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Dynamical localization simulated on a few-qubit quantum computer
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We show that a quantum computer operating with a small number of qubits can simulate the dynamical
localization of classical chaos in a system described by the quantum sawtooth map model. The dynamics of the
system is computed efficiently up to a timet>,, and then the localization length, can be obtained with
accuracyn by means of order 1/n2 computer runs, followed by coarse-grained projective measurements on the
computational basis. We also show that in the presence of static imperfections, a reliable computation of the
localization length is possible without error correction up to an imperfection threshold which drops polyno-
mially with the number of qubits.
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I. INTRODUCTION

Recent experimental progress in nuclear magnetic re
nance~NMR!-based quantum processors allowed the dem
stration of quantum algorithms@1#, including Grover’s algo-
rithm @2# and quantum Fourier transform@3#. More recently,
it has been possible to implement the simplest instance
Shor’s algorithm, namely, the factorization of 15, using
qubits and a sequence of about 300 spin-selective ra
frequency pulses@4#. In parallel, thanks to the developme
of techniques for the manipulation of cold atoms in line
traps, the realization of up to 50 two-qubit controlled-NOT

gates within the relevant decoherence time scale is curre
becoming possible@5,6#. Solid state realizations are also u
der way in several experimental groups working with vario
solid-state devices. In particular, it has been demonstr
that a superconducting tunnel junction circuit can behave
an artificial spin-1/2 atom, whose evolution can be control
by applying microwave pulses. The quality factor of qua
tum coherence is sufficiently high to envisage the realiza
of two-qubit gates based on capacitively coupled circuits
this type@7#.

In this context, it is of primary importance to find efficien
quantum algorithms, which could be usefully simulated w
a small number of qubits. Such algorithms would natura
become the ideal software for demonstrative experiment
the coming generation of quantum processors. Dynam
models represent a natural testing ground for quantum in
mation processors. The algorithm for the quantum bak
map @8# has been recently implemented on a three-qu
NMR quantum processor@9#. These experiments tested th
sensitivity to perturbations, in a system that is characteri
by chaotic unpredictable dynamics in the classical limit.

In this paper, we show that quantum computers can si
late efficiently the quantum localization of classical cha
Dynamical localization is one of the most interesting ph
nomena that characterize the quantum behavior of classic
chaotic systems: Quantum interference effects suppress
otic diffusion in momentum, leading to exponentially loca
ized wave functions. This phenomenon was first found a
1050-2947/2003/67~5!/052312~8!/$20.00 67 0523
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studied in the quantum kicked rotator model@10# and has
profound analogies with Anderson localization of electron
transport in disordered materials@11#. Dynamical localiza-
tion has been observed experimentally in the microwave i
ization of the Rydberg atoms@12# and is now actively stud-
ied in experiments with cold atoms@13#.

In this paper, we study dynamical localization for th
quantum sawtooth map, using the algorithm developed
Ref. @14#. This algorithm has some specific advantages w
respect to similar algorithms for the simulation of other d
namical systems, for instance, the kicked rotator@15#. There
are no extra work space qubits, namely, all the qubits
used to simulate the dynamics of the system. This imp
that less than 40 qubits would be sufficient to make simu
tions inaccessible to present day supercomputers. We
that this figure has to be compared with more than 10
qubits required to Shor’s algorithm to outperform classi
computations. We will also show that in this model dynam
cal localization could be observed already with six qubits

Finally, we will discuss the stability of quantum compu
ing of dynamical localization in the presence of static imp
fections in the quantum computer hardware. It has b
pointed out in Refs.@16,17# that unwanted mutual interac
tions between qubits can be a source of error in quan
computation, and some characteristic features of this typ
error have been studied, also in connection with error corr
tion @18,19#. This kind of error may be relevant in practica
implementations of quantum computation. For instance
the ion-trap quantum processors@5,6#, magnetic dipole-
dipole interactions couple qubits. In NMR quantum comp
ing, residual unwanted interactions survive after nonperf
spin echoes@1#. Therefore, it is important to study the stab
ity of quantum information processing in the presence
realistic models of hardware imperfections and in concr
examples of quantum algorithm. In this paper, we determ
the tolerance bounds for reliable quantum computation of
localization length. We will show that, in the presence
static imperfections, such a computation is possible with
error correction up to an imperfection threshold which dro
polynomially with the number of qubits.
©2003 The American Physical Society12-1
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The paper is organized as follows. In Sec. II, we descr
the sawtooth map model, focusing on the regime of dyna
cal localization. In Sec. III, we show that a quantum co
puter operating with few qubits can indeed perform simu
tions of dynamical localization. In Sec. IV, we discuss ho
to extract information~the localization length! from the
quantum computer wave function. In Sec. V, we study
stability of those computations in the presence of static
perfections in the quantum computer hardware. In Sec.
we discuss the transition to quantum chaos, induced by s
imperfections, in the quasienergy spectral statistics. In S
VII, we present our conclusions.

