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Fractal spin glass properties of low energy configurations in the Frenkel-Kontorova chain
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We study, numerically and analytically, the classical one-dimensional Frenkel-Kontorova chain in the regime
of pinned phase characterized by phonon gap. Our results show the existence of exponentially many static
equilibrium configurations that are exponentially close to the energy of the ground state. The energies of these
configurations form a fractal quasidegenerate band structure that is described on the basis of elementary
excitations. Contrary to the ground state, the configurations inside these bands are disordered.
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The Frenkel-Kontorova~FK! model @1# describes a one
dimensional chain of atoms/particles with harmonic co
plings placed in a periodic potential. This model was int
duced more than sixty years ago with the aim to study cry
dislocations@1,2#. However, it was also successfully applie
for the description of commensurate-incommensurate ph
transitions@3#, epitaxial monolayers on the crystal surfa
@4#, ionic conductors and glassy materials@5–7# and, more
recently, to charge-density waves@8# and dry friction@9–11#.
In addition, the FK model has also found its implementat
in the investigation of the Josephson junction chain@12#. The
physical properties of the FK model are very rich. Moreov
different types of interaction between atoms can be eff
tively reduced to the case of FK model and, due to that,
model continues to attract the active interest of different
search groups.

The ground state of the classical FK model is defined
the static, equilibrium configuration of the chain, which co
responds to theabsoluteminimum of the chain potential en
ergy. More than twenty years ago, Aubry discover
@6,13,14# that theground stateis unique and is characterize
by a special regular order of atoms in the chain. In fact,
positions of atoms in the chain are described by an a
preserving map, which is well known in the field of dynam
cal chaos and which is called the Chirikov standard m
@15#. The density of particles in the FK model determines
rotation number of the invariant curves of the map, while
amplitude of the periodic potential gives the value of t
dimensionless parameterK. For K,Kc , the Kolmogorov-
Arnold-Moser ~KAM ! curves are smooth and the spectru
of long wave phonon excitations in the chain is characteri
by a linear dispersion law starting from zero frequency.
the contrary forK.Kc , the KAM curves are destroyed an
replaced by an invariant Cantor set that is called cantorus
this regime the phonon spectrum has a gap so that the
non excitations are suppressed at low temperature. The
fects of the cantorus on the dynamical properties of the m
were discussed in Refs.@16,17#. Later @18#, on the example
of Ising spin model to which the FK model can beapproxi-
matelyreduced@19#, it has been shown that the ground sta
has some well defined hierarchical structure. The main
tures of this structure are determined by the number pro
1063-651X/2002/65~2!/026220~8!/$20.00 65 0262
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ties of the dimensionless particle density that is given by
ratio of the mean interparticle distance to the period of
external field.

In more recent studies@20–23#, the attention was mainly
concentrated on phonon modes in incommensurate o
dimensional chains. Indeed, the phonon modes contribut
the specific heat of the system and, hence, they are res
sible for the heat conduction along the chain@22,23#. The
propagation and localization of phonon modes@20,21# have
been studied for small vibrations of particles around th
equilibrium positions in theground state. In particular, very
accurate results were obtained in Ref.@21#, where the fractal
properties~or self-similarity! of the ground state were use
in a very efficientdecimation scheme.

