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We study numerically phonon modes of the classical one-dimensional Frenkel-Kontorova chain, in
the regime of pinned phase characterized by the phonon gap and devil’s staircase, as well as by a
large number of states (configurational excitations), which energy splitting from the ground state is
exponentially small. We demonstrate, these states behave like disorder media: their phonon modes
are ezxponentially localized, in contrast to the phonon modes in the ground state, where phonons are

prelocalized only.

We demonstrate also, the phonon frequency spectrum of the ground state has an hierarchical
structure, a direct manifestation of hierarchical spatial structure, found for the ground state of the

FK chain in our recent work.

PACS numbers: PACS numbers: 05.45.Mt
I. INTRODUCTION

The most trivial disorder originates in media due to
random static impurities (see, e.g. [1]). However, another
but very interesting possibilities are glasses, which have a
huge number of (meta)stable degenerated states. Origi-
nally glassy system has a homogeneous Hamiltonian with
no intrinsic random parameter, and disorder occurs in it
dynamically. Recently [ﬁ] we have demonstrated that a
popular Frenkel-Kontorova model [B] presents an example
of glassy system, which has a lot of static states, known as
configurational excitations of the classical ground state,
with energy splitting extremely (exponentially) small. As
it was shown in M], this model has a nontrivial quantum
dynamics, the quantum phase transition: if quantum pa-
rameter exceeds some critical value, the "pinned" glassy
phase turns into "sliding" phonon gas.

The Frenkel-Kontorova model (FK) [d] is widely used
|5, 16, @, 8, d, id, i, (19, (13, 4] in the solid state physics
to get insight on generic properties of noncommesurate
systems. Its ground state, which is rather quasiperiodical
% i, Elﬁthan perlodlcal attracts also an attention [d,

E] as some interplay [17] between order and
dlsorder

This model describes a chain of atoms/particles inter-
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acting with elastic forces, placed in periodic potential,
which period differs from a mean interparticle distance.
The ground state (GS) of this model is defined as a static,
equilibrium configuration of the chain, that corresponds
to the absolute minimum of the chain potential energy.
The ground state is unique and has some special order
of particles in the chain, that was discovered by Aubry
[E, E] more than twenty years ago. The positions of
atoms in the chain are described by an area preserving
map, which is well known in the field of dynamical chaos
as the Chirikov standard map [20]. The ratio of the mean
interparticle distance to a period of the external poten-
tial in the FK model determines the rotation number of
the invariant curves of the map, while the amplitude of
the periodic potential gives the value of the dimensionless
parameter K. For K < K. the KAM curves are smooth
and the spectrum of longwave phonon excitations in the
chain is characterized by a linear dispersion law starting
from zero frequency. In this regime the chain can freely
slide along the external field (the “sliding” phase). On
the contrary, for K > K. the KAM curves are destroyed
and replaced by an invariant Cantor set, which is called
cantorus. In this regime the phonon spectrum has a gap,
and the chain is pinned (“pinned” phase). Later, on the
example of Ising spin model to which the FK model can
be approximately reduced [21] it has been shown [2]
that the GS has some well defined hierarchical structure,
which particular detailes are determined by number prop-
erties of the ratio of the mean interparticle distance to
the period of the external field. Recently our numerical
study [ﬁ] of the original FK model in the pinned phase has
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shown, that the GS has indeed an hierarchical structure,
but in some important detailes different from predicted
in [22].

In short, we put our attention to the striking fact, that
in the pinned phase of the FK chain there are some par-
ticles, which positions exponentially close to bottoms of
wells of the external potential: corresponding external
force acting to such particle is extremely close to zero.
Obviously, in static equilibrium each of these particles
can be considered as some dummy “glue” that only cou-
ples two adjacent parts of the chain, which ends has al-
most identical (exponentially close) tension forces.

