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Abstract. We study the two-dimensional, disordered, attractive Hubbard model by the projector quantum
Monte Carlo method and Bogoliubov-de Gennes mean-field theory. Our results for the ground state show
the appearance of a new phase with charge localization in the metallic regime of the non-interacting model.
Contrary to the common lore, we demonstrate that mean-field theory fails to predict this phase and is
unable to describe the correct physical picture in this regime.

PACS. 74.20.-z Theories and models of superconducting state – 74.25.-q General properties; correlations
between physical properties in normal and superconducting states – 74.40.+k Fluctuations (noise, chaos,
nonequilibrium superconductivity, localization, etc.)

The transition from superconductor to insulator (SIT) in
the presence of disorder continues to actively attract the
interest of experimentalists and theoreticians, alike. Ex-
perimentally, this transition has been observed in thin-
films of various materials by several different groups, re-
viewed for example in [1]. Theoretically, attempts were
made to model the original fermionic problem by an ef-
fective system of interacting bosons, investigated in depth
both analytically and numerically [2,3]. While this ap-
proach yields interesting results, it is important to study
the fermionic models, which directly correspond to the
experimental situation [4]. Recently, fermion models have
been studied in the context of the SIT by quantum Monte
Carlo (QMC) methods [5] which reproduce the physics ac-
curately. This method yielded the transition from super-
conducting to insulating behavior as a function of disorder
strength. However, several unresolved questions pertain-
ing to the physical origin of this transition remain open.
Further, a more microscopic, qualitative understanding of
the effects of disorder and the properties of the localized
phase would be desirable.

For weak disorder strengths, Anderson’s theorem [6]
guarantees that the superconducting phase persists de-
spite disorder and the superconducting gap and other
thermodynamic properties remain unchanged. The case of
stronger disorder and non-uniform order parameters can
be treated within the Bogoliubov-de Gennes approach [7].
Such studies have been carried out by several groups [8,9]
and the study for s-wave superconductors shows the per-
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sistence of a spectral gap with relatively strong disor-
der [9]. In the spirit of Anderson’s theorem, it is expected
that the superconducting phase penetrates the localized
non-interacting phase until the disorder strength is suffi-
ciently large to overcome the superconducting gap. In this
framework, the boundary between the two phases can be
estimated from the relation ∆ ∼ ∆1 ∼ (νFl

d)−1, where
∆ is the BCS superconducting gap, ∆1 is the level spac-
ing inside a grain of one particle localization length l in
the localized non-interacting phase and νF is the density of
states at the Fermi energy. However, it is not clear whether
the mean-field approximation (MFA) remains valid in the
presence of medium to strong disorder and its validity is
worth testing, by comparisons with QMC calculations. In-
deed, an indication of the failure of the MFA comes from
recent studies of the Cooper problem for two interacting
particles above a frozen Fermi sea, in the three dimen-
sional (3D) Anderson model (incorporating disorder) [10].
This study showed that the attractive Hubbard interac-
tion creates localized pairs in the non-interacting metallic
phase, in which the one-particle eigenstates are delocal-
ized. This is in contradiction to the predictions of the MFA
according to which Cooper pairs are delocalized in this
regime. This disagreement is expected to be even stronger
in lower dimensions (namely, the 2D case). Further, the
Cooper approximation cannot capture all the many-body
effects and this renders interesting the study of the full,
interacting, disordered fermion model with finite density
of particles. We study a disordered, interacting 2D Hub-
bard model. Formally, in the non-interacting model, all
states are localized in the limit of infinite sample size [11].
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However, for finite sized clusters, eigenstates can be per-
fectly delocalized [12], thus providing us with a possibility
to investigate the appearance of localization induced by
the attractive interaction.

Contrary to the expectations arising from Anderson’s
theorem, we find that the attractive interaction that leads
to superconductivity gives rise to a phase of bi-particle
localized states (BLS) in the metallic regime of the non-
interacting disordered model. This confirms the indications
obtained from the generalized Cooper problem [10] dis-
cussed above. Thus, our results, obtained by exact treat-
ment of all many-body quantum effects in a realistic model
at finite particle density, demonstrate convincingly the
existence of the BLS phase. Furthermore, we show that
the Bogoliubov-de Gennes MFA results are qualitatively
incorrect in this phase. The BLS phase is observed at
medium disorder strength, while in the limit of weak dis-
order, the system is superconducting, as expected.