However, we would like to stress that forK.Kc , besides
the ground state, there exist otherexcitedequilibrium con-
figurations, corresponding to local minima of the potenti
with energies very close to the ground state. To our kno
edge only few studies were dedicated to excited equilibri
configurations, see, for example Refs.@19,18,24#. In particu-
lar, on the example of exactly solvable models, it was fou
that the number of such configurations can be exponenti
large and their energy can be exponentially close to
ground state@25#. In this paper, we study the properties
the low energy equilibrium configurations in the more ge
eral case represented by the FK model. We determine
structure of the configuration energy spectrum and its dep
dence on the strength of the periodic potential and on
chain length. The obtained results show that these confi
rations are exponentially close in energy to the ground s
and the number of configurations grows exponentially w
the length of the chain. We also show that these configu
tions have interesting fractal properties, which we will d
scribe in detail. The transition between different configu
tions can be understood on the basis of elemen
excitations that we call ‘‘bricks.’’ The numerical and analyt
cal study of these elementary excitations allows to und
stand and describe the fractal structure of energy bands
responding to equilibrium configurations. Since the exci
equilibrium configurations are exponentially close to t
ground state, they will strongly contribute to the physic
system properties at finite temperature. Contrary to
©2002 The American Physical Society20-1
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ground state in which atoms form a regular structure, in
excited configurations this order is partially destroyed a
some chaotic feature appears. In some sense, the existen
an exponential number of configurations exponentially cl
in energy, reminds of the situation in classical spin glas
@26#. However, contrary to the usual spin glass models,
FK model is described by a simple Hamiltonian without a
disorder. Therefore, the appearance of exponentially quas
generate configurations in the FK system can be viewed
dynamical spin glass model. Thus, the rich variety of pro
erties of the FK model can find application in different are
of physics.

I. THE MODEL

Let us consider a chain of particles with pairwise elas
interactions between nearest neighbors:V(xi ,xi 21)5v(xi
2xi 21)5(xi2xi 21)2/2. This chain is placed in a periodi
external field:W(xi)52K cos(xi), where~without any loss
of generality! the period is taken equal to 2p. Therefore, the
Hamiltonian of the FK model reads

H5(
i

FPi
2

2
1

~xi2xi 21!2

2
2K cos~xi !G . ~1!

Here we have taken the mass of the particles and
elastic constant equal to unity. Thus, all the variables
dimensionless throughout the paper.

At the equilibrium the momentaPi50 and in addition

]H

]xi
52xi 1112xi2xi 211K sin~xi !50. ~2!

After the introduction of new variablespi 115xi 112xi , this
equation can be written in the form of an area-preserv
map

pi 115pi1K sin~xi !, xi 115xi1pi 11 , ~3!

which is known as the Chirikov standard map@15#.
We concentrate our investigation on the case of gol

mean dimensionless particle densityn5(A521)/2. This ir-
rational value can be approximated by rational approxima
that form the Fibonacci sequencesn with number of particles
s and chain lengthL52pr . In this way, the rational approxi
mants arenn5r n /sn5sn21 /sn , with sn51,2,3,5,8,13 . . .
and the average distance between particles isa52pnn . For
the map~3!, the parametern determines the rotation numbe
of the invariant KAM curve. At the golden mean value ofn,
the KAM curve is analytical and smooth forK,Kc
50.971 635 . . . @27#. ForK.Kc , the curve is destroyed an
the transition by the breaking of analyticity takes place@6#.
As a result, the invariant curve is replaced by a canto
which forms an invariant fractal set in the phase space of
map. For the FK model, the cantorus corresponds to
ground state with minimal energy as it was shown by Aub
@6,7,13,14#.

In this paper, we restrict ourselves to the case withK
.Kc , when each particle is locked by potential barriers
02622
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the external periodical field and the whole chain is pinn
Stable configurations of the chain correspond to minima
the potential energy:

U~$x%!5(
i

F ~xi2xi 21!2

2
2K cos~xi !G . ~4!

The static ground state corresponds toabsoluteminimum
given by Aubry’s solution. However, as we will see in th
next section, there are other local minima of the chain pot
tial U($x%) that give equilibrium static configurations wit
energy being very close to the ground state. The numbe
such configurational statesNcs grows exponentially with the
chain lengths.