Another important observation is that small deviations
of glue particles from their well bottoms are groupped into
well defined hierarchically ordered scales. Now, if one
cut the chain into fragments via glue particles, which be-
long to level with least deviation from well bottoms, one
gets several fragments of two sizes, or two species of some
“bricks”[30]. Then one may repeat the procedure, cutting
“bricks” via “glue” particles that belong to next scale of
deviations and getting two new species of smaller bricks,
and so far. At the last step one gets two species of small-
est possible bricks with no glue particle inside: smaller
bricks A(®) which consist of 2 particles inside a single
well, and larger brick B(®) which consist of 4 particles
(two pairs in two adjacent wells). In this way one gets
an hierarchically ordered set of brick species { A®), B()}
with very simple composition rules |2]:

A+
B+

— BgAWgR), (1)
— BDgADgB1gA®D gB6) 2)

where symbol g denotes of an insertion of glue parti-
cle, which “glues” two adjacent bricks. The difference of
tension forces at boundaries of bricks A® and B® is ex-
ponentially small and decrease rapidly with a number of
the hierarcy level. In principle, these rules are sufficient
to construct a GS for a FK chain of any length, if the ro-
tation number parameter of the chain approximates the
mean golden value v = (v/5 — 1)/2.

Besides the GS there exists “configurational excitation
states” (CES), presented by static equilibrium configura-
tions corresponding to local (rather than absolute) min-
ima of the chain potential, with energy very close to GS.
Within the picture just outlined above CES correspond
to different permutations of bricks [2], therefore the num-
ber of them can be combinatorically huge. At any acces-
sible small temperature their contributions can dominate
over the contribution of GS.

In this paper we address to phonon excitations of the
chain, small vibrations around static GS and CES con-
figurations of the chain. These excitations are relevant
as for heat transport properties |18, 23] of the chain, as
for some quantum effects [24], especially in the quasiclas-
sical limit. As in the previous paper, we concentarte on
the case of pinned phase of the chain, which corresponds
to a nonzero phonon gap. We start with analysis of the

structure of the phonon frequency spectrum in the GS. It
is well known, that this spectrum is splitted into bands
[1d, 26] but, to our knowledge, up to now there is no
clear explanation for origin of its splitting into particular
bands and subbands. We show, that this splitting is a
direct consequence of particular spatial structure of the
chain in its GS. We have found, that this structure is also
hierarchically ordered, with definite resemblance and dis-
tinctions with respect to a spatial structure of underlying
GS.

Localisation properties of phonons in incommensurate
one-dimentional chains are intesively studied in recent
works |14, [18, 23, 27], with strong indications [23, 121],
that phonon modes in the GS of FK chain are not lo-
calized, and even at edges of frequency bands they are
rather prelocalized, than localized. We study also phonon
properties as in GS, as in CES of the chain. Our results
confirm, that in the GS phonon modes are only prelocal-
ized. However, the situation appears to be quite different
for CES. Even for CES, which energy splitting (in natu-
ral problem scale) AU < 10~!2 there are phonon modes,
which are localized exponentially. Moreover, for CES
with higher splitting AU we see, that there are entire
bands of exponentially localized phonon modes.

II. THE MODEL.

The Hamiltonian of the FK model is

~ P2 (i — i)
H=Y "L B Keosa (3)
=1

The first term in the Hamiltonian is a kinetic energy,
where we put masses of particles m = 1, the second
term describes interparticle interaction with elasticity co-
efficient put to unity, while the third term corresponds
to particle interaction with external periodical field with
coupling constant K. All s particles are distributed over
r period/wells of the external potential, which period,
without any loss of generality is taken equal to 2w. The
ratio v = r/s gives 9] the rotational number of corre-
sponding standard map [20].

We assume periodical boundary conditions: Py = Ps,
xog = x5 — L, where L = 277 is the length of the chain. In
our subsequent analysis we take (as some typical example
of FK chain) the chain with r/s = 377/610 as an approx-
imation of the golden mean value 7 = (/5 — 1)/2, and
parameter K = 2 well above the critical value K.(v =
v) =0.971...]24]. The technique to obtain GS and CES
is described in our previous work [2]. Let us stress, that
validity of the GS can be checked either by direct analy-
sis [2] of its spatial structure, or proved by monotonous
behavior [1H] of its hall function. Note, that the GS is
almost degenerate with enormous number of CES: there
are hundreds of states with AU = Ugcs — Ugg < 10730,
while the number of ECS with AU < 10712 exceeds 10°!