To investigate the interplay of interactions and dis-
order in the SIT regime, we have studied the attractive
Hubbard model with disorder, on a square lattice. The
model Hamiltonian reads,

H = HA +HI

=
(
−t

∑
〈ij〉,σ

â†i,σâj,σ +
∑
i,σ

εiâ
†
i,σâi,σ

)
+ U

∑
i

n̂i↑n̂i↓ (1)

where the â†i,σ (âi,σ) are the creation (annihilation) opera-
tors for a fermion of spin σ at site i with periodic boundary
conditions, n̂iσ is the number operator for spin σ at site
i, t is the hopping parameter, the Hubbard parameter,
U < 0, gives the strength of the screened attractive in-
teraction and εi, the energy of site i is a random number
drawn from a uniform distribution [−W/2,W/2], which
parameterizes the disorder. The first two terms represent
the Anderson Hamiltonian and the last term represents
the interaction HI. The filling factor ν = Np/(2 × L2),
where Np is the number of fermions (particles) and L the
linear dimension of the system and the total number of
sites is L2. It is known that the attractive Hubbard inter-
action induces superconductivity; thus, we have a useful
model without inquiring into the physical origin of the
pairing interaction.

We have studied this model by the projector quantum
Monte Carlo (PQMC) method, which has no fermion sign
problem for U < 0. As is well known [13], this method
treats the many-body problem exactly up to statistical
errors and gives direct access to the ground state prop-
erties of the system. The systematic error arising from
the discrete symmetric Trotter decomposition, of step ∆τ ,
is of order (∆τ)3. The simulations were carried out with
∆τ = 0.1, with up to 60 time steps (which gives projec-
tion parameter Θ = 60× ∆τ = 6), in the Sz = 0 sector.
We usually carried 3000 Monte Carlo (MC) sweeps with
a 1000 sweeps used for equilibration, before calculating
averages. The disorder average was performed over 16 dif-
ferent realizations of random potential. We checked that
these parameters give us good convergence and stability of
the physical properties. Indeed, the systematic error from
the Trotter decomposition, of order 10−3, is sufficiently

small and the projection parameter Θ = 6 is adequately
large. In fact, these parameter values correspond to the
standard range of parameters used by other groups [5].
The filling factor ν was tuned around quarter filling, for
different disorder and interaction strengths, varying the
system size L. The largest system studied was 144 sites
with 74 particles. We note that this model has been stud-
ied in the grand canonical ensemble by a finite tempera-
ture QMC method on an 8×8 lattice with ν = 0.4375 [5].
The SIT was estimated in this work to occur at a critical
value of disorder strength Wc ≈ 3.5t. However, the system
size dependence of the observables was not investigated in
their work and it was not recognized that the transition
takes place in the 1-particle metallic phase of the sam-
ples studied. The investigation of this regime is the main
subject of our work.

To understand the physics of the model, we con-
sider the difference in charge density in the ground state,
δρi = ρi(Np + 2) − ρi(Np), where ρi is the charge den-
sity at site i and Np = L2/2 corresponds to quarter filling
(
∑
i δρi = 2). The values of ρi(Np) and ρi(Np + 2) are

obtained from two independent PQMC calculations. For
U = 0, the charge density difference δρi is given by the
one-particle probability fi = |ψi|2 of the eigenstate at the
Fermi level (fi = δρi/2). Due to this relation, the analysis
of this characteristic, even in the presence of interactions,
allows us to determine whether the charge is localized or
delocalized at the Fermi level.

