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Simulation of chaos-assisted tunneling in a semiclassical regime on existing quantum computer
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We present a quantum algorithm that allows one to simulate chaos-assisted tunneling in deep semiclassical
regime on existing quantum computers. This opens additional possibilities for investigation of macroscopic
quantum tunneling and realization of semiclassical Schro¨dinger cat oscillations@E. Schrödinger, Naturwissen-
schaften32, 807 ~1935!#. Our numerical studies determine the decoherence rate induced by noisy gates for
these oscillations and propose a suitable parameter regime for their experimental implementation.
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Since 1935 until recently, the metaphor of Schro¨dinger cat
oscillations between life and death@1# was considered as
purely theoretical concept. However, during the last dec
such oscillations in a quantum limit were observed for t
states of a Rydberg atom in a quantum cavity@2# and an
experimental evidence was presented for a quantum supe
sition of macroscopically distinct states in a superconduc
quantum interference device~SQUID! @3#. Manifestations of
macroscopic quantum tunneling~MQT! were also observed
in magnetization experiments with spin-ten molecular m
nets Fe8 and Mn12 @4,5#. In addition to their fundamenta
interest, these experiments promise important applicati
e.g., in solid-state qubit realization@6# and information stor-
age@7# based on the Grover algorithm@8#.

The regime discussed in Ref.@1# assumes that the quan
tum tunneling takes place for a semiclassical object wit
regular dynamics in two symmetric regions of phase spa
Recently, the investigations of quantum chaos led to an
tension of this concept to the phenomenon of chaos-ass
tunneling between islands of regular integrable dynam
separated by a chaotic sea@9#. In this case, due to chaos th
periodTu of tunneling oscillations becomes very sensitive
the variation of system parameters and statistical descrip
should be used to describe the average distribution ofTu
@9–11#. This unusual tunneling is strongly influenced b
complex instanton orbits and scarring effects@10,11# and a
chaos enhancement of tunneling rate by orders of magni
may be reached by a small variation of parameters. The
direct experimental observations of the chaos-assisted
neling have been realized recently with cold@12# and ultra-
cold atoms from a Bose-Einstein condensate@13#, thus open-
ing more possibilities for the investigation of this interesti
process. However, quantum tunneling is a very sensitive p
nomenon, and experimental studies are complicated by
decoherence produced by the environment. Due to that,
oretical investigations of decoherence effects on MQT w
initiated from the very beginning@14,15# and continue to
date@16,17#.

In this Brief Report, we show that quantum entanglem
and quantum computer simulations@18# can be efficiently
used to study quantum tunneling in deep semiclassical
gime. We illustrate this on the example of a quantum sy
plectic map~double-well map! that has a rich phase-spac
structure with integrable islands surrounded by chaotic s
Our algorithm has certain similarities with the algorithms f
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the kicked rotator@19# and for the sawtooth map@20#. It uses
the quantum Fourier transform~QFT! @21# and simulates the
dynamics of a quantum system withN levels inO„(log2N)4

…

operations per map iteration while any known classical al
rithm requires at leastO(N log2N) operations. Only one
work space qubit is required for computations so thatnq
qubits describe a physical system withN52nq21 levels.
Contrary to Ref.@20#, the present algorithm simulates th
quantum dynamics with mixed~chaotic or integrable! classi-
cal phase space and is optimal for the investigation of cha
assisted tunneling in semiclassical regime. Indeed, while
MQT in molecular magnets@4,5,22#, the effective Planck
constant\ is inversely proportional to the number of spin
(\}1/nq) in our algorithm\}22nq. Hence with only ten
qubits, the algorithm allows one to study MQT with th
semiclassical parameter being larger by almost two order
magnitude. At present the nuclear-magnetic-resona
~NMR! quantum computer can perform QFT@23# and oper-
ate with up to seven qubits@24#. This allows one to study the
chaos-assisted quantum tunneling on existing NMR ba
quantum computers and to obtain important informat
about decoherence effects in MQT regime.

In the classical limit, the dynamics of our model is d
scribed by the double-well map given by

p̄5p2KdV~x!/dx, x̄5x1 p̄ ~mod 2p!. ~1!

Here (p,x) are momentum and coordinate conjugated va
ables (2p,x<p), the bars denote the variables after o
map iteration, andV(x)5(x22a2)2. In the limit K→0, the
map gives the one-dimensional integrable dynamics in
double-well potentialV(x) with the frequency of small os
cillations v052A2K. However, forK.0, the higher har-
monics of finite step iterations lead to the appearance of c
otic component surrounding the stability islands located
x56a. A typical example of the mixed phase space
shown in Fig. 1.