Effective Hamiltonian for phonon modes can be ob-
tained by expansion up to second order terms of the
original FK chain Hamiltonian @) around a chosen static
configuration of the chain:

S S
m 1 ou
HPM = — + = ——— Yy, 4
. 2 2 Z (%ci(?:bszwk (4)
i=1 i,k=1
where ; = x; — T; are small deviations of particles from
their equilibrium static positions z;, and II; are corre-
sponding particle momenta. The elasticity matrix

WU
Fa, = 0x;0xy

= KCOS(fi)(sik — 5i,k+1 — 5i+1,k- (5)

Solving the eigenvalue problem
(R—w’I)y =0, (6)

numerically, we get both the spectrum of phonon fre-
quencies and corresponding vectors of phonon modes.

III. PHONON FREQUENCY SPECTRUM

It is well known for a long time [10, 26], that frequency
spectrum of phonons in the Frenkel-Kontorova chain is
splitted into several bands. Main features of the spec-
trum for a chain in the GS look as very universal: (i)
the number of main bands are independent of the pa-
rameter K as well as of a length of the chain; (ii) it was
also noticed in [[17] (without any explanation, either) that
boundaries of the bands correspond to Fibonacci num-
bers; (iii) replacement in interparticle interactions elas-
tic forces by the Lenard-Jones potential does not change
qualitatively a pattern of splitting phonon spectrum into
band [17].

Now we can explain these and more features as direct
consequence of particular spatial structure [2] of the GS,
which main relevant detailes are summarized in Intro-
duction. The key point of our explanation is that the
GS consists of large number of almost identical elements.
For clarity sake, we consider a particular case of the FK
chain with r/s = 377/610, but all our arguments can be
easily generalizied for a chain of different size.

Applying the picture of CS spatial structure outlined
in Introduction to our particular case, we can see, that
our CS can be presented as a composition of two bricks
of 3d level of hierarcy:

610 = (g232¢376), (7)

with subsequent expansion, in accordance with composi-
tion rules (@), ), into bricks of 2nd level:

232 = (88¢54¢88), 376 = (88¢54g88¢54¢88),  (8)
which, in turn, are expanded into bricks of 1st level:

54 = (20912920), 88 = (20912¢2091220),  (9)

that, at last, are expanded into basic bricks of zero level:

12 = (4g92¢4), 20 = (492g4g2g4). (10)

In this way it is easy to calculate, that the chain can be
cut, into pieces either as

144 x g+ 55 x (2) + 89 x (4), (11)

or
34 x g 413 x (12) + 21 x (20), (12)

or
8X g+3x54+5 x 88, (13)

or 2x g+(232)+(376), see [@). Mutual static disturbance
of bricks is small and decreases exponentially with a level
of hierarcy, therefore we have at any level of hierarcy a
sequence in some order of two species of almost identical
structures (bricks).

Now let us make some important remark. In our study
in 2] of static structure of the chain, the glue particles
play a some passive role only, which results in their spec-
ification as some dummy “glue”. However, in dynamical
problem of motion particles in the chain, that we now
address to, the role of glue particles becomes more im-
portant, since they have masses. Actually, in this case
one should consider as repeating structures elementary
cells, which we get if attach to each brick (e. g. at the
left side) one glue particle|31]).

At the basic level of hierarcy one have 55 elementary
cells of 3 particles and 89 elementary cells of 5 particles,
let them be called as cells al?) = (¢2) and 39 = (g4), re-
spectively. Each elementary cell, being isolated (and, e.g.
periodically closed) has its own eigenfrequencies: three
for a cell (@ and five for a cell 5(0). Then, if these cells
in the chain be really isolated, then, see Figlll we get
three bands each of 55 degenerated states (solid lines)
which belongs to cells a(?), and five bands each of 89
degenerated states (dotted lines).