II. ENERGY SPECTRUM OF EQUILIBRIUM
CONFIGURATIONS

In Fig. 1, we present a typical result for the integrat
number Ncs of excited equilibrium configurations versu
their energy difference, per particle, from the ground st
DU5(U2UG)/s where UG is the energy of the ground
state. Here we have number of particless589, number of
wells r 555 and two values ofK, K55 and K52. This
figure shows that the energy of configurations form a
quence of narrow energy bands, the width of which is mu
smaller than the distance between bands, at least in the
vicinity of the ground state. At higher energies, the ban
width starts to grow and eventually nearest bands alm
merge into each other. It is interesting to note that the nu
ber of states in each band is practically independent ofK, as
it is shown by dashed lines in Fig. 1: with the increase ofK,
each band is shifted to smaller values ofDU ~in logarithmic
scale! but the number of states in each band is not chang

It should be stressed, that even at a moderate value oK
52 the energy spacing between the ground state and the
excited configuration band is of the order of 10213. If one
assumes that in Eq.~4! a unit of energy is;1 eV, then this
band is already excited at temperatureT;1029 K. Hence,
one may conclude that the pure ground state is practic

FIG. 1. Integrated number of equilibrium configuration sta
Ncs as a function of the energy differenceDU between the energy
of configurationU and the ground state energyUG , counted per
particle. Here the number of particles iss589 and the number of
wells r 555. The bands are shown forK55 ~6 upper segments! and
for K52 ~5 lower segments!. Horizontal dashed lines show th
border between energy bands. All equilibrium configurations
counted. Dimensionless units are used here and in all other figu
0-2
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FRACTAL SPIN GLASS PROPERTIES OF LOW ENERGY . . . PHYSICAL REVIEW E65 026220
inaccessible, even for a chain with less than one hund
atoms.

The total number of different local minimaNcs is enor-
mous and it grows very rapidly withK. Therefore, to numeri-
cally find all these configurations, one needs to use spe
methods. Our approach to this problem is the followin
First, we find the ground state by the gradient method de
oped by Aubry@7,28,29#. Then we find the excited equilib
rium configurations with the help of the Metropolis alg
rithm @30#. In this method, the system is considered at so
properly chosen temperatureT. At given T, we can probe the
configurations withDU<T while the probability to find con-
figurations with higher energy is exponentially suppress
Our implementation of the Metropolis algorithm looks
follows. We start from a certain configuration$x% j , which
corresponds to some local minimumU j of the chain poten-
tial energy U($x% j ). Then, we take randomly one of th
chain particles and try to move it into one of the neighbor
wells. Next, with the new distribution of particles among t
wells, we search for a new local minimumŨ. A new con-
figuration withU j 115Ũ is accepted if exp@2(Ũ2Uj)/T#>j,
wherej is a random number homogeneously distributed
the interval@0,1#, otherwise we try a new attempt. Notic
that our Metropolis procedure uses particlesjumpsfrom well
to well rather than~small! variations of their coordinates. In
this way, we solve the problem of the Peierls-Nabarro ba
ers @6# and obtain a method with good performance. Phy
cally the Peierls-Nabarro barriers are not important since
are interested in static configurations and not in the transi
rate between different states.

In general, the space of low-energy configurations can
viewed as a set of disconnected islands. Therefore, there
danger that, starting near one island, we can remain in
vicinity forever. To avoid this, we periodically heat/freez
the system. During this process, we perform the above
scribed iterations with chosen temperatureT. In this way, the
system can move from one island to another and visit dif
ent equilibrium configurations.

Since the number of equilibrium configurations is exp
nentially large~see Fig. 1!, it is not possible to visit and
count exactly all of them. However, their number can
counted approximately with sufficiently good accuracy in t
following way. In the lowest excited band, the number
equilibrium configurations is not so large and it can be co
puted exactly. In order to determine the number of state
the next band, we start from a representative sample of c
figurations, which is in fact a small part of their total numb
in one band. Then with the help of Metropolis algorith
described above, we determine the ratio between the num
of configurations inside the first and second band. To do t
we choose the temperature valueT in such a way thatT
;10DU2.DU1, whereDU1,2 are the excitation energies fo
the first and second band counted from the ground st
From the computed ratio, we determine, with sufficien
good accuracy, the total number of configurations in the s
ond band. By iterating this process, we determine the t
number of states in all bands. Moreover, by gradually cha
ing the temperatureT, this procedure can be easily adapted
02622
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higher excitation energies when the bands begin to me
This allows to compute the total number of equilibrium co
figurations in the system, which, forK55 is of the order of
1015.

