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Phonon modes in the Frenkel-Kontorova 
hain:exponential lo
alization and the number theory properties of frequen
y bandsO.V. Zhirov∗Budker Institute of Nu
lear Physi
s, 630090 Novosibirsk, RussiaG. Casati†International Center for the Study of Dynami
al Systems, Università degli Studi dell'Insubria andIstituto Nazionale per la Fisi
a della Materia, Unità di Como, Via Valleggio 11, 22100 Como, Italy andIstituto Nazionale di Fisi
a Nu
leare, Sezione di Milano, Via Celoria 16, 20133 Milano, ItalyD.L. Shepelyansky‡Laboratoire de Physique Quantique, UMR 5626 du CNRS,Université Paul Sabatier, 31062 Toulouse, Fran
e(Dated: 10th January 2005)We study numeri
ally phonon modes of the 
lassi
al one-dimensional Frenkel-Kontorova 
hain, inthe regime of pinned phase 
hara
terized by the phonon gap and devil's stair
ase, as well as by alarge number of states (
on�gurational ex
itations), whi
h energy splitting from the ground state isexponentially small. We demonstrate, these states behave like disorder media: their phonon modesare exponentially lo
alized, in 
ontrast to the phonon modes in the ground state, where phonons areprelo
alized only.We demonstrate also, the phonon frequen
y spe
trum of the ground state has an hierar
hi
alstru
ture, a dire
t manifestation of hierar
hi
al spatial stru
ture, found for the ground state of theFK 
hain in our re
ent work.PACS numbers: PACS numbers: 05.45.MtI. INTRODUCTIONThe most trivial disorder originates in media due torandom stati
 impurities (see, e.g. [1℄). However, anotherbut very interesting possibilities are glasses, whi
h have ahuge number of (meta)stable degenerated states. Origi-nally glassy system has a homogeneous Hamiltonian withno intrinsi
 random parameter, and disorder o