An example of this characteristic for a typical disorder
realization is presented in Figure 1. The results clearly
show that the eigenstate at the Fermi level is delocalized
in the non-interacting case at the given disorder strength
W/t = 5. Of course, in the limit of L→∞, eigenstates are
localized for U = 0 [11]. Nevertheless, for the finite system
sizes in Figure 1, the localization length is larger than the
system size and the eigenstates correspond to a metallic
regime. Indeed, according to the theoretical estimates (see
e.g. [14]), a Fermi golden rule approximation gives kFl ≈
192πν(t/W )2, where kF is the wavevector at the Fermi
level and l is the mean free path. Therefore for the case
of strongest disorder considered (W/t = 5, ν = 1/4), the
parameter kFl ≈ 6 is rather large. Hence the conductance
g ≈ kFl is large and the sample is metallic.

Certainly, it would be desirable to study this problem
in the 3D case, where the Anderson transition clearly sepa-
rates the non-interacting delocalized and localized phases,
even for samples of infinite size. However, it is presently
too expensive, numerically, to study comparable system
sizes in 3D. In spite of this, our data show that important
physical information can be obtained from the 2D case,
for finite sample sizes as follows.

The results obtained from the Bogoliubov-de Gennes
MFA for the same disorder realization, with interaction
strength U/t = −6 are shown in Figure 1b. These calcula-
tions were carried out as described in [8,9]. The eigen-
vectors and the quasiparticle excitation energies were
obtained self-consistently, with good convergence. In addi-
tion, we obtained the BCS value for the order-parameter
∆ ≈ 1.36t in the limit of W/t = 0, at L = 12 and
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Fig. 1. Charge density difference, δρi (see text for definition),
at sites i of Hamiltonian (1), for a 12×12 lattice with W/t = 5
and Np = 72 fermions for a single disorder realization. The
upper part (a) is with U/t = 0 and the lower part (b) is the re-
sult from a Bogoliubov-de Gennes mean-field calculation with
U/t = −6.0.

U/t = −4, as in [9]. In the limit U = 0, this method
reproduces δρi for finite disorder strengths W/t. A com-
parison of Figures 1a and b indicates strongly that within
the MFA, the charge density at the Fermi level is highly
delocalized by the introduction of interactions. This result
indicates that interactions smoothen out charge fluctua-
tions within the MFA. Thus, at W/t = 5 and U/t = −6,
the MFA gives completely delocalized, metallic behaviour.

The PQMC results for δρi for the same disorder
realization as in Figure 1 are displayed in Figures 2a
and b, corresponding to two values of the disorder strength
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Fig. 2. Charge density difference, δρi at sites i of Hamiltonian
(1), obtained from QMC calculations, shown here for a lattice
of 12× 12 sites, with Np = 72 fermions, for the same disorder
realization as in Figure 1. The upper part (a) is with W/t = 2.0,
U/t = −6.0 and the lower part (b) is with W/t = 5.0 and
U/t = −6.0.

(W/t = 2 and 5). The model parameters used are identi-
cal for Figures 1b and 2b. It is apparent from Figure 2b
that the charge at the Fermi energy is localized. Thus, the
PQMC result, with a proper treatment of interactions
and disorder, differs qualitatively from the Bogoliubov-
de Gennes mean-field calculation, which gives the wrong
physical picture. We also emphasise that for U/t = 0,
the charge variation δρi is delocalized (Fig. 1a) and the
pronounced, localized peak of charge in Figure 2b is not
correlated to the charge distribution of Figure 1a. With
decrease of disorder strengthW , this localized charge peak
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Fig. 3. PQMC result for the IPR ξ obtained from the charge
density distribution of the added pair vs. linear dimension of
system L. Dashed lines are for W/t = 2 and full lines for
W/t = 5, with U/t = 0 (circles), −4 (squares) and −6 (di-
amonds). The average is carried out over 16 disorder realiza-
tions. The statistical error bar of ξ from the disorder averag-
ing is approximately 10% being about 10 times larger than
the statistical error from the PQMC calculation for a given
realization.

seen in Figure 2b disappears as shown in Figure 2a. In fact,
the charge distribution in Figure 2a becomes closer to that
of the corresponding delocalized, non-interacting case (not
shown). These data show that the SIT takes place in the
metallic non-interacting phase.