The energy band spectrum for different values ofK is
shown in Fig. 2. It clearly shows that the number of ban
becomes larger for largerK and, in addition, the lowes
bands approach exponentially the ground state. The exist
of such bands exponentially close to the ground state is
lated to the specific properties of the FK chain in the pinn
phase (K.Kc). This phase is characterized by a phon
gapl @6,28#, due to which any static displacement perturb
tion dxi 0

of particle i 0 ~corresponding to a zero-frequenc
‘‘phonon’’ ! decays exponentially along the chai
dxi}exp(2l•ui2i0u). In fact, l is the Lyapunov exponent o
the map~3! computed on the cantorus. This exponential d
cay of perturbations is responsible for the appearance of
ponentially narrow bands exponentially close to the grou
state.

In order to describe the band positions as a function
system parameters, it is convenient to label the bands by
index k in order of increasing energy. Then the energies
the four lowest bands are well described by a simple emp
cal formula, see Fig. 2,

^DUk&.Cexp~2anksAbk1l2!, ~5!

where^DUk&k is the average energy ofkth ~excited! band,s
is the number of particles in the chain, and the numeri
values of parameters areC'1, a'0.59, b'0.12. It is
rather interesting to note that this simple formula descri
quite well even the region with small values ofl<0.8 (K
<2). At larger K ~and longer chains!, this formula can be
replaced by its even more simple limiting expression

^DUk&.C exp~2anksl!. ~6!

According to Eqs.~5! and ~6!, the spacings between th
bands and the ground state drops exponentially with
length of the chain. In Fig. 3, we present the dependenc

FIG. 2. Band energy spectrum of equilibrium configuratio
versus the chaos parameterK ~upper scale! and the phonon gapl
~lower scale!. The bands are marked by filled areas correspond
to a given K value. The chain is the same, as in Fig. 1:r /s
555/89. The dashed curves are given by the semiempirical exp
sion ~5!.
0-3
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O. V. ZHIROV, G. CASATI, AND D. L. SHEPELYANSKY PHYSICAL REVIEW E65 026220
the band structure on the number of particless in the chain,
for the rational approximantsr /s of the golden meann.

The results presented in Figs. 2 and 3 show that
simple Semiempirical formula~5!, shown by dashed lines
describes the positions of the bands in the interval of
orders of magnitude. It is interesting to note that bands
also ordered in some horizontal levels~marked by dotted
lines!, which are practically independent of the size of t
chain. However, the bandwidth and the number of states
side the band of the same horizontal level grows with
chain sizes. In the following section, we will see how a
these features can be understood on the basis of the sp
properties of the chain structure.

Finally, in Fig. 4 we show that the energy band structu
is characterized by fractal properties. Here the third exc
band for the chain withr /s555/89 andK54 is shown with
subsequently growing resolution~see magnification factor
in the figure caption!. The hierarchical structure of the band
is evident. Such a structure becomes deeper and deeper
the increase of the chain lengths. In the following section,
we show the origin of this structure and develop a sim
model to describe it.

FIG. 3. Dependence of the band energies on the sizes of the
chain forK52 (l50.7859). Dashed lines are given by empiric
formula ~5!. Horizontal dotted lines allow to compare the ba
positions for differents.

FIG. 4. Fractal energy band structure for a chain withK54, s
589, and r 555. Four hierarchical levels~a!, ~b!, ~c!, ~d! with
growing resolution are shown from left to right. The total magn
cation factor fordU scale is: 5000 from level~a! to level ~b!, 2.5
3105 from ~a! to ~c!, and 83108 from ~a! to ~d!. Here,dU5U
2Umin , whereU is the chain energy per particle andUmin gives
the energy of the leftmost band in each panel. The vertical scaleNcs

gives the integrated number of equilibrium configurations coun
from the bottom of the leftmost band in each panel. The vert
magnification is changed in ten times from left to right.
02622
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III. SPATIAL STRUCTURE OF EQUILIBRIUM
CONFIGURATIONS

A. Structure of the ground state

To analyze the origin of the FK chain hierarchical stru
ture, let us start with the study of itsground state. It is very
instructive to analyze regularities of particle positions ins
the wells. In particular, their positions modulo the period
the external field are given by the broadly discussed h
function@7,13,14,28#. Its typical example is presented in Fig
5.