urs in itdynami
ally. Re
ently [2℄ we have demonstrated that apopular Frenkel-Kontorovamodel [3℄ presents an exampleof glassy system, whi
h has a lot of stati
 states, known as
on�gurational ex
itations of the 
lassi
al ground state,with energy splitting extremely (exponentially) small. Asit was shown in [4℄, this model has a nontrivial quantumdynami
s, the quantum phase transition: if quantum pa-rameter ex
eeds some 
riti
al value, the "pinned" glassyphase turns into "sliding" phonon gas.The Frenkel-Kontorova model (FK) [3℄ is widely used[5, 6, 7, 8, 9, 10, 11, 12, 13, 14℄ in the solid state physi
sto get insight on generi
 properties of non
ommesuratesystems. Its ground state, whi
h is rather quasiperiodi
al[2, 9, 15℄ than periodi
al, attra
ts also an attention [9,10, 16, 17, 18℄ as some interplay [17℄ between order anddisorder [19℄.This model des
ribes a 
hain of atoms/parti
les inter-
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a
ting with elasti
 for
es, pla
ed in periodi
 potential,whi
h period di�ers from a mean interparti
le distan
e.The ground state (GS) of this model is de�ned as a stati
,equilibrium 
on�guration of the 
hain, that 
orrespondsto the absolute minimum of the 
hain potential energy.The ground state is unique and has some spe
ial orderof parti
les in the 
hain, that was dis
overed by Aubry[9, 15℄ more than twenty years ago. The positions ofatoms in the 
hain are des
ribed by an area preservingmap, whi
h is well known in the �eld of dynami
al 
haosas the Chirikov standard map [20℄. The ratio of the meaninterparti
le distan
e to a period of the external poten-tial in the FK model determines the rotation number ofthe invariant 
urves of the map, while the amplitude ofthe periodi
 potential gives the value of the dimensionlessparameter K. For K < Kc the KAM 
urves are smoothand the spe
trum of longwave phonon ex
itations in the
hain is 
hara
terized by a linear dispersion law startingfrom zero frequen
y. In this regime the 
hain 
an freelyslide along the external �eld (the �sliding� phase). Onthe 
ontrary, for K > Kc the KAM 
urves are destroyedand repla
ed by an invariant Cantor set, whi
h is 
alled
antorus. In this regime the phonon spe
trum has a gap,and the 
hain is pinned (�pinned� phase). Later, on theexample of Ising spin model to whi
h the FK model 
anbe approximately redu
ed [21℄ it has been shown [22℄that the GS has some well de�ned hierar
hi
al stru
ture,whi
h parti
ular detailes are determined by number prop-erties of the ratio of the mean interparti
le distan
e tothe period of the external �eld. Re
ently our numeri
alstudy [2℄ of the original FK model in the pinned phase has
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2shown, that the GS has indeed an hierar
hi
al stru
ture,but in some important detailes di�erent from predi
tedin [22℄.In short, we put our attention to the striking fa
t, thatin the pinned phase of the FK 
hain there are some par-ti
les, whi
h positions exponentially 
lose to bottoms ofwells of the external potential: 
orresponding externalfor
e a
ting to su
h parti
le is extremely 
lose to zero.Obviously, in stati
 equilibrium ea
h of these parti
les
an be 
onsidered as some dummy �glue� that only 
ou-ples two adja
ent parts of the 
hain, whi
h ends has al-most identi
al (exponentially 
lose) tension for
es.Another important observation is that small deviationsof glue parti
les from their well bottoms are groupped intowell de�ned hierar
hi
ally ordered s
ales. Now, if one
ut the 
hain into fragments via glue parti
les, whi
h be-long to level with least deviation from well bottoms, onegets several fragments of two sizes, or two spe
ies of some�bri
ks�[30℄. Then one may repeat the pro
edure, 
utting�bri
ks� via �glue� parti
les that belong to next s
ale ofdeviations and getting two new spe
ies of smaller bri
ks,and so far. At the last step one gets two spe
ies of small-est possible bri
ks with no glue parti
le inside: smallerbri
ks A(0) whi
h 
onsist of 2 parti
les inside a singlewell, and larger bri
k B(0) whi
h 
onsist of 4 parti
les(two pairs in two adja
ent wells). In this way one getsan hierar
hi
ally ordered set of bri
k spe
ies {A(i), B(i)
}with very simple 
omposition rules [2℄:

A(i+1) = B(i)gA(i)gB(i), (1)
B(i+1) = B(i)gA(i)gB(i)gA(i)gB(i), (2)where symbol g denotes of an insertion of glue parti-
le, whi
h �glues� two adja
ent bri
ks. The di�eren
e oftension for
es at boundaries of bri
ks A(i) and B(i) is ex-ponentially small and de
rease rapidly with a number ofthe hierar
y level. In prin
iple, these rules are su�
ientto 
onstru
t a GS for a FK 
hain of any length, if the ro-tation number parameter of the 
hain approximates themean golden value ν = (

√
5 − 1)/2.Besides the GS there exists �
on�gurational ex
itationstates� (CES), presented by stati
 equilibrium 
on�gura-tions 
orresponding to lo
al (rather than absolute) min-ima of the 
hain potential, with energy very 
lose to GS.Within the pi
ture just outlined above CES 
orrespondto di�erent permutations of bri
ks [2℄, therefore the num-ber of them 
an be 
ombinatori
ally huge. At any a

es-sible small temperature their 
ontributions 
an dominateover the 
ontribution of GS.In this paper we address to phonon ex
itations of the
hain, small vibrations around stati
 GS and CES 
on-�gurations of the 
hain. These ex
itations are relevantas for heat transport properties [18, 23℄ of the 
hain, asfor some quantum e�e
ts [24℄, espe
ially in the quasi
las-si
al limit. As in the previous paper, we 
on
entarte onthe 
ase of pinned phase of the 
hain, whi
h 
orrespondsto a nonzero phonon gap. We start with analysis of the

