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EFFICIENT QUANTUM COMPUTING INSENSITIVE TO PHASE ERRORS
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We show that certain computational algorithms can be simulated on a quantum computer
with exponential efficiency and be insensitive to phase errors. Our explicit algorithm simu-
lates accurately the classical chaotic dynamics for exponentially many orbits even when the
quantum fidelity drops to zero. Such phase-insensitive algorithms open new possibilities for
computation on realistic quantum computers.

1 Introduction

The problem of quantum computation has attracted recently a great deal of attention 1,2,3.
This interest stems from the fact that the massive parallelism permitted by quantum mechanics
enables to reach exponential efficiency of computation in certain quantum algorithms. The most
famous example is the Shor algorithm which allows to factor large numbers exponentially faster
than any known classical algorithm 4. Recently, other types of exponentially efficient algorithms
has been developed for the simulation of various physical systems 5,6,7. The exponential gain in
computation is related to the exponentially large Hilbert space of the quantum computer which is
composed of multi-qubit states operating in parallel (each qubit is a two-level quantum system).
Usually the algorithms are constructed for ideal quantum computers operating free of noise and
imperfections. In reality, any physical realization of such a computer involves a certain level
of imperfections, noise in gate operations and decoherence. First investigations showed that
quantum computation can tolerate a sufficiently low level of errors 8,9. More recently, it has
been found that quantum computation is tolerant to quantum errors when simulating classical
chaotic dynamics for which classical computer errors grow exponentially with time7. However in
general the quantum errors grow with the number of gate operations and any realistic quantum
computer is faced with this problem. To deal with this problem of fault-tolerant computation,
quantum error-correcting codes were recently developed10,11,12. They allow to reduce the level of
errors in a systematic way, but require the introduction of many redundant qubits and additional
gates, which significantly complicates the computational process. The complexity of these codes
depends strongly on the type of errors they should correct. Indeed, while simpler classical codes
need to correct only bit errors, the quantum ones should in addition simultaneously correct
the quantum phase errors. The quantum phase errors seem to be of primary importance since
the massive parallelism of quantum computing is related to entanglement in the Hilbert space
which is directly based on phase coherence. Therefore, according to this common lore it seems
impossible to perform efficient and accurate quantum computations in presence of uncontrolled
strong phase errors. In this paper we show on an explicit example that it is not always the case,
and that there are algorithms insensitive to phase errors which perform accurate and efficient
computation. Our example is based on the simulation of classical chaotic dynamics, which
is very hard to simulate accurately on classical computers since this dynamics is unstable and
round-off errors grow exponentially with time. In spite of this, our quantum algorithm, including
measurement, remains insensitive to phase errors for arbitrary time.

2 The Arnold-Schrödinger cat quantum algorithm

To illustrate this phenomenon, we choose an algorithm which simulates the classical chaotic dy-
namics of the well-known Arnold cat map13,14. It was recently shown7 that quantum computers
can simulate this dynamics with exponential efficiency. In addition it was shown that a small



level of quantum errors in the gate operations of order ǫ allows to simulate accurately this map
on times of order O(1/ǫ2). Thus quantum computers can face classical exponential instability
and chaos.

The dynamics of the map we are studying is given by:

ȳ = y + x (mod 1) , x̄ = y + 2x (mod 1) , (1)

where bars denote the new values of the variables after one iteration. This is an area-preserving
map, in which x can be considered as the space variable and y as the momentum. A discretized
version on a N × N square lattice is also described by this map. In 7, a quantum algorithm
called Arnold-Schrödinger cat map was introduced, and it was shown to simulate this dynamics
on the lattice with exponential efficiency. In this paper, we modify this algorithm in such a way
that exponential efficiency is preserved and in addition it becomes insensitive to phase errors.
This is obtained by the introduction of a new measurement procedure.