In this plot, the bottoms of potential wells correspond
xi mod 2p50 and 2p. It is easy to see that a considerab
amount of particles is located very close to the bottoms.
render this observation even more significant, the abso
values of deviations from the bottom versus the parti
numberi are plotted in logarithmic scale in Fig. 6.

We see that some of particles are at the well bottoms w
extremely good accuracy. Moreover, the values of small
viations are grouped into three well resolved hierarchical l
els. Separations along the chain for these particles are
ordered in some regular way. The two particles closest to
bottom uDxu'4.7310225 are separated by the distances
and 89~the chain is periodic!. Then, eight particles~includ-
ing the previous two! whose deviation from the bottoms i
uDxu<331026, are separated by distances 13 and 21,
Fig. 6. Finally, 34 particles whose deviation from bottoms
uDxu<1021 are separated by distances 3 and 5. The gre
is K, the closer these particles are to the bottoms, yet t
separations along the chain remain the same. By takin

d
l

FIG. 5. The particle positionxi mod 2p versus the particle
index ~multiplied the average distancea52pr /s) mod 2p. This
hull function is shown forr 589, s5144, andK52.

FIG. 6. Absolute value of the particle deviations from the ne
est potential well bottom versus particle number along the ch
The chain parameters are as in Fig. 5.
0-4
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FRACTAL SPIN GLASS PROPERTIES OF LOW ENERGY . . . PHYSICAL REVIEW E65 026220
chain with longer length (r /s5144/233,233/
377,377/610, . . . ) one canobserve subsequent levels of th
hierarchical structure.

The fact that some particles are very close to the bot
of the wells, is very important. Indeed, let us assume fo
moment that these particles areexactlyat the well bottoms.
This means that tension forces acting from both sides on
such particle, called hereafter a ‘‘glue’’ particle, balance ea
other exactly. Now, let us cut the chain at glue particles i
fragments, or ‘‘bricks.’’ Then we can interchange any tw
fragments of the chain without changing the chain poten
energy. In general, the interchanged bricks are different,
we get in this way a new configuration with the same pot
tial energy. So we may conclude that we can get a comb
torially large number of degenerate configurations in
ground state whose number grows exponentially with
length of the chain.

In fact, our glue particles are lying very close to, butnot
exactlyat, the bottoms of wells. Actually, they are slight
shifted from the bottoms, and, therefore, the tensionsf at the
ends of different bricks arenot the same. As a consequenc
when we exchange two different bricks, each brick’s end w
be slightly distorted. The distortion is proportional to th
difference in boundary tensionsD f of the nearby bricks. This
leads to a local change of the chain energy

DU;DUb1DUg , ~7!

where DUb;(D f )2/2 is due to the distortion of nearb
bricks, andDUg'K(Dx)2/25(D f )2/2K is the change of po-
tential energy due to the shift of the glue particle between
bricks. We note that, since glue particle deviations are ex
nentially small and hierarchically ordered, then the cor
sponding tension differences are also exponentially sm
and ordered. Therefore, the energy change caused by b
permutation depends on the level of the hierarchy ins
which the permutation is done. The lowest level of the hi
archy is built by bricks of two types, which consists of tw
and four particles, respectively. For the sake of brevity, let
denote them as 2 and 4. Then a chain that consists of e
particles can be denoted asg2g4 ~the letterg stands for a
glue particle!. The tension difference at this level of the h
erarchy isD f 5K Dx;1021.