For a more quantitative description of this unusual
SIT, we have studied an effective inverse participation ra-
tio (IPR), ξ for an added pair of particles. The IPR is
defined as ξ = 〈

∑
i(δρi/2)2〉−1, where the brackets denote

the average over 16 disorder realizations. For U = 0, this
definition exactly reproduces the one-particle IPR at the
Fermi level. In the presence of interactions, this quantity
allows us to study the charge distribution of added pairs
at the Fermi level, beyond the Cooper approximation used
in [10]. Physically, the IPR gives the number of sites vis-
ited by a pair. Thus, the evolution of the IPR with system
size L, can be used to determine the transition from delo-
calized to localized behavior.

The PQMC results for the IPR as a function of system
size L, disorder and interaction strengths are shown in Fig-
ure 3. The data clearly show two main phenomena. Firstly,
it is clear that interactions always diminish the IPR, com-
pared to the non-interacting case. Secondly, for moderate
disorder strengths the pair becomes localized. Indeed, for
W/t = 5, ξ continues to grow with L for U/t = 0 (metal-
lic non-interacting regime), while it remains constant for
U/t = −6. For example, in the latter case, ξ = 6.7± 0.8 is
much smaller than the total number of sites (L2 = 144),
clearly indicating pair localization induced by the attrac-
tive interaction. This is in great contrast to the MFA re-
sult obtained as described for Figure 1b, which gives com-
plete delocalization with ξ ≈ 124. In fact, the ξ from the

MFA is significantly larger than the non-interacting value
of ξ = 33.0, that once more shows that the MFA gives a
physically wrong answer. With the finite system sizes of
our simulations, it is difficult to determine the position
of the SIT precisely. However, we note that for W/t = 2,
the system remains delocalized even for U/t = −6. Thus,
we estimate that for U/t ' (−4,−6), the critical disorder
strength isW/t ' 4. This is in satisfactory agreement with
the results obtained for fixed system size L = 8 in [5]. Ac-
cording to the theoretical estimate given above we obtain
kFl ≈ 9.4 � 1 at W/t ' 4. Thus, due to attractive inter-
actions between particles, the SIT definitely takes place in
the regime where the non-interacting particles would show
delocalized, metallic behaviour. We also note that, clearly,
well below the SIT, at weak disorder, the Bogoliubov-de
Gennes theory becomes valid.

In fact, the appearance of this BLS phase can be under-
stood from the following heuristic physical argument [10].
The attractive Hubbard interaction strongly favors pair
formation. This effectively doubles the mass of the charge
carriersm∗ ∝ 1/t and thus enhances the effects of disorder
induced localization, which are proportion to W/t ∝ m∗.
We believe this to be the correct physical reason for the
appearance of this BLS phase.

The results presented above concern the ground-state
properties of a full many-body system of particles with at-
tractive interactions. The ground-state for two attracting
particles above the frozen Fermi sea was discussed in [10].
In this case, the charge is localized in the ground-state
while the pairs can be delocalized for excitations above a
certain energy threshold. The interaction induced delocal-
ization of excited pairs can occur for both attractive and
repulsive interactions, as discussed in detail in [15,16]. For
excited states, the delocalization mechanism is not related
to the mass of the pair.

In conclusion, our studies based on the PQMC method
show the appearance of a localized phase of pairs, induced
by attractive interactions, which appears in the metallic
regime of the non-interacting system. The comparison of
these results with Bogoliubov-de Gennes mean-field calcu-
lations show that the MFA does not predict the existence
of this phase. As the non-interacting states are delocal-
ized for the moderate disorder strengths corresponding to
the BLS phase, arguments in the spirit of Anderson’s the-
orem should definitely drive the system superconducting
at the expense of the non-interacting localized insulating
phase. On the contrary, our results provide evidence for
the appearance of a new phase which is unexpected from
the accepted viewpoint. We expect that this effect exists
as well in three dimensions where it should be much more
pronounced due to the sharp Anderson transition between
the non-interacting metallic and insulating phases.

We thank G. Benenti, J. Lages and O. Sushkov for useful dis-
cussions and remarks and IDRIS, Orsay for access to their
supercomputers.



B. Srinivasan and D.L. Shepelyansky: Disorder and superconductivity: a new phase of bi-particle localized states 473

References
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