The quantum algorithm introduced in 7 simulates the discrete classical dynamics given by
(1) and operates with 3nq − 1 qubits. These qubits are organized in three registers. Two of
them describe the classical phase space with N2 points and N = 2nq . The third register with
nq − 1 qubits is used as workspace. In this way, an initial classical phase space density can be
represented by a quantum state

∑
i,j aij|xi > |yj > |0 >, with xi = i/N , i = 0, ..., N − 1 and

yj = j/N , j = 0, ..., N − 1, written in binary representation, and we choose initially aij = 0 or
1/
√
Nd where Nd is the number of points in the classical distribution. Then, iterations of the

map (1) are performed with the help of additions of integers modulo (N) (modular additions).
The quantum algorithm we use for this operation is similar to the one described in15 (see also7).
First we compute all the carries of the addition, using two Toffoli gates and one controlled-not
(CNOT) gate per qubit. Then we perform the addition starting from the last qubit and erasing
the carries by running the inverse of the preceding step. This needs two CNOT gates per qubit
addition and the same gates as above to erase the carries. The result is taken modulo (N) by
eliminating the last carry. After these operations, the amplitudes |aij | describe the classical
phase space distribution function after iteration of (1). In total, one needs 16nq − 22 Toffoli
and CNOT gates per map iteration. On the contrary, a classical computer will require O(22nq )
operations per iteration for Nd = O(N2) orbits.

It is important to stress that during the whole process the classical distribution function is
determined only by the probabilities |aij |2 of the quantum computer wavefunction expanded on
the Hilbert space basis of register states |xi > |yj > (after each map iteration the third register
is always in the state |0 >). Thus, the information about the classical distribution function is
stored in these probabilities, and is not sensitive to the relative quantum phases of aij. This
suggests that the phase errors accumulated during gate operations will not affect the quantum
computer simulation of this classical chaotic dynamics.

3 Effect of phase errors

To study the effects of quantum errors, one usually uses the fidelity 9, defined as: f(t) =

| < ψǫ(t)|ψ0(t) > |2 = |∑i,j a
(ǫ)
ij (t)a

∗(0)
ij (t)|2. Here |ψ0(t) >=

∑
i,j a

(0)
ij (t)|xi > |yj > is the

quantum state after t perfect iterations, while |ψǫ(t) >=
∑

i,j a
(ǫ)
ij (t)|xi > |yj > is the quantum

state after t imperfect iterations. Obviously, this quantity is very sensitive to the relative phases
of aij. Since the classical phase space density is not sensitive to these phases, we introduce
another characteristic which is related only to the amplitudes |aij |. We call it faithfulness and

define it by: fa(t) = (
∑

i,j |a
(ǫ)
ij (t)a

(0)
ij (t)|)2. This quantity can be considered as a generalization

of the usual fidelity. As well as f(t), the faithfulness fa(t) is always ≤ 1, and it determines the

deviation from the exact amplitudes (the value 1 is reached only for |a(ǫ)
ij (t)| = |a(0)

ij (t)| for all



i, j). In addition, one has always fa(t) ≥ f(t). Contrary to the usual fidelity, the faithfulness
measures only amplitude errors, being insensitive to the quantum phases. We note that its
definition is related to the preferential basis chosen initially in the Hilbert space.

To study the dependence of fidelity and faithfulness on phase errors, the nondiagonal part
of each Toffoli and CNOT gate used in the algorithm was multiplied by a diagonal matrix with
elements exp(iθm), with random phases θm homogeneously distributed in [−ǫφ, ǫφ]. The results
are shown in Fig. 1 (Left). Here the initial state was chosen in the form of a cat’s smile (see
Fig. 1 of 7 and the coarse-grained version in Fig. 2). In the presence of phase errors only, the
fidelity f decreases with the number of map iterations and drops almost to zero for sufficiently
strong phase noise. At the same time, the faithfulness fa is not affected even by the maximal
possible phase noise. We also checked that fa = 1 is not affected if each aij is multiplied after
each gate by a random phase exp(iθm) with θm distributed in [−π, π], although in this case the
fidelity is almost zero after one map iteration.
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Figure 1: LEFT: Quantum fidelity f of Arnold-Schrödinger cat as a function of time t for quantum phase errors
of strength ǫφ = 0.05, 0.1, 0.3 (dashed curves from top to bottom ). Faithfulness fa is shown for the maximal
phase errors with ǫφ = π (full line). The dotted line shows fa(t) when in addition to maximal phase errors there
are small amplitudes errors of strength ǫ = 0.01. Initial state is chosen in the form of a cat’s smile on a 128× 128
lattice (see text and Fig. 2), and nq = 7. In total, 20 qubits are used for the computation.
RIGHT: Zero harmonic Q0 of Arnold-Schrödinger cat normalized by its value in absence of errors as a function
of time t for quantum phase errors of strength ǫφ = 0.07, 0.2 (dashed curves from top to bottom ). Full line shows
the total probability W inside one cell (i′g , j′g) (see text) normalized in the same way for the maximal phase errors

with ǫφ = π. Initial condition is chosen as for Left, nq = 7 and ng = 5.