stru
ture of the phonon frequen
y spe
trum in the GS. Itis well known, that this spe
trum is splitted into bands[10, 26℄ but, to our knowledge, up to now there is no
lear explanation for origin of its splitting into parti
ularbands and subbands. We show, that this splitting is adire
t 
onsequen
e of parti
ular spatial stru
ture of the
hain in its GS. We have found, that this stru
ture is alsohierar
hi
ally ordered, with de�nite resemblan
e and dis-tin
tions with respe
t to a spatial stru
ture of underlyingGS.Lo
alisation properties of phonons in in
ommensurateone-dimentional 
hains are intesively studied in re
entworks [17, 18, 23, 25℄, with strong indi
ations [23, 25℄,that phonon modes in the GS of FK 
hain are not lo-
alized, and even at edges of frequen
y bands they arerather prelo
alized, than lo
alized. We study also phononproperties as in GS, as in CES of the 
hain. Our results
on�rm, that in the GS phonon modes are only prelo
al-ized. However, the situation appears to be quite di�erentfor CES. Even for CES, whi
h energy splitting (in natu-ral problem s
ale) ∆U ≤ 10−12 there are phonon modes,whi
h are lo
alized exponentially. Moreover, for CESwith higher splitting ∆U we see, that there are entirebands of exponentially lo
alized phonon modes.II. THE MODEL.The Hamiltonian of the FK model is
H =

s∑

i=1

P 2
i

2
+

(xi − xi−1)
2

2
−K cosxi. (3)The �rst term in the Hamiltonian is a kineti
 energy,where we put masses of parti
les m = 1, the se
ondterm des
ribes interparti
le intera
tion with elasti
ity 
o-e�
ient put to unity, while the third term 
orrespondsto parti
le intera
tion with external periodi
al �eld with
oupling 
onstant K. All s parti
les are distributed over

r period/wells of the external potential, whi
h period,without any loss of generality is taken equal to 2π. Theratio ν = r/s gives [9℄ the rotational number of 
orre-sponding standard map [20℄.We assume periodi
al boundary 
onditions: P0 ≡ Ps,
x0 ≡ xs−L, where L = 2πr is the length of the 
hain. Inour subsequent analysis we take (as some typi
al exampleof FK 
hain) the 
hain with r/s = 377/610 as an approx-imation of the golden mean value ν̄ = (

√
5 − 1)/2, andparameter K = 2 well above the 
riti
al value Kc(ν =

ν̄) = 0.971 . . .[27℄. The te
hnique to obtain GS and CESis des
ribed in our previous work [2℄. Let us stress, thatvalidity of the GS 
an be 
he
ked either by dire
t analy-sis [2℄ of its spatial stru
ture, or proved by monotonousbehavior [15℄ of its hall fun
tion. Note, that the GS isalmost degenerate with enormous number of CES: thereare hundreds of states with ∆U = UECS −UGS ≤ 10−80,while the number of ECS with ∆U ≤ 10−12 ex
eeds 109!



3E�e
tive Hamiltonian for phonon modes 
an be ob-tained by expansion up to se
ond order terms of theoriginal FK 
hain Hamiltonian (3) around a 
hosen stati

on�guration of the 
hain:
Hph =

s∑

i=1

Π2
i

2
+

1

2

s∑

i,k=1

∂U

∂xi∂xk
ψiψk, (4)where ψi = xi − x̄i are small deviations of parti
les fromtheir equilibrium stati
 positions x̄i, and Πi are 
orre-sponding parti
le momenta. The elasti
ity matrix

Rik ≡ ∂2U

∂xi∂xk
= K cos(x̄i)δik − δi,k+1 − δi+1,k. (5)Solving the eigenvalue problem
(
R− ω2I