The next level of hierarchy has bricks 125(4g2g4) and
205(4g2g4g2g4). The brackets are introduced for conv
nience, to denote the form of the brick. The tension diff
ence at this level is much smaller:D f 5K Dx;1025. Fi-
nally, the third level of the hierarchy is composed in t
similar way: 545(20g12g20) and 885(20g12g20g12g20),
with the corresponding tension differenceD f 5K Dx
;10224. With increasing particle number, the above d
scribed process proceeds in a similar way. A simple estim
for the tension difference valid at any hierarchical level, a
for anyK, can be written as:D f ;K exp(2lsmin), wheresmin
is the number of particles in the smallest brick at the giv
level of hierarchy andl is the phonon gap that depend
implicitly on K. Notice that a brick with the addition of th
glue particle forms an elementary cell, the size of which
02622
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given by the Fibonacci numbers. For example, (g2)
53,(g4)55,(g2g4)58, etc.

The composition rules for the brick construction at a
hierarchical level can be summarized in following way. Su
pose that a given level of hierarchy is composed by t
bricksA andB, with the length ofA smaller thanB. Then the
bricks A8,B8 of the next level can be built as

A85BgAgB, B85BgAgBgAgBg. ~8!

Let us note that the hierarchical structure of the ground s
has been also considered@18# in the frame of the Ising spin
model to which the FK model can beapproximatelyreduced
@19#. However, we stress that our composition rules dif
from those obtained in Ref.@18#.

In principle, the composition rules just described allow
build the ground state for a chain of any length. It is al
clear that for long enough chains one does not need to se
the global minimum of the potential energy. Instead, it
sufficient to minimize the energy of bricks up to some hie
archical level: any further optimization goes beyond any r
sonable precision. This, however, also means that within
same precision, the ground state configuration described
Aubry is indistinguishable from exponentially manydisor-
deredexcited configurations.

B. Structure of the excited configurations

The picture of the ground state described above also
lows us to understand the structure of excited configuratio
However, in this case, the structure can be a bit less s
evident. To illustrate this, in Fig. 7 we plot particles devi
tions from well bottoms for a configuration from the fir
excited band in the chain shown in Fig. 6. The hull functi
for a typical configuration in this band is shown in Fig. 8~a!.
The hull function for a typical configuration in the secon
third, and fourth excited bands~see the band structure in Fig
3 with s5144) is shown in Fig. 8. Contrary to the monoton
hull function of the ground state, here the hull function b
comes not monotonic and one can see the overlap betw
horizontal plateaus.

From Fig. 7, we see that for the first two levels of hiera
chy, the deviations of glue particles from the well bottom a

FIG. 7. Deviations of the particles from potential well bottom
for an excited configuration taken from the first excited energy b
~see Fig. 3 fors5144). The separation of this band from the grou
state of Fig. 5 isDU1;10220, which implies that the deviations o
glue particles from the well bottoms areDx<10210 ~dashed line!.
0-5
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O. V. ZHIROV, G. CASATI, AND D. L. SHEPELYANSKY PHYSICAL REVIEW E65 026220
practically the same as in the ground state~see Fig. 6!. How-
ever, at the third hierarchical level the deviations of two g
particles~below the dashed line! become considerably large
than the corresponding ones in the ground state~see Fig. 6!.

In order to give an unambiguous definition of bricks,
us remind that we want to split the chain into bricks, who
permutations keep the chain configuration inside the sa
band. According to Eq.~7!, the energy change due to a pe
mutation, produced by the tension differences between
muted bricks, can be estimated asdU;(Dx)2. Therefore,
the deviations of glue particles from the bottom between
bricks is restricted by the conditionDx<(DUk)

1/2, where
DUk is the band energy counted from the ground state. T
ing this condition into account, we can write for the config
ration shown in Fig. 7 its decomposition into bricks
g20g1225g20g(20g12g20g12g20g12g20), where the ex-
pansion of the configuration is shown up to bricks of t
second level, 12 and 20. As mentioned above, by bracket
mark the chain fragments in which permutations should
considered as a single brick, since their destruction resul
the energy change exceeding the bandwidth.