To show the difference between phase and amplitude (bit) errors, we computed the faith-
fulness in presence of a small unitary noise in the gates. For that, in addition to large phase
errors, for each gate the nondiagonal part was diagonalized, and each eigenvalue was multiplied
by a random phase exp(iη), with −ǫ < η < ǫ. This introduces both phase and amplitude errors,
and Fig. 1 (Left) shows that the faithfulness starts to drop slowly with time. Hence despite the
presence of strong phase errors the faithfulness is sensitive only to the amplitude errors.

Thus the information stored in the amplitudes is not sensitive to phase decoherence. Still, one
should find a way to retrieve a part of this exponentially large information. Usually one performs
a quantum Fourier transform (QFT) and measures the maximal harmonics of the distribution,
as was suggested in 7. However, the QFT is extremely sensitive to the quantum phases of aij ,
as is illustrated in Fig. 1 (Right). The zero harmonic Q0(t) =

∑
i,j aij(t)/N =

√
Nd/N is time-

independent in the absence of errors, but drops rapidly with t if phase errors are present. To
avoid the effects of phase errors, one can measure only the first ng qubits from the nq qubits
present in the register |x > and the same for the register |y >. This procedure introduces a
coarse-graining of the phase space (x, y), with the number of cells Ng = 22ng . The result of
such a measurement is determined by the total probability inside each cell Wigjg =

∑
<i,j> |aij |2



where the summation is performed over all (i, j) inside the cell (ig, jg). This probability is not
sensitive to phase errors, and can be extracted by a number of measurements which is polynomial
in Ng. Fig. 1 (Right) shows that the probability in a chosen cell (i′g, j

′

g) is indeed insensitive
to phase errors. We note that this coarse-grained probability is a very natural quantity for
the dynamical system under investigation. One is not interested in the exponential amount of
information present in all aij since one cannot even store it classically, and therefore it is better to
operate with coarse-grained characteristics as is usually done in chaotic dynamical systems. The
number of cells Ng can be kept constant while the number of iterated classical orbits increases
exponentially with nq. All these orbits are iterated accurately and with exponential efficiency
during quantum computation, and the constant number of cells Ng is used only to extract the
essential information generated by this chaotic dynamics.

Figure 2: Coarse-grained image of Arnold-Schrödinger cat measured through the probabilities Wigjg
at different

moments of time t = 0(upper panels), t = 50 (middle panels), t = 100 (lower panels). Color is proportional to
Wigjg

, from blue (minimum) to red (maximum). Time inversion is done at t = 50. The quantum computation is
done with phase errors of amplitude ǫφ = π for both columns. In addition, for the left column the computation
includes also amplitude errors of strength ǫ = 0.3. The initial state is as in Fig.1, and nq = 7. The coarse-graining

corresponds to measuring the first five qubits (ng = 5) in the |x > and |y > registers.

Another test of the effects induced by phase and amplitude errors can be performed on
the basis of time-inversion. Indeed, the exact map (1) is exactly time-invertible. However, in
presence of imperfections this reversibility can be destroyed. In the régime of classical chaos,
the classical round-off errors grow exponentially with time and destroys time-reversibility in a
logarithmically short time. For quantum simulations, it was shown in 7 that quantum errors
grow only polynomially with time. Due to that, time-reversibility is preserved in quantum
computation of (1) for relatively small errors. However, it is naturally expected to be destroyed
in the case of strong errors. Contrary to this expectation, Fig.2 (Right) shows that time-



reversibility is exactly preserved in the presence of phase errors of maximal amplitude, and the
classical distribution is exactly reproduced for all t. In the right column, the difference between
the two images at t = 0 and t = 100 is on the level of classical computer precision. On the
contrary, strong enough amplitude errors completely destroy time-reversibility, as is shown on
Fig.2 (Left).