)
ψ = 0, (6)numeri
ally, we get both the spe
trum of phonon fre-quen
ies and 
orresponding ve
tors of phonon modes.III. PHONON FREQUENCY SPECTRUMIt is well known for a long time [10, 26℄, that frequen
yspe
trum of phonons in the Frenkel-Kontorova 
hain issplitted into several bands. Main features of the spe
-trum for a 
hain in the GS look as very universal: (i)the number of main bands are independent of the pa-rameter K as well as of a length of the 
hain; (ii) it wasalso noti
ed in [17℄ (without any explanation, either) thatboundaries of the bands 
orrespond to Fibona

i num-bers; (iii) repla
ement in interparti
le intera
tions elas-ti
 for
es by the Lenard-Jones potential does not 
hangequalitatively a pattern of splitting phonon spe
trum intoband [17℄.Now we 
an explain these and more features as dire
t
onsequen
e of parti
ular spatial stru
ture [2℄ of the GS,whi
h main relevant detailes are summarized in Intro-du
tion. The key point of our explanation is that theGS 
onsists of large number of almost identi
al elements.For 
larity sake, we 
onsider a parti
ular 
ase of the FK
hain with r/s = 377/610, but all our arguments 
an beeasily generalizied for a 
hain of di�erent size.Applying the pi
ture of CS spatial stru
ture outlinedin Introdu
tion to our parti
ular 
ase, we 
an see, thatour CS 
an be presented as a 
omposition of two bri
ksof 3d level of hierar
y:

610 = (g232g376), (7)with subsequent expansion, in a

ordan
e with 
omposi-tion rules (1),(2), into bri
ks of 2nd level:
232 = (88g54g88), 376 = (88g54g88g54g88), (8)whi
h, in turn, are expanded into bri
ks of 1st level:

54 = (20g12g20), 88 = (20g12g20g12g20), (9)

that, at last, are expanded into basi
 bri
ks of zero level:
12 = (4g2g4), 20 = (4g2g4g2g4). (10)In this way it is easy to 
al
ulate, that the 
hain 
an be
ut into pie
es either as