Let us now discuss the properties of the bricks expans
on the example of a periodical chain withr /s589/144 and
K52 ~see Fig. 3!. The first excited bandk51 has the exci-
tation energyDU1'9.16310221 and is composed from on
configurationg20g(20g12g20g12g20g12g20) ~here we do
not count the configurations with a shift along the chain a
reflection!. It is interesting to note that this configuration h
a long commensurate fragment~123/144!.

The second excited bandk52 has energyDU2&10212. It
is composed by three configurations:

g12g20g20g20g12g20g20g12,

12g20g20g20g20g12g20g12,

and

g20g20g20g20g20g12g12g12.

FIG. 8. The hull function for a typical equilibrium configuratio
in the kth excited band forK52 andr /s589/144:~a! k51, ~b! k
52, ~c! k53, ~d! k54. The energy band structure is shown in F
3. Compare with the hull function of the ground state shown in F
5.
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With the configuration from the first band they give all po
sible different combinations of three bricks 12 and fi
bricks 20, which are used in the composition of the grou
state.

The third bandk53 has the excitation energyDU3
&1028. This band has too many configurations to be list
here. Let us, however, mention a new phenomenon that
pears in this band, namely, a brick ‘‘chemical’’ reaction wi
dissociation oflarger elementary bricks of the second hie
archical level,

20120→12128, 20128→12136. ~9!

Note, that a ‘‘free radical’’ 8 coming from dissociatio
20→1218 is easily captured by other long bricks, so th
there is a considerable contribution of long commensur
structures. Near the bottom of the band, a typical configu
tion is g20g12g29g12g20g12g12g20, while at the top, one
hasg53g12g12g12g12g12g12.

The fourth bandk54 has energyDU4&1025. Here we
see a dissociation of the bricks from the second hierarch
level,

12120→4128, 12128→4136, . . . , ~10!

and appearance of elementary bricks 4 from the first hie
chical level. Here are some examples of configurations
this band with bricks 4:

g20g20g28g20g12g12g4g20,

g12g12g12g28g12g20g4g36, . . . .

Further steps in the whole picture are straightforward. N
we outline a simple theory which turns our qualitative obs
vations into quantitative predictions for the band ener
spectrum.

C. An analytical approach

In fact, the construction of bricks is based on the ex
tence of an intrinsic small parameter that allows to develo
simple rapidly converging perturbation theory. Here we o
line its main elements. Let us consider the FK chain withs
particles and fixed ends atx050 and xs52pr . Then the
largest brick containsn5s21 particles. If the glue particles
( i 50,i 5s) are slightly shifted from the well bottomsxa,b
!,1, then the brick energy can be written as

U (n)~xa ,xb!5U0
(n)2 f a

(n)xa1 f b
(n)xb11Ra

(n)
xa

2

2
1Rb

(n)
xb

2

2

2T(n)xaxb , ~11!

where U0
(n)5U (n)(0,0) is the unperturbed energy,f a,b

(n) and
Ra,b

(n) are tensions and rigidities at the left/right ends of t
brick, andT(n) is the static ‘‘transmission’’ factor along th
brick with n particles. If the brick is symmetric thenf a

(n)

5 f b
(n)[ f (n) and Ra

(n)5Rb
(n)[R(n). The key point of the

theory is that in the presence of a nonzero phonon gapl, the
transmission factor T(n) is exponentially small: T(n)

.

0-6
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;exp(2ln). Therefore, it can be very efficiently used as
expansion parameter in the calculations of the energy b
spectrum.

Suppose that at some hierarchical level we have two
ementary bricksA andB, with lengthsnA,nB . According to
our rule of brick composition~8!, we can calculate the en
ergy of the brickA85BgAgBas,

U (A8)~xa ,xb!5min
x1x2

@UB~xa ,x1!1UA~x1 ,x2!1UB~x2 ,xb!#.

~12!

