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Simulation of chaos-assisted tunneling in a semiclassical regime on existing quantum computers
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We present a quantum algorithm that allows one to simulate chaos-assisted tunneling in deep semiclassical
regime on existing quantum computers. This opens additional possibilities for investigation of macroscopic
guantum tunneling and realization of semiclassical Sdiliger cat oscillation§E. Schralinger, Naturwissen-
schaften32, 807 (1935]. Our numerical studies determine the decoherence rate induced by noisy gates for
these oscillations and propose a suitable parameter regime for their experimental implementation.
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Since 1935 until recently, the metaphor of Salinger cat  the kicked rotatof19] and for the sawtooth mdj20]. It uses
oscillations between life and deafh] was considered as a the quantum Fourier transfor(@FT) [21] and simulates the
purely theoretical concept. However, during the last decaddynamics of a quantum system withlevels inO((log,N)*)
such oscillations in a quantum limit were observed for twooperations per map iteration while any known classical algo-
states of a Rydberg atom in a quantum cay@y and an rithm requires at leasO(Nlog,N) operations. Only one
experimental evidence was presented for a quantum superp®ork space qubit is required for computations so that
sition of macroscopically distinct states in a superconductinglubits describe a physical system with=2"%""* levels.
quantum interference devi¢8QUID) [3]. Manifestations of ~Contrary to Ref.[20], the present algorithm simulates the
macroscopic quantum tunneliylQT) were also observed duantum dynamics with mixegthaotic or integrableclassi-
in magnetization experiments with spin-ten molecular mag<@l Phase space and is optimal for the investigation of chaos-
nets Fg and Mn, [4,5]. In addition to their fundamental a55|ste_1d tunneling in semiclassical regime. Ind_eed, while for
interest, these experiments promise important applicationd/QT in molecular magnet$4,5,23, the effective Planck
e.g., in solid-state qubit realizatid6] and information stor- constanti is inversely proportional to the number of spins
age[7] based on the Grover algorithf8]. (ﬁoclllnq) in our glgonthmﬁocZ‘”q. Hence with only ten

The regime discussed in Réfl] assumes that the quan- dubits, the algorithm allows one to study MQT with the
tum tunneling takes place for a semiclassical object with @emiclassical parameter being larger by almost two orders of
regular dynamics in two symmetric regions of phase SpaCer_nagnl'[ude. At present the nuclear-magnetic-resonance
Recently, the investigations of quantum chaos led to an exX!NMR) quantum computer can perform QIEZ3] and oper-
tension of this concept to the phenomenon of chaos-assistée With up to seven qubif24]. This allows one to study the
tunneling between islands of regular integrable dynamic§h@os-assisted quantum tunneling on existing NMR based
separated by a chaotic sEg. In this case, due to chaos the duantum computers and to obtain important information
period T, of tunneling oscillations becomes very sensitive to@P0ut decoherence effects in MQT regime. _
the variation of system parameters and statistical description N the classical limit, the dynamics of our model is de-
should be used to describe the average distributio,of SCribed by the double-well map given by
[9-11]. This unusual tunneling is strongly influenced b — — —
complex instanton orbits and gcarring ef?e)[/:lﬁ,lj] and a g p=p—KdV(x)/dx, x=x+p (mod2m). @)

chaos enhancement of tunnelin_g rate by orders of magnitL_Jd]_e]ere (0.x) are momentum and coordinate conjugated vari-
may be reached by a small variation of parameters. The f|rstbIeS (_ m<x=m), the bars denote the variables after one

direct experimental observations of the chaos-assisted tufi-. >, . -
neling haF\)/e been realized recently with cl®] and ultra- map iteration, and/(x)lz(le—az)zl. In the limit K_’O.’ the
cold atoms from a Bose-Einstein condengdt, thus open- map gives the one—dlmens!onal integrable dynamics in the
ing more possibilities for the investigation of this interesting d_oub_le-well potential/(x) with the frequency Of small os-
process. However, quantum tunneling is a very sensitive phec-'"at_Ions o= 22K, . How_ever, fork>0, the higher har-
nomenon, and experimental studies are complicated by th@onics of finite step lterations lead to t.he appearance of cha-
decoherence produced by the environment. Due to that, th&lic component surrounding the stab!llty islands located at
oretical investigations of decoherence effects on MQT werd~ =& A typical example of the mixed phase space is
initiated from the very beginningl14,15 and continue to Snownin Fig. 1. _ o _
date[16,17. The quantum evo[utlon on one map iteration is described
In this Brief Report, we show that quantum entanglemen®y a unitary operatot acting on the wave functiog:
and quantum computer simulatioh$8] can be efficiently - . ~p .
used to study quantum tunneling in deep semiclassical re- Y=Uy=e PT2heKVRIy, 2
gime. We illustrate this on the example of a quantum sym- R
plectic map(double-well map that has a rich phase-space wherep=—ifd/dx and ¢(x+2m)=(x). In the following
structure with integrable islands surrounded by chaotic seave take the dimensionlegs=4/N that corresponds to the
Our algorithm has certain similarities with the algorithms for case of quantum resonan@s] with two classical cellge.qg.,
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FIG. 1. Poincaresection for the double-well magl) at K
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as in Fig. 2 on a quantum torus containirly levels. The
semiclassical regime corresponds7ie1l with discretized
momentump=7#n, wheren is an integer. The most efficient
known classical algorithm simulating the quantum dynamics
(2) is based on forward/backward fast Fourier transform
(FFT) betweenp andx representations. For a system with
levels it requires two FFT and two diagonal multiplications
in p and x representations and can be performed in
O(Nlog,(N)) operations.