Due to cells interactions all degenerated frequencies
are really splitted into finite width bands, see Figlll
The closer inspection of frequency spectrum shows, that
seven largest breaks cut the exact spectrum in bands
n = (1,89), (90,144), (145,233), (234, 322), (323,377),
(378,467), (468, 523), (524, 610) so the band widths have
the same order 89, 55, 89, 89, 55, 89, 55, 89, exactly as
the sequence of solid and dotted horizontal lines in FigIl

Now, let us remind, that the sequence of cells o(?)
and 3 in our GS is not random but they belong to
34 cells of the next hierarcy level, see ([[&): 13 cells
al) = (g12) = (g4g2g4) and 21 cells V) = (¢20) =
(9492g4g2g4). Again, if this cells would be decoupled, we
could see bands, that consist of 13 and 21 degenerated
states. Indeed, in the middle part of the Figlll where the
central band is shown with greater resolution, we see a
sequence of bands, that contain 21,13, 21, (21+13), 21,
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Figure 1: Frequency spectrum for FK model in the ground
state. In the left box:the total spectrum of chain, in the mid-
dle and right boxes the central band and its central subband
are shown with greater resolution. Solid and dashed horizon-
tal lines show eigenfrequencies for isolated cells a(® and 3(®)
respectively.

13, 21 number of states, which is similar to that we have
at the main level of hierarcy![32] However, at higher res-
olution (the right box in Figlll) the spectrum in central
band becomes structureless.

This is not surprising, since the “cells” we have intro-
duced are not weakly coupled objects with respect to
phonon modes. In fact, what cells provides, is that some
chain fragments have fixed periods; these fragments form
locally their band structure. If bands of different frag-
ments overlap, their levels are collectivised into one com-
mon band. The central band is the case, however in this
case band levels are less sensitive to small variations in-
troduced by extra regularities of next levels of hierarcy
of spatial chain structure.

However, a quite new interesting phenomenon occurs,
if one consider band, which belongs to a cell 5O but
does not overlap with any band of the cell a(?). Phonons
with frequencies inside this band will be damped along
the cells of the kind o(?), these cells will play a role of
some “potential barriers”, which decouple cells of the kind
B each from other. Our chain contains 89 cells 3(©)
and 55 cells a9, which is like to 89 particles separated
by 55 barriers, or distributed among 55 wells. Now we
have got a new effective Frenkel-Kontorova chain, where
cells 39 play role some particles with potential barriers
a® among them. For a clarity sake, let us take more
graphical notations for these effective “barrier” A = (0,
and “particle” ¢ = 5. Then, seconary bricks, which
occur in this effective FK chain, are A = A e oA and
B = ANee Aee A and corresponding elementary cells
can be obtained adding to bricks one “glue” particle at
the left: @ = e A oo A, Bz e ANee Aee/ having
again three and five eigenfrequencies, respectively. Our
effective chain has 8 cells & and 13 cells 5. Now, if in the
frequency spectrum of new effective FK chain we take a
band, which belongs to the cell 8 but not to the cell a,
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Figure 2: The same, as in Figlll but here a fourth band and its
fourth subband are shown with greater resolution. In right fig-
ure box open and closed circles correspond to phonon modes

of the cells & and E , respectively.

it must contain 13 states.

We can repeat the whole procedure ones more; then
we come to next level effective Frenkel-Kontorova chain
with 13 effective particles 3 distributed among 8 poten-
tial barriers &, and to next generation cells, one of the

kind & and two of the kind B Numerical data presented
in Figl confirm our picture in all the detailes. Here we
consider the fourth band of spectra, which is well resolved
from other bands, see, the left box of Figll It contains
89 states, the number of cells (). In the middle box
we take again the fourth band which in turn contains 13
states, the number of cells 5. At last, in the right box we
show by open circles 3 states of the cell a and by closed

ones 2 X 5 states of two cells (.

Note, that this new kind of hierarcy is quite different
from that we found in [2] with respect to spatial struc-
ture, since the transformation rules between levels of hi-
erarcy are more complicated.

In conclusion of this section it should be stressed, that
all the universal features of the global band structure
mentioned at the beginning are goverened by nearest or-
der in the chain. In contrast, the fine structure depends
crucially on the far order.. The latter is destroyed in the
CES, therefore in CES the fine structure is washed out,
and frequency spectra become smoother, see FigBl In
particular, we see also in Figl8 how two lowest bands are
merged into common one.