The quantum evolution on one map iteration is describ
by a unitary operatorÛ acting on the wave functionc:

c̄5Ûc5e2 i p̂2/2\e2 iKV(x)/\c, ~2!

wherep̂52 i\]/]x andc(x12p)5c(x). In the following
we take the dimensionless\54p/N that corresponds to the
case of quantum resonance@25# with two classical cells~e.g.,
©2002 The American Physical Society01-1
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FIG. 1. Poincare´ section for the double-well map~1! at K
50.04,a51.6; one chaotic and two regular orbits are shown in
dimensionless cell (2p<x,p<p).
05430
as in Fig. 1! on a quantum torus containingN levels. The
semiclassical regime corresponds to\!1 with discretized
momentump5\n, wheren is an integer. The most efficien
known classical algorithm simulating the quantum dynam
~2! is based on forward/backward fast Fourier transform
~FFT! betweenp andx representations. For a system withN
levels it requires two FFT and two diagonal multiplicatio
in p and x representations and can be performed
O„N log2(N)… operations.

The quantum algorithm simulates one map iteration~2!
with N52(nq21) levels inO(nq

4) quantum gates operating o
nq qubits with one qubit used as a work space. The ini
wave function in thex representation is coded in the physic
register withnq21 qubits in equidistant discrete pointsxm

uc(x)&5(m50
N21amum&u0& with an empty work nq-th

qubit. The action of kickUk5exp@2iKV(x)/\# is diagonal
in this representation and the simultaneous multipli
tion of all N coefficients can be done in 3nq

4

gate operations. Indeed, if x5( j 50
nq22a j2

j , then

x45( j 1 , j 2 , j 3 , j 4
a j 1

a j 2
a j 3

a j 4
2 j 11 j 21 j 31 j 4 and e2 ibx4

e

s
d

FIG. 2. ~Color! Time evolution of the Schro¨dinger cat animated on a quantum computer: probability distributionW(x) over the horizontal
x axis for2p<x<p is shown for different numbers of map iterationst, changing along verticaly axis fromt50 ~top! to t5180 ~bottom!.
Here as in Fig. 1,K50.04,a51.6, and\54p/N with N52(nq21). Quantum computation is done withnq56 qubits, ideal perfect gate
~left! and noisy gates of strengthe50.02~right!, andng52090 gates per one map iteration~2!. At t50, the initial coherent packet is locate
at x52a. The color is proportional to the density: blue for zero and red for maximal density; axes are dimensionless.
1-2
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5Pj1,j2,j3,j4
exp(2ibaj1

aj2
aj3

aj4
2j11j21j31j4) with a j 1,2,3,4

50

or 1. This step can be performed with'nq
4 four-qubit gates,

namely, control-control-control–phase shift@C(3)(b)#. The
gate C(3)(b) is applied to each group of four qubits an
transfersu1111& to exp(2ib2j11j21j31j4)u1111& keeping other
combinations unchanged. Using the work qubit, the g
C(3)(b) can be expressed via two Toffoli gatesT and one
control-control–phase shiftC(2)(b) as Cj 1 , j 2 , j 3 , j 4

(3) (b)

5Tj 1 , j 2 ,wCw, j 3 , j 4

(2) (b)Tj 1 , j 2 ,w . Here the indices indicate th

qubits on which the gates apply,b notes the rotation angle
andw is the work qubit, which is reset to zero afterC(2)(b).
Thus, the action of a kick is expressed via a sequence
standard gates used for quantum computations@21,26#. In-
deed the Toffoli andC(2)(b) gates can be expressed via on
and two-qubit gates without addition of extra qubits@27#.
The above computation is the most difficult step in the al
rithm and takes'2nq

4 Toffoli gates andnq
4 of C(b) gates for

large nq . The multiplications by kick phases with lowe
powers ofx are done in a similar way and require smal
number of gates. After multiplication byUk , the algorithm is
similar to the one used in Refs.@19,20#: the QFT changes the
x representation top representation inO(nq

2) operations, the
rotation U\5exp(2i\n2/2) is realized innq

2 of control–
phase-shift gatesC(b) and the backward QFT converts th
wave function back to the initialx representation.

An example of the Schro¨dinger cat oscillations simulate
by this quantum algorithm with ideal gates in the regime
chaos-assisted tunneling of Fig. 1 is shown in Fig. 2~left!.
The time evolution of the probability distributionW(x), in-
tegrated over the work qubit, shows clear tunneling tran
tions between the stability islands of Fig. 1. The same e
lution simulated by noisy gates is illustrated in Fig. 2~right!.
Noisy gates are modeled by unitary rotations by an an
randomly fluctuating in the interval (2e/2,e/2) around ideal
rotation angle. This noise introduces an effective decoh
ence rateG that destroys the tunneling oscillations after t
time scale 1/G.

To determine the period of tunneling oscillationsTu and
their decay rateG, it is convenient to analyze the time de
pendence of total probabilityWa(t) at x,0 ~see Fig. 3!. The
fit Wa(t)21/2}e2Gtcos(2pt/Tu) allows one to obtain both
Tu and G. We note that the value ofWa at given t can be
obtained efficiently from few measurements, which enab
one to determineTu andG. Moreover, the values ofTu and
G are not sensitive to the choice of the initial state att50.
As it was discussed in Ref.@28# for a similar situation, this
state should only have a sufficiently large overlap with
coherent state in the center of the stability island. For
ample, the step distribution,W(x)52/N for x,0 and
W(x)50 for x.0, which can be prepared efficiently, give
the same values ofTu andG as in the case of the cohere
initial state.