144 × g + 55 × (2) + 89 × (4), (11)or
34 × g + 13 × (12) + 21 × (20), (12)or

8 × g + 3 × 54 + 5 × 88, (13)or 2×g+(232)+(376), see (7). Mutual stati
 disturban
eof bri
ks is small and de
reases exponentially with a levelof hierar
y, therefore we have at any level of hierar
y asequen
e in some order of two spe
ies of almost identi
alstru
tures (bri
ks).Now let us make some important remark. In our studyin [2℄ of stati
 stru
ture of the 
hain, the glue parti
lesplay a some passive role only, whi
h results in their spe
-i�
ation as some dummy �glue�. However, in dynami
alproblem of motion parti
les in the 
hain, that we nowaddress to, the role of glue parti
les be
omes more im-portant, sin
e they have masses. A
tually, in this 
aseone should 
onsider as repeating stru
tures elementary
ells, whi
h we get if atta
h to ea
h bri
k (e. g. at theleft side) one glue parti
le[31℄.At the basi
 level of hierar
y one have 55 elementary
ells of 3 parti
les and 89 elementary 
ells of 5 parti
les,let them be 
alled as 
ells α(0) = (g2) and β(0) = (g4), re-spe
tively. Ea
h elementary 
ell, being isolated (and, e.g.periodi
ally 
losed) has its own eigenfrequen
ies: threefor a 
ell α(0) and �ve for a 
ell β(0). Then, if these 
ellsin the 
hain be really isolated, then, see Fig.1 we getthree bands ea
h of 55 degenerated states (solid lines)whi
h belongs to 
ells α(0), and �ve bands ea
h of 89degenerated states (dotted lines).Due to 
ells intera
tions all degenerated frequen
iesare really splitted into �nite width bands, see Fig.1.The 
loser inspe
tion of frequen
y spe
trum shows, thatseven largest breaks 
ut the exa
t spe
trum in bands
n = (1, 89), (90, 144), (145, 233), (234, 322), (323, 377),
(378, 467), (468, 523), (524, 610) so the band widths havethe same order 89, 55, 89, 89, 55, 89, 55, 89, exa
tly asthe sequen
e of solid and dotted horizontal lines in Fig.1!Now, let us remind, that the sequen
e of 
ells α(0)and β(0) in our GS is not random but they belong to34 
ells of the next hierar
y level, see (12): 13 
ells
α(1) = (g12) = (g4g2g4) and 21 
ells β(1) = (g20) =
(g4g2g4g2g4). Again, if this 
ells would be de
oupled, we
ould see bands, that 
onsist of 13 and 21 degeneratedstates. Indeed, in the middle part of the Fig.1, where the
entral band is shown with greater resolution, we see asequen
e of bands, that 
ontain 21,13, 21, (21+13), 21,
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Figure 1: Frequen
y spe
trum for FK model in the groundstate. In the left box:the total spe
trum of 
hain, in the mid-dle and right boxes the 
entral band and its 
entral subbandare shown with greater resolution. Solid and dashed horizon-tal lines show eigenfrequen
ies for isolated 
ells α(0) and β(0)respe
tively.13, 21 number of states, whi
h is similar to that we haveat the main level of hierar
y![32℄ However, at higher res-olution (the right box in Fig.1) the spe
trum in 
entralband be
omes stru
tureless.This is not surprising, sin
e the �
ells� we have intro-du
ed are not weakly 
oupled obje
ts with respe
t tophonon modes. In fa
t, what 
ells provides, is that some
hain fragments have �xed periods; these fragments formlo
ally their band stru
ture. If bands of di�erent frag-ments overlap, their levels are 
olle
tivised into one 
om-mon band. The 
entral band is the 
ase, however in this
ase band levels are less sensitive to small variations in-trodu
ed by extra regularities of next levels of hierar
yof spatial 
hain stru
ture.However, a quite new interesting phenomenon o

urs,if one 
onsider band, whi
h belongs to a 
ell β(0) butdoes not overlap with any band of the 
ell α(0). Phononswith frequen
ies inside this band will be damped alongthe 
ells of the kind α(0), these 
ells will play a role ofsome �potential barriers�, whi
h de
ouple 
ells of the kind
β(0) ea
h from other. Our 
hain 
ontains 89 
ells β(0)and 55 
ells α(0), whi
h is like to 89 parti
les separatedby 55 barriers, or distributed among 55 wells. Now wehave got a new e�e
tive Frenkel-Kontorova 
hain, where
ells β(0) play role some parti
les with potential barriers
α(0) among them. For a 
larity sake, let us take moregraphi
al notations for these e�e
tive �barrier� ∧ = α(0),and �parti
le� • = β(0). Then, se
onary bri
ks, whi
ho

ur in this e�e
tive FK 
hain, are Ã = ∧ • •∧ and
B̃ = ∧ • • ∧ • • ∧, and 
orresponding elementary 
ells
an be obtained adding to bri
ks one �glue� parti
le atthe left: α̃ = • ∧ • • ∧, β̃ = • ∧ • • ∧ • •∧, havingagain three and �ve eigenfrequen
ies, respe
tively. Oure�e
tive 
hain has 8 
ells α̃ and 13 
ells β̃. Now, if in thefrequen
y spe
trum of new e�e
tive FK 
hain we take aband, whi
h belongs to the 
ell β̃ but not to the 
ell α̃,