IV. PHONON LOCALIZATION

The ordering of bricks, which persists in the GS, is
gradually destroyed with configurational excitation of the
chain. The lowest excitations are equivalent destruction
of largest bricks due to permutations of bricks of preceed-
ing level of hierarcy: the smaller bricks are destroyed, the
higher is the excitation energy [2]. The number of almost
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Figure 3: Comparison of the ground state (left box) and ex-
cited state (rigth box) frequency spectra.

degenerate CES, originating from different bricks permu-
tation is combunatorically large, therefore some arbitrary
chosen CES has rather random sequence of bricks, and is
similar to disordered media, e.g. spin glass system.

From the very beginning it is clear, that perfect ran-
domization of bricks order may result in Anderson local-
ization of phonon modes. A new interesting point is, that
FK model does not require any external disorder: ran-
domization of bricks order in FK chain occurs dynami-
cally. Another interesting feature, which characterizes a
degree of chaotization of bricks in CES, is that all the
examples of exponential localization are obtained from
single arbitrary taken CES, without averaging over any
encemble of nearest CES.

A typical quantity used traditionally in studies of lo-
calization phenomena (see, in particular [17, 23]) is the
participation ratio (PR), defined as

R=- <Z w?) , (14)
=1

where 1 is a normalized (), 17 = 1) vector of the phonon
eigenstate. Its value correspond to a chain fraction oc-
cupied by the localized state, but whether the state is
localized exponentially can be unclear. Typical feature
of exponentially localized state is that components out-
side the center of localization are exponentially small.
Meanwhile, this components do not contribute in PR at
all.

To our opinion a better characteristics to indicate an
exponential localization can be the generalized mean ge-
ometrical value (MGV), defined as

3

w=s ([[v2)" = sep(c Sn@w?),  (13)
i=1 =1

where, a normalization factor s provides that for ex-
tended states W be order of unity. The reason in favor
to W is that it essentially better probes the exponen-
tially small components (tails) of the phonon eigenstate.
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Figure 4: Comparison of PR (upper plot) and MGV (bottom
plot) versus phonon mode number n for the ground state of
the chain.

In particular, for a typical exponentially localized state
[9i| ~ €712 exp(—|i — ig|/F), ¢ is a localization length,
and value of the MGV: W ~ (~lexp(—s/2(), i.e. be-
comes exponentially small. Moreover, one can get from
the value of MGV an estimate of the localization length
as

{=—-s/2In <WT€> ~ —s/2In(-W/2InW).  (16)

Note an important difference between the estimate of the
localization length as inverse participation ratio and our
estimate ([[Bl). The former estimates a size of the domain
where the eigenstate is localized, and is sensitive to par-
ticular short range dynamics for formation of the given
state. On the contrary, the latter is related to the rate of
the exponential falloff at the tails of the eigenstates, and
characterizes properties of the disordered media.

Now let us turn to localization properties of phonons in
the FK chain. As in the previous section, we concentrate
on the numerical study of the chain with the rotation
number v = r/s = 377/610, and parameter K = 2. In
Figll we present our comparison of PR and MGV for
GS. One can see, that both quantities R and W look
very similar. Note, that W for GS is well distinct from
zero (dotted line). This means, that all phonon states
are not exponentially localized; the smallness of R and
W for some phonon modes means only that this modes
are prelocalized only, which agree with earlier studies [23,
21).

In order to see, how the exponential localization man-
ifest itself in PR and MGV, let us address to CES. We
start with a typical CES, which is still in energy very close
to GS: AU = Ucgs — Ugg = 10712, Despite to, that en-
ergy splitting is small, this CES belong to 5th band in
the energy structure of CES |2], and it is one of 10° CESs
with AU < 107 '2. In FigBwe plot R and W for the same
CES. It is seen that the behaviour of PR remains in main
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Figure 5: Comparison of PR (upper plot) and MGV (bottom
plot) versus phonon mode number n for a typical CES with
AU =10""2.
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Figure 6: Phonon eigenvector component distribution versus

the component number 7. Examples of non-localized and lo-
calized modes.

details the same, while in the MGV plot there are points,
where the curve touches a zero line. This means, that W
at these points is exponentially small, i.e. there is an
exponential localization of these modes. Note, that the
PR plot at the same points has no clear indications that
these modes are localized exponentially.

