, while |ψǫ(t) > is the quantum
state after t imperfect iterations. The dependence of fi-
delity on time is shown on Fig.2. Here we present f(t) for
two initial states, one representing the cat’s smile, and
another a line in phase space, with x = 1/2. The latter
is especially easy to prepare, requiring only nq +1 single-
qubit rotations. The data clearly show that in both cases
the fidelity drops very slowly with the number of itera-
tions, confirming the stability of quantum dynamics. In
view of the exponential growth of classical errors, this
may look as a paradox. Indeed, as is illustrated in Fig.1,
exponentially small classical errors of size 1/N destroy
practically immediately any structure. The resolution of
this paradox lies in the fact that a small classical error can
be very large from the viewpoint of quantum mechanics.
This fact is shown in Fig.2, where after a small classi-
cal error affecting only the smallest bit in the positions
xi, yj the fidelity of the quantum state drops immediately
to a very small value. Curiously enough, after this drop,
perfect iterations of the map do not change the fidelity,
although the classical error (i.e. distance between exact
and perturbed orbits) starts to grow exponentially due
to trajectory divergence in phase space.

In this situation, one may wonder where in the quan-
tum dynamics is hidden the classical exponential insta-
bility. In fact, it is always present even if quantum dy-
namics remains stable. Indeed, the drop in the fidelity
induced by classical errors depends exponentially on the
moment of time te when the error is made. This fact is
illustrated by Fig.3, which shows the classical fidelity fc,
defined in the same way as the fidelity for quantum er-
rors: fc(t, te) = | < ψe(t, te)|ψ0(t) > |2 where |ψe(t, te) >
is the quantum state after the classical error is done at
time te < t and |ψ0(t) > is the quantum state without
error. This function fc(t, te) can be also computed purely
classically. As seen in Fig.2, for given te and t > te, the
fidelity fc remains exactly constant, since fc is preserved
by unitary transformations. However, its value depends
strongly on te, as is shown in Fig.3, where fc is computed
at time t = 2te. The data clearly show the exponential
drop of classical fidelity with te. This reflects the exis-
tence of exponential instability in the cat map dynamics.
If a time inversion with errors is done at tr = te, as in
Fig.3, then the value of fc gives the recovered fraction
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of the initial distribution (cat’s smile) at t = 2tr. This
whole process can be made on the quantum computer
with imperfections, and Fig.3 shows that even with im-
perfections the quantum computer gives practically the
same classical fidelity which drops exponentially. Hence
a quantum computer can simulate accurately the expo-
nential growth of classical errors in the regime of chaos.
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FIG. 4. Fidelity time scale tf as a function of ǫ2nq :
nq = 4 (circles), 5 (squares), 6(diamonds), 7 (triangles
up), 8 (triangles down)); filled symbols are for quantum er-
rors (0.003 ≤ ǫ ≤ 0.1), open ones are for classical errors
(0.003 < ǫ < 0.1); the full line gives tf = 0.63/(ǫ2nq). In-
set: probability distribution Wx in |x > at the moment of
return t2r = 400 for time inversion at tr = 200, and quantum
imperfections ǫ = 0.03, for nq = 7 with x = 1/2 at t = 0.

To study quantitatively the dependence of the fidelity
f(t) on the magnitude of errors, we determine the fidelity
time scale tf by the condition f(tf ) = 0.5. For quantum
errors, Fig.4 shows that tf ≈ 0.63/(ǫ2nq). Indeed, the
probability of transition from the exact state to other
states is of order ǫ2 for each gate operation. After tf
map iterations, tfnq such operations are done, so that
the fidelity drops by ǫ2nqtf ∼ 0.5, giving the above esti-
mate. This estimate is rather general, and it corresponds
to a general property of quantum mechanics due to which
the fidelity can drop only polynomially with unitary noise
and the number of imperfect gates applied. On the con-
trary, in the classical case tf extracted from the classical
fidelity fc(te = tf ) = 0.5 (see Fig.3) is of the order of
tf ≈ 1.4 ln(1/ǫ), comparable with tE for ǫ ∼ 1/N .

We stress that the Arnold-Schrödinger cat is very sim-
ple to implement. For example, one map iteration with
nq = 4 requires only 11 qubits and 42 gates, and can
be experimentally realized in the near future. The time
inversion test explained above can be performed experi-
mentally and be used to test the actual accuracy of the
quantum computer. Indeed, an initial distribution in the
form of the line x = 1/2 can be easily prepared, and
from a few measurements of the |x > register at the re-
turn moment t = t2r one can estimate the probability of
non-return which allows to determine the amplitude of
quantum errors. The inset in Fig.4 shows an example of

such final state. It is interesting to note that nq = 20
needs only 59 qubits and will permit to make compu-
tations unaccessible to nowadays supercomputers, with
memory size ≈ 200 Go. In this regime global quantities
inaccessible by classical computation can be obtained.
For example, the main harmonics of the density distri-
bution can be obtained with the help of the quantum
Fourier transform followed by a few measurements.

In conclusion, our study of the Arnold-Schrödinger cat
dynamics shows that classical unstable motion, for which
classical computers demonstrate exponential sensibility
to errors, can be simulated accurately with exponential
efficiency by a realistic quantum computer.

We thank the IDRIS in Orsay and the CalMiP in
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