The dependence of the decoherence rate on the pa
eters is shown in Fig. 4. The variation ofG in a four-orders-
of-magnitude range is well described by the relation

G50.021e2nq
4 . ~3!
05430
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This relation can be understood using the following physi
arguments. For a given qubit, noise in each unitary gate g
a drop of the probability to be directed along the ideal dire
tion by an amount ofe2. Since at each map iteration th
number of gates isng;nq

4 , the total decay rate is propor
tional toe2ng in agreement with Eq.~3!. We note that similar
estimates for the decoherence rate induced by noisy g
were also obtained for the Shor algorithm@29#. At the same
time the relation~3! is rather simple comparing to the dec
herence rates discussed for MQT in SQUIDs@14–16# and
molecular magnets@17#. One of the reasons for that is tha
the main step of the algorithm operates always with the sa
work qubit. If the unitary rotations of this qubit are noiseles
then the decay rateG is significantly reduced~see Fig. 4!.
Hence, the quantum error correcting codes@18# applied only

FIG. 3. Probability for the Schro¨dinger cat to be aliveWa ~total
probability for x,0) as a function of timet for parameters of Fig.
2. The time dependence allows one to determine the period
chaos-assisted tunneling oscillationsTu590 and their decoherenc
decay rateG. The full curve shows the data without decoheren
points show the data for noisy gates withe50.01 ~gray! and e
50.02 ~black!. The fit of data ~see text! gives G51.931023

~dashed curve fore50.01). Timet is measured as the number o
map iterations~dimesionless! and the probability is normalized to
unity.

FIG. 4. Dependence of the decoherence rate of tunneling o
lations G on the strength of gate noisee for different numbers of
qubits nq56 ~full triangles!, 7 ~diamonds!, 8 ~squares!, and 9
~circles!. The selected map parameters are varied in the range
<a<1.7, 0.04<K,0.06 at\5p/2(nq23) that gave the tunneling
period variation in the range 90<Tu<1.83105. The straight line
shows the average dependence~3!. The data with noiseless work
qubit at nq56 (K50.04,a51.6) are shown by open triangles
Logarithms are decimal and all variablesG,e,nq are dimensionless
(G gives the decoherence rate per one map iteration!.
1-3
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to the work qubit can significantly reduce the decohere
rate, with a relatively small increase in the work space.

Our algorithm allows one to obtain interesting resu
about chaos-assisted tunneling even with a small numbe
qubits. For example, the data of Fig. 3 can be obtained
perimentally on the basis of techniques applied in Re
@23,24#. The main obstacle for experimental implementati
of this algorithm is the decoherence. Indeed, to observe
Schrödinger cat oscillations, the decoherence time scaleG
should be much larger than the oscillation periodTu . As it is
usually the case for semiclassical tunneling, the later
creases exponentially with the decrease of\. This implies
very rapid growth of Tu with nq : Tu}exp(S/\)
}exp(2nqS/8p), whereS;1 is a constant related to the cla
sical action. For example, forK50.04, a51.6 the period
changes fromTu590 (nq56) to Tu51.683106 (nq59).
Therefore even if the algorithm performs each map iterat
~2! in polynomial number of gates, exponential number
map iterations should be done to observe tunneling osc
tions in deep semiclassical regime. Nevertheless, in the
gime of chaos-assisted tunneling, the value ofScan be easily
varied@9–11# by changing the parameters of the map (K and
a) that allows one to obtain not-too-largeTu values fornq
<10, e.g.,Tu5305 forK50.3, a50.5, nq510. Indeed, the
value ofS can be changed significantly by reducing the s
of the stability islands embedded in the chaotic sea. In s
.E

ur

y

,
.
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of the rapid growth ofTu with the number of qubitsnq , the
proposed algorithm uses them in an optimal way in orde
reach the minimal effective Planck constant that scales
\}22nq. This situation is qualitatively different comparin
to SQUIDs @3# where even for a macroscopic number
particles~analogous tonq) the evolution is described by
Hamiltonian with two levels and effective\;1 @16#. It also
differs from the experiments@12,13# where effectively\
;1 independently of the number of cold atoms.

In summary, our studies show that the Schro¨dinger cat can
be animated in a deep semiclassical regime on existing q
tum computers@23,24# with six or more qubits. Such experi
ments will give interesting information about the nontrivi
regime of chaos-assisted tunneling in the presence of ex
nal decoherence. They will allow one to determine the eff
tive accuracy of quantum computation, operability boun
and decoherence rates for the first generation of quan
computers.

Note added:Recently the effects of decoherence in cha
assisted tunneling were reported in experiments with c
cesium atoms@30#.
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