Then, rewriting Eq.~12! in the form ~11!, we obtain the
transformation rules for brick parametersR, f , andT. In the
leading order approximation in the small parameterT, these
rules have the form

RA85RA,

f A85 f B2
TB~ f B2 f A!

RA1RB1K
1•••, ~13!

TA85
TA~TB!2

~RA1RB1K !2
.

In the same way forB8 we obtain

RB85RB,

f B85 f A81~D f !8, ~14!

TB85
TB~TATB!2

~RA1RB1K !4
,

where the tension difference (D f )85 f B82 f A8 between new
bricksA8 andB8 can be expressed through the brick tens
difference (D f )5 f B2 f A as

~D f !852
TA~TB!2

~RA1RB1K !2
~D f !. ~15!

To apply these transformation rules, one needs to kn
the bricks parameters at the lowest hierarchical lev
e.g., for bricks 2 and 4. In this case, the number of partic
is small and the expansion~11! can be performed analyti
cally. For the caseK52 considered above, we ge
T(2)50.24, R(2)50.454, T(4)50.0533, R(4)50.32, and
(D f )(2,4)50.21. By applying the transformation rules
these data, we obtain for the bricks of the next hierarch
level 12 and 20: T(12)58.8631025, T(20)51.796
31027, (D f )(12,20)526.9331026. The exact numerica
simulation gives T(12)59.8231025, T(20)51.799
31027, (D f )(12,20)527.1631026. Starting with exact val-
ues for bricks 12 and 20, the transformation rules give
bricks 54 and 89, results which are correct within four dig
accuracy.

Therefore, this simple approach can quantitatively expl
the splitting of the whole spectra into bands. Surely, the le
ing terms in the small parameterT, as well as the expansio
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~11!, can be insufficient to reproduce with high accuracy,
deep levels of hierarchical band structure. To this end,
should take into account higher order terms.

The results presented in this section show that the num
of equilibrium configurations grows very quickly with th
length of the chain and with the chaos parameterK. These
configurations form bands that are placed exponentially cl
to the ground state. As a result, even in a fixed very sm
vicinity of the ground state, the number of configuratio
grows exponentially with the chain length. This fact is illu
trated in Fig. 9.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we studied the properties of equilibriu
static configurations in the Frenkel-Kontorova chain in t
regime of pinned phase characterized by phonon gap. T
FK model is rather general and finds applications not o
for commensurate-incommensurate transition for ato
placed on a periodic substrate but also in many other field
physics. In addition, near the equilibrium, also the cases w
long range interactions between atoms can be effectively
duced to the FK model with only nearest neighbors inter
tion. We have shown that energies of equilibrium configu
tions form a hierarchical band structure so that exponenti
many configurations become exponentially close to
unique ground state. In this respect, the FK model has cer
similarities with classical spin glass models, which also
characterized by existence of exponentially many quas
generate states@26#. At the same time, in the FK model th
disorder is absent and the quasidegenerate configura
form a fractal sequence of energy bands, which in a se
can be considered a dynamical spin glass. On the bas
extended numerical and analytical investigations, we de
mined the low energy excitation inside the quasidegene
bands that have a form of bricks from which the whole ch
can be composed. On the basis of these results, we
shown that while the ground state is characterized by reg
structure, the low energy excited configurations are dis
dered due to elementary brick displacements. This me
that exponentially close to the ground state, there are di
dered configurations that may have rather different phys
properties compared to the ground state. For example,

FIG. 9. The number of equilibrium configurationsNcs with ex-
citation energy from the ground stateDU<231028 as a function
of the number of particless in the chain forK52. The dashed line
shows the fitted exponential dependenceNcs51.78 exp(0.0554s).
0-7
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disorder should significantly affect the properties of phon
excitations in the chain. The exponential quasidegenerac
low energy configurations should be also important in
case of quantum FK chain when quantum particles can
nel from one configuration to another. These two aspects
related to new interesting physical effects of low energy
citations in many-body systems and require further inve
gations@31#.
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