4 Discussion

Thus, all the data clearly show that our quantum algorithm simulating (1) is insensitive to
phase errors. This result can be understood in the following way. All nondiagonal parts of the
gates used in the algorithm are represented by the operator σx, while the noncommuting part of
phase errors is represented by σz. Of course, σx and σz do not commute. However, the action
of σx, σzσx and σxσz on a two-component spinor gives the same amplitudes of the components
(with different relative phases). Thus any quantity encoded in the amplitudes, in our case
the classical distribution function, remains invariant in presence of σz (phase) errors. On the
contrary, it is sensitive to σx (amplitude) errors. Another way of understanding this insensitivity
to phase errors is to remark that all used gates belong to a very specific subgroup among unitary
transformations of the Hilbert space, that is the group of permutations of the basis formed by
the states where each qubit is polarized in the z direction (each qubit is either |0 > or |1 >). The
amplitudes in this basis are insensitive to phase errors if only such transformations are present
in the algorithm. Indeed, any permutation can be written as a product of transpositions which
exchange only two states. By the same argument as for σxσz given above, such a transformation
is immune to phase errors, and hence any permutation. We stress again that phase errors do
affect the final state through the relative phases, but do not affect the measurement which gives
the cell probabilities Wigjg .

The above mathematical argument explains the insensitivity to phase errors. In a more
physical way, we can say that the map (1) describes the classical dynamics of the Arnold cat
map, which naturally should not be sensitive to quantum phases. Of course, one can imagine
other quantum algorithms which will simulate this classical dynamics using both phases and
amplitudes of the wave function, and therefore will be sensitive to phase errors. However,
on the basis of the Arnold-Schrödinger cat algorithm discussed in this paper, we make the
conjecture that classical Hamiltonian dynamics of generic systems can always be simulated on
a quantum computer in a way insensitive to phase errors. Indeed, for such a dynamics the
classical information can be naturally encoded in the amplitudes only 16. It is rather likely that
such a situation can appear in quantum computations which are not connected with classical
mechanics, for example probing the range of values of a function.

The implementation of such algorithms insensitive to phase errors can be enormously simpler
than in the case of other algorithms sensitive to quantum phases. Indeed, the necessity to correct
both phase and amplitude errors significantly complicates quantum error-correcting codes10,11,12.
If only amplitude errors are to be corrected, one can use much simpler codes close to the classical
ones. Also, in some physical systems phase errors can be naturally much stronger than amplitude
ones. For example, recent studies of the emergence of quantum chaos in a quantum computer 17

showed that for sufficiently strong residual inter-qubit interaction, exponentially many states are
mixed and amplitude errors become enormously strong. On the contrary, below the quantum
chaos border, amplitude errors are very small whereas phase errors are still important. In spite of
that, a quantum computer in this régime can efficiently simulate algorithms of the type discussed
here.

We note that while the algorithm presented above is exponentially faster than any determin-
istic classical algorithm iterating the map (1) nevertheless one can try to compete with it with
the help of classical Monte Carlo simulation with a polynomial number of trajectories. Such an



approach does not produce the exact density distribution with an exponential number of orbits
which is hidden in the quantum wavefunction. However, the statistical accuracy of both methods
can be comparable since one makes a polynomial number of measurements of the quantum final
state. At the same time one should keep in mind that such a Monte Carlo simulation is based
on the statistical assumption that a polynomial number of trajectories can correctly describe
the fine structure of classical phase space. In contrast, the quantum simulation takes exactly
into account the dynamics on all scales. We also stress that without large phase errors the QFT
gives access to information which is unaccessible even for classical Monte Carlo algorithms.

In conclusion, we have shown the existence of quantum algorithms which can simulate ef-
ficiently certain computational problems and at the same time are insensitive to phase errors.
Our explicit example is related to the simulation of classical motion and we make the conjecture
that classical Hamiltonian dynamics can always be simulated in a way immune to phase deco-
herence. The existence of such efficient quantum algorithms insensitive to the relative phases
shows that contrary to the common lore, the massive parallelism of quantum computing is not
necessarily related to quantum interference. Actually, quantum mechanics allows to follow in
parallel exponentially many computational paths in a way insensitive to phase decoherence.
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