The quantum algorithm simulates one map iteratign
with N=2a"1) Jevels inO(ng) guantum gates operating on
ng qubits with one qubit used as a work space. The initial
wave function in the representation is coded in the physical
register withn,—1 qubits in equidistant discrete points,
|p(x))==N_¢am/m)|0) with an empty work ny-th
qubit. The action of kickU,=exd —iKV(x)/#] is diagonal
in this representation and the simultaneous multiplica-
tion of all N coefficients can be done in né

=0.04,a=1.6; one chaotic and two regular orbits are shown in thegate  operations.  Indeed, if x= qugzajzj then
. Ll ]: il

dimensionless cell{ w<x,p=<1r).
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FIG. 2. (Color) Time evolution of the Schidinger cat animated on a quantum computer: probability distribiex) over the horizontal
x axis for — w<x< = is shown for different numbers of map iteratianghanging along vertical axis fromt=0 (top) to t= 180 (bottom).
Here as in Fig. 1K=0.04,a=1.6, andf=4=/N with N=2""1), Quantum computation is done with,=6 qubits, ideal perfect gates
(left) and noisy gates of strengé 0.02(right), andny=2090 gates per one map iterati@). At t=0, the initial coherent packet is located
atx=—a. The color is proportional to the density: blue for zero and red for maximal density; axes are dimensionless.
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:Hl ioia eXp(—iBaj @ Q) 211+j2+j3+j4) with aj =0 1.0 ¢ v |
1424134 1 1213)4 1,234

or 1. This step can be performed W'kthng four-qubit gates, Wa
namely, control-control-control—phase sHIE®)(g8)]. The
gate C®)(B) is applied to each group of four qubits and
transferg1111) to exp(—iB2l1712*1s™14)|1111) keeping other
combinations unchanged. Using the work qubit, the gate
C®)(B) can be expressed via two Toffoli gat&sand one
control-control—phase ~ shiftC®}(8) as Cf*; ; . (B)
:le'jzYWC‘("’Z}:&»J@(B)THJZ'W' Here the indices indicate the
qubits on which the gates applg, notes the rotation angle, 0.0 ' '
andw is the work qubit, which is reset to zero af@f?)(B). 0 200 400t
Thus, the action of a kick is expressed via a sequence of FIG. 3. Probability for the Schringer cat to be alivaV, (total
standard gates used for quantum computati@is26]. In- probablll'Fy forx<<0) as a function of time for parameters of F[g.
deed the Toffoli and:(z)(,B) gates can be expressed via One_z. The tlme depende_nce allpwg one to determ!ne the period of
and two-qubit gates without addition of extra qubi&]. chaos-assisted tunneling oscillatiohg=90 and _thelr decoherence
The above computation is the most difficult step in the algo_decay ratd’. The full curve shows the data without decoherence,

. 4 . 4 points show the data for noisy gates witt+0.01 (gray) and e
rithm and takes-2n, Toffoli gates andhy of C(5) gates for ~0.02 (black. The fit of data(see text gives I'=1.9x10 3

large ny. The multiplications by kick phases with lower (dashed curve foe=0.01). Timet is measured as the number of
gzvrr\l]i)r:r g::’;:{gsdggir'?nitfgmzirow?’y arlﬂgi?;gﬁ[hsr?glermap iterations(dimesionlessand the probability is normalized to
. ko unity.

similar to the one used in Refgl9,20: the QFT changes the _ _ . _
X representation tp representation iD(n?) operations, the ~ This relation can be understood using the following physical
rotation Uh=exp(—iﬁn2/2) is realized inné of control—  @rguments. For a given qubit, noise in each unltar_y gate gives
phase-shift gate€(8) and the backward QFT converts the a drop of the probabllltyz/ to be directed along the ideal direc-
wave function back to the initiat representation. tion by an amount ok 4 Since at each map lteration the

An example of the Schrbinger cat oscillations simulated number of gates ifig—n,, the total decay rate is propor-

. 2 . . . -
by this quantum algorithm with ideal gates in the regime oft'onal to€°ng in agreement with E(3). We note that S'm"af
X . . : I estimates for the decoherence rate induced by noisy gates
chaos-assisted tunneling of Fig. 1 is shown in Figledt).