Figure 2: The same, as in Fig.1, but here a fourth band and itsfourth subband are shown with greater resolution. In right �g-ure box open and 
losed 
ir
les 
orrespond to phonon modesof the 
ells ˜̃α and ˜̃β , respe
tively.it must 
ontain 13 states.We 
an repeat the whole pro
edure ones more; thenwe 
ome to next level e�e
tive Frenkel-Kontorova 
hainwith 13 e�e
tive parti
les β̃ distributed among 8 poten-tial barriers α̃, and to next generation 
ells, one of thekind ˜̃α and two of the kind ˜̃β. Numeri
al data presentedin Fig.2 
on�rm our pi
ture in all the detailes. Here we
onsider the fourth band of spe
tra, whi
h is well resolvedfrom other bands, see, the left box of Fig.2. It 
ontains89 states, the number of 
ells β(0). In the middle boxwe take again the fourth band whi
h in turn 
ontains 13states, the number of 
ells β̃. At last, in the right box weshow by open 
ir
les 3 states of the 
ell ˜̃α and by 
losedones 2 × 5 states of two 
ells ˜̃β.Note, that this new kind of hierar
y is quite di�erentfrom that we found in [2℄ with respe
t to spatial stru
-ture, sin
e the transformation rules between levels of hi-erar
y are more 
ompli
ated.In 
on
lusion of this se
tion it should be stressed, thatall the universal features of the global band stru
turementioned at the beginning are goverened by nearest or-der in the 
hain. In 
ontrast, the �ne stru
ture depends
ru
ially on the far order.. The latter is destroyed in theCES, therefore in CES the �ne stru
ture is washed out,and frequen
y spe
tra be
ome smoother, see Fig.3. Inparti
ular, we see also in Fig.3 how two lowest bands aremerged into 
ommon one.IV. PHONON LOCALIZATIONThe ordering of bri
ks, whi
h persists in the GS, isgradually destroyed with 
on�gurational ex
itation of the
hain. The lowest ex
itations are equivalent destru
tionof largest bri
ks due to permutations of bri
ks of pre
eed-ing level of hierar
y: the smaller bri
ks are destroyed, thehigher is the ex
itation energy [2℄. The number of almost
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Figure 3: Comparison of the ground state (left box) and ex-
ited state (rigth box) frequen
y spe
tra.degenerate CES, originating from di�erent bri
ks permu-tation is 
ombunatori
ally large, therefore some arbitrary
hosen CES has rather random sequen
e of bri
ks, and issimilar to disordered media, e.g. spin glass system.From the very beginning it is 
lear, that perfe
t ran-domization of bri
ks order may result in Anderson lo
al-ization of phonon modes. A new interesting point is, thatFK model does not require any external disorder: ran-domization of bri
ks order in FK 
hain o

urs dynami-
ally. Another interesting feature, whi
h 
hara
terizes adegree of 
haotization of bri
ks in CES, is that all theexamples of exponential lo
alization are obtained fromsingle arbitrary taken CES, without averaging over anyen
emble of nearest CES.A typi
al quantity used traditionally in studies of lo-
alization phenomena (see, in parti
ular [17, 23℄) is theparti
ipation ratio (PR), de�ned as
R =

1

s

(
s∑

i=1

ψ4
i

)−1

, (14)where ψ is a normalized (∑i ψ
2
i = 1) ve
tor of the phononeigenstate. Its value 
orrespond to a 
hain fra
tion o
-
upied by the lo
alized state, but whether the state islo
alized exponentially 
an be un
lear. Typi
al featureof exponentially lo
alized state is that 
omponents out-side the 
enter of lo
alization are exponentially small.Meanwhile, this 
omponents do not 
ontribute in PR atall.To our opinion a better 
hara
teristi
s to indi
ate anexponential lo
alization 
an be the generalized mean ge-ometri
al value (MGV), de�ned as

W = s · (
s∏

i=1

ψ2)1/s = s exp(
1

s

s∑

i=1

ln(ψ2)), (15)where, a normalization fa
tor s provides that for ex-tended states W be order of unity. The reason in favorto W is that it essentially better probes the exponen-tially small 
omponents (tails) of the phonon eigenstate.