Some typical examples of nonlocalized mode (n = 305)
and localized one (n = 378) for this CES is presented in
Figlll We see, that the latter is perfectly localized expo-
nentially, with a localization length ¢ ~ 12, which char-
acterizes a correlation length of disorder. For comparison
we show also the same mode in the GS in a “prelocalized”
state.

In fact, CES with AU = 10~'2 corresponds an early
localization of phonon modes: only small fraction of the
is exponentially localized, as seen from Fighl To get
insight, what modes are localized at the first turn, in
Figld we plot MGV as a function of phonon frequency.
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Figure 7: MGV versus the frequency w of the phonon. It is
seen, that phonon are exponentially localized ot the edges of
ferquency bands.
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Figure 8: The MGV versus phonon mode number n in two
CES.

We see, that localized modes are located at edges of the
frequency spectrum bands.

Now, how this picture localization looks for CES with
higher splitting from GS? We expect 2], that at the split-
ting AU = 1072 the largest robust elementary cells|33]
are 13 and 21, that take part in mutual permutations
only, while larger cells are destroyed. In the range of
splitting AU = 1072+ 1078 the cell 21 can dissociate [2],
that increase a number of smaller cells 13 and decrease
a corelation length of the disorder. Next, at splitting
AU = 107° + 10~ the cell 13 can dissociate too, and
permutations of cells 5 come into play, that decrease a
correlation length of the disorder even more. In appar-
ent agreement with our expectations decrease of the dis-
order scale results in a total exponential localization of
substantial fraction of phonon modes, especially in high
frequency regoin, as seen from FiglR

In Fighl we plot fo the same two CES our estimate
for localization length ([[f). Two dotted lines show lev-
els £ = 5 and 13, which correspond to expected sizes of
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Figure 9: Localization length ¢ versus phonon mode number
n. Horizontal dotted lines correspond to levels £ = 5 and 13.

Figure 10: Profiles of phonon eigenstates: eigenvector com-
ponent distribution versus component number. The upper
corresponds to CS, while next two present CES with splitting
from GS AU =6-10"% and 2.4 - 10™* respectively.

largest robust elementary cells, which survive at energy
splitting AU ~ 10~* and 1078, respectively. We see, that
minimal localization length follows the size of maximal
robust structure in the chain.

Since the chain is not homogeneous, localization prop-
erties are not homogeneous too. As seen from Figs. B9
the localization is maximal at the high frequency part of
phonon spectrum, while low frequency part seems non-
localized. In fact, at least longwave modes of phonons

show a clear tendency to be localized too, see FiglIll

V. DISCUSSION AND CONCLUSIONS.

In this paper we have studied properties of phonon
modes in the Frenkel-Kontorova chain, taken in the
regime of pinned phase. Spatial "brick" structure of the
ground state of the chain found in [2], appears to be very
useful for understanding the fine structure of the chain
phonon spectrum. Actually, similar analysis can also be
performed for electronic spectrum, studied in recent work
[24).

However, it is obvious, that in a real physical scale the
ground state is highly degenerated with a huge number of
the static configurational excitations states (CES) of the
chain. Actually this means that the true ground state of
the chain is practically inaccessible. CES has properties
quite different from that of the ground state: their spatial
structure is rather chaotic [2]. As a result, they can cause
the Anderson-like (exponential) localization of phonon
modes similar to that seen in disordered media. This
means, that results of previous studies of phonon|l117, [18,
23, 28] and electron properties|29] should be revized or
extended to more realistic states of the chain.

Configurational excitation states (CES) can provide a
possibility to study a gradual transition from the order
to disorder. It is important, that the number of CES
grows with energy splitting from the GS very fast. Even
at very small splitting the number of ECS is huge. It
is curious that each particular CES has intrinsic chaos,
which reminds the situation in classical spin glass [28],
but in contrast to the latter, the chaos in ECS arises
dynamically, without any external noise.

The quantization of FK model in small A limit is in
essence the quantization of its phonon modes [24]. There-
fore localization of phonon modes means localization of
quantum states. Note also, that phonon quantization
problem is very close to electron quantization problem
[29], where transition from localization to delocalized
state is interesting as a insulator-metal transition .
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