- . R, . were also obtained for the Shor algoritj28]. At the same
The time evolution of the probability distribution/(x), in- .time the relation(3) is rather simple comparing to the deco-

tegrated over the work_ qul:_nt, shows c_Iear tunneling transiyarence rates discussed for MQT in SQUIR—16§ and
tions between the stability islands of Fig. 1. The same evopgjecylar magnetfl7]. One of the reasons for that is that
lution simulated by noisy gates is illustrated in Figrght).  the main step of the algorithm operates always with the same
Noisy gates are modeled by unitary rotations by an anglgyork qubit. If the unitary rotations of this qubit are noiseless,
randomly quctuating in the interval—(e/2,e/2) around ideal then the decay rat€ is Signiﬁcanﬂy reducedsee F|g 4
rotation angle. This noise introduces an effective decoherrence, the guantum error correcting cofl&8] applied only
ence ratd” that destroys the tunneling oscillations after the
time scale 1.

To determine the period of tunneling oscillationg and
their decay ratd’, it is convenient to analyze the time de-
pendence of total probability/,(t) atx<0 (see Fig. 3 The
fit W,(t)— 1/2xe cos(2qt/T,) allows one to obtain both
T, andI'. We note that the value oV, at givent can be -4 |
obtained efficiently from few measurements, which enables
one to determind, andI". Moreover, the values of , and
I' are not sensitive to the choice of the initial state¢a0.

As it was discussed in Ref28] for a similar situation, this

state should only have a sufficiently large overlap with the 5
coherent state in the center of the stability island. For ex- -4 -2 0

ample, the step distributionW(x)=2/N for x<0 and FIG. 4. Dependence of the decoherence rate of tunneling oscil-
W(x)=0 for x>0, which can be prepared efficiently, gives lationsI" on the strength of gate noisefor different numbers of

the same values of, andI" as in the case of the coherent qubits n,=6 (full triangles, 7 (diamonds, 8 (squares and 9
initial state. (circles. The selected map parameters are varied in the range 1.4

The dependence of the decoherence rate on the paransa<1.7, 0.04&K<0.06 atfi= /2% that gave the tunneling
eters is shown in Fig. 4. The variation Bfin a four-orders- ~ period variation in the range 0T, <1.8x10°. The straight line
of-magnitude range is well described by the relation shows the average dependeri8¢ The data with noiseless work

qubit atny=6 (K=0.04,a=1.6) are shown by open triangles.
_ 2 4 Logarithms are decimal and all variablEse,n, are dimensionless
I'=0.021e Ng- () (I" gives the decoherence rate per one map iteration

Far e
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to the work qubit can significantly reduce the decoherencef the rapid growth ofT, with the number of qubits, the
rate, with a relatively small increase in the work space.  proposed algorithm uses them in an optimal way in order to
Our algorithm allows one to obtain interesting resultsreach the minimal effective Planck constant that scales as
about chaos-assisted tunneling even with a small number gf«2 "4, This situation is qualitatively different comparing
qubits. For example, the data of Fig. 3 can be obtained €Xo SQUIDs [3] where even for a macroscopic number of
perimentally on the basis of techniques applied in RefSparticles (analogous tmy) the evolution is described by a
[23,24. The main obstacle for experimental implementationyamiltonian with two levels and effectivie~ 1 [16]. It also

of this algorithm is the decoherence. Indeed, to observe th&iﬁers from the experiment§12,13 where effectively
Schralinger cat oscillations, the decoherence time scdle 1/ ~1 independently of the numbe’r of cold atoms

should be much larger than the oscillation periqd As it is In summary, our studies show that the Scfinger cat can

usually the case _for se_rmclassmal tunnelmg,_ the '?‘er ""be animated in a deep semiclassical regime on existing quan-
creases e_xponenually with the d_ecreasdiof‘l’hls implies computer$23,24] with six or more qubits. Such experi-
very rapid growth of T, with ng: Tu*expE%)  ments will give interesting information about the nontrivial
exp(2e5/8m), whereS~1 is a constant related to the clas- yo4ime of chaos-assisted tunneling in the presence of exter-
sical action. For example, fok=0.04, a=1.6 the period 5| gecoherence. They will allow one to determine the effec-
changes fromT,=90 (Ng=6) to T,=1.68<10° (ng=9). e accuracy of quantum computation, operability bounds,
Therefore even if the algorithm performs each map iteration, 4 gecoherence rates for the first generation of quantum
(2) in polynomial number of gates, exponential number Ofcomputers.

map iterations should be done to observe tunneling oscilla- ot addedRecently the effects of decoherence in chaos-

tions in deep semiclassical regime. Nevertheless, in the reyggisted tunneling were reported in experiments with cold
gime of chaos-assisted tunneling, the valu&oén be easily  agium atom$30].

varied[9—11] by changing the parameters of the m#&pdnd

a) that allows one to obtain not-too-largg, values forng This work was supported in part by the NSA and ARDA
<10, e.g.,T,=305 forK=0.3,a=0.5,n4=10. Indeed, the under ARO Contract No. DAAD19-01-1-0553, the NSF un-
value of Scan be changed significantly by reducing the sizeder Grant No. PHY99-07949, and the EC RTN Contract No.
of the stability islands embedded in the chaotic sea. In spitelPRN-CT-2000-0156.
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