Figure 4: Comparison of PR (upper plot) and MGV (bottomplot) versus phonon mode number n for the ground state ofthe 
hain.In parti
ular, for a typi
al exponentially lo
alized state
|ψi| ∼ ℓ−1/2 exp(−|i − i0|/ℓ), ℓ is a lo
alization length,and value of the MGV: W ∼ ℓ−1 exp(−s/2ℓ), i.e. be-
omes exponentially small. Moreover, one 
an get fromthe value of MGV an estimate of the lo
alization lengthas

ℓ = −s/2 ln

(
Wℓ

s

)
≃ −s/2 ln (−W/2 lnW ) . (16)Note an important di�eren
e between the estimate of thelo
alization length as inverse parti
ipation ratio and ourestimate (16). The former estimates a size of the domainwhere the eigenstate is lo
alized, and is sensitive to par-ti
ular short range dynami
s for formation of the givenstate. On the 
ontrary, the latter is related to the rate ofthe exponential fallo� at the tails of the eigenstates, and
hara
terizes properties of the disordered media.Now let us turn to lo
alization properties of phonons inthe FK 
hain. As in the previous se
tion, we 
on
entrateon the numeri
al study of the 
hain with the rotationnumber ν = r/s = 377/610, and parameter K = 2. InFig.4 we present our 
omparison of PR and MGV forGS. One 
an see, that both quantities R and W lookvery similar. Note, that W for GS is well distin
t fromzero (dotted line). This means, that all phonon statesare not exponentially lo
alized; the smallness of R and

W for some phonon modes means only that this modesare prelo
alized only, whi
h agree with earlier studies [23,25℄.In order to see, how the exponential lo
alization man-ifest itself in PR and MGV, let us address to CES. Westart with a typi
al CES, whi
h is still in energy very 
loseto GS: ∆U = UCES −UGS = 10−12. Despite to, that en-ergy splitting is small, this CES belong to 5th band inthe energy stru
ture of CES [2℄, and it is one of 109 CESswith ∆U . 10−12. In Fig.5 we plot R andW for the sameCES. It is seen that the behaviour of PR remains in main
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Figure 5: Comparison of PR (upper plot) and MGV (bottomplot) versus phonon mode number n for a typi
al CES with
∆U = 10

−12.

Figure 6: Phonon eigenve
tor 
omponent distribution versusthe 
omponent number i. Examples of non-lo
alized and lo-
alized modes.details the same, while in the MGV plot there are points,where the 
urve tou
hes a zero line. This means, that Wat these points is exponentially small, i.e. there is anexponential lo
alization of these modes. Note, that thePR plot at the same points has no 
lear indi
ations thatthese modes are lo
alized exponentially.Some typi
al examples of nonlo
alized mode (n = 305)and lo
alized one (n = 378) for this CES is presented inFig.6. We see, that the latter is perfe
tly lo
alized expo-nentially, with a lo
alization length ℓ ∼ 12, whi
h 
har-a
terizes a 
orrelation length of disorder. For 
omparisonwe show also the same mode in the GS in a �prelo
alized�state.In fa
t, CES with ∆U = 10−12 
orresponds an earlylo
alization of phonon modes: only small fra
tion of theis exponentially lo
alized, as seen from Fig.5. To getinsight, what modes are lo
alized at the �rst turn, inFig.7 we plot MGV as a fun
tion of phonon frequen
y.

Figure 7: MGV versus the frequen
y ω of the phonon. It isseen, that phonon are exponentially lo
alized ot the edges offerquen
y bands.

Figure 8: The MGV versus phonon mode number n in twoCES.We see, that lo
alized modes are lo
ated at edges of thefrequen
y spe
trum bands.Now, how this pi
ture lo
alization looks for CES withhigher splitting from GS? We expe
t [2℄, that at the split-ting ∆U = 10−12 the largest robust elementary 
ells[33℄are 13 and 21, that take part in mutual permutationsonly, while larger 
ells are destroyed. In the range ofsplitting ∆U = 10−9÷10−8 the 
ell 21 
an disso
iate [2℄,that in
rease a number of smaller 
ells 13 and de
reasea 
orelation length of the disorder. Next, at splitting
∆U = 10−5 ÷ 10−4 the 
ell 13 
an disso
iate too, andpermutations of 
ells 5 
ome into play, that de
rease a
orrelation length of the disorder even more. In appar-ent agreement with our expe
tations de
rease of the dis-order s
ale results in a total exponential lo
alization ofsubstantial fra
tion of phonon modes, espe
ially in highfrequen
y regoin, as seen from Fig.8.In Fig.9 we plot fo the same two CES our estimatefor lo
alization length (16). Two dotted lines show lev-els ℓ = 5 and 13, whi
h 
orrespond to expe
ted sizes of
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Figure 9: Lo
alization length ℓ versus phonon mode number
n. Horizontal dotted lines 
orrespond to levels ℓ = 5 and 13.

Figure 10: Pro�les of phonon eigenstates: eigenve
tor 
om-ponent distribution versus 
omponent number. The upper
orresponds to CS, while next two present CES with splittingfrom GS ∆U = 6 · 10
−8 and 2.4 · 10

−4 respe
tively.largest robust elementary 
ells, whi
h survive at energysplitting ∆U ∼ 10−4 and 10−8, respe
tively. We see, thatminimal lo
alization length follows the size of maximalrobust stru
ture in the 
hain.Sin
e the 
hain is not homogeneous, lo
alization prop-erties are not homogeneous too. As seen from Figs. 8,9,the lo
alization is maximal at the high frequen
y part ofphonon spe
trum, while low frequen
y part seems non-lo
alized. In fa
t, at least longwave modes of phonons

show a 
lear tenden
y to be lo
alized too, see Fig.10.V. DISCUSSION AND CONCLUSIONS.In this paper we have studied properties of phononmodes in the Frenkel-Kontorova 
hain, taken in theregime of pinned phase. Spatial "bri
k" stru
ture of theground state of the 
hain found in [2℄, appears to be veryuseful for understanding the �ne stru
ture of the 
hainphonon spe
trum. A
tually, similar analysis 
an also beperformed for ele
troni
 spe
trum, studied in re
ent work[29℄.However, it is obvious, that in a real physi
al s
ale theground state is highly degenerated with a huge number ofthe stati
 
on�gurational ex
itations states (CES) of the
hain. A
tually this means that the true ground state ofthe 
hain is pra
ti
ally ina

essible. CES has propertiesquite di�erent from that of the ground state: their spatialstru
ture is rather 
haoti
 [2℄. As a result, they 
an 
ausethe Anderson-like (exponential) lo
alization of phononmodes similar to that seen in disordered media. Thismeans, that results of previous studies of phonon[17, 18,23, 25℄ and ele
tron properties[29℄ should be revized orextended to more realisti
 states of the 
hain.Con�gurational ex
itation states (CES) 
an provide apossibility to study a gradual transition from the orderto disorder. It is important, that the number of CESgrows with energy splitting from the GS very fast. Evenat very small splitting the number of ECS is huge. Itis 
urious that ea
h parti
ular CES has intrinsi
 
haos,whi
h reminds the situation in 
lassi
al spin glass [28℄,but in 
ontrast to the latter, the 
haos in ECS arisesdynami
ally, without any external noise.The quantization of FK model in small ~ limit is inessen
e the quantization of its phonon modes [24℄. There-fore lo
alization of phonon modes means lo
alization ofquantum states. Note also, that phonon quantizationproblem is very 
lose to ele
tron quantization problem[29℄, where transition from lo
alization to delo
alizedstate is interesting as a insulator-metal transition .This work was supported in part by EC RTN net-work 
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