II. THE MODEL

The quantum sawtooth map is the quantized version
the classical sawtooth map, which is given by

n̄5n1k~u2p!, ū5u1Tn̄, ~1!

where (n,u) are conjugated action-angle variables (0<u
,2p), and the over bars denote the variables after one-m
iteration. Introducing the rescaled momentum variablep
5Tn, one can see that the classical dynamics depends
on the single parameterK5kT. The map~1! can be studied
on the cylinder@pP(2`,1`)#, which can also be close
to form a torus of length 2pL, whereL is an integer. For
K.0, the motion is completely chaotic and exhibits norm
diffusion: ^(Dp)2&'D(K)t, where t is the discrete time
measured in units of map iterations and the average^•••& is
performed over an ensemble of particles with initial mome
tum p0 and random phases 0<u,2p. For K.1 the diffu-
sion coefficient is well approximated by the random pha
approximation,D(K)'(p2/3)K2.

The quantum evolution in one map iteration is describ
by a unitary operatorÛ ~called the Floquet operator! acting
on the wave functionc:

c̄5Ûc5e2 iTn̂2/2eik( û2p)2/2c, ~2!

where n̂52 i ]/]u and c(u12p)5c(u) ~we set \51).
The classical limit corresponds tok→`, T→0, and K
5kT5const. In Refs.@14,20,21#, we studied map~2! in the
semiclassical regime. This is possible by increasing the n
ber of qubitsnq5 log2 N (N is the total number of levels!,
with T52pL/N, K5const. In this way, the number of lev
els inside the ‘‘unit cell’’2p<p,p (L51) grows expo-
nentially with the number of qubits (2N/2<n,N/2), and
the effective Planck constant\eff;\/k;1/N→0 when N
→`.

Differently from previous studies, in this paper we stu
map ~2! in the deep quantum regime of dynamical localiz
tion. For this purpose, we keepk,K constant. Thus the effec
tive Planck constant is fixed and the number of cellsL grows
exponentially with the number of qubits (L5TN/2p). In
this case, one studies the quantum sawtooth map on the
inder@nP(2`,1`)#, which is cut-off to a finite number o
cells due to the finite quantum~or classical! computer
memory. We stress again that, since in a quantum comp
05231
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the memory capabilities grow exponentially with the numb
of qubits, already with less than 40 qubits, one could ma
simulations of systems inaccessible for today’s supercom
ers. Similar to other models of quantum chaos@10#, the
quantum interference in the sawtooth map leads to supp
sion of classical chaotic diffusion after a break time

t!'Dn'~p2/3!k2, ~3!

whereDn is the classical diffusion coefficient, measured
number of levels„^(Dn)2&'Dnt…. For t.t! only Dn;Dn
levels are populated and the localization length,;Dn for
the average probability distribution is approximately equ
@22#:

,'Dn . ~4!

Thus the quantum localization can be detected if, is smaller
than the system sizeN.

In the following, we considerK5A2, two values ofk,
k5A3 andk52, and 6<nq<21, so that the above analyt
cal estimate gives,(k5A3)'10 and,(k52)'13,N. We
assume that att50 the system is in a momentum eigensta
ĉ(n)5dnn0

. Since this is a quantum register state, it can

obtained inO(nq) one-qubit operations starting from the fi
ducial state~‘‘ground state’’! n̄ of the quantum compute
hardware.

III. SIMULATION OF DYNAMICAL LOCALIZATION

An exponentially efficient quantum algorithm for th
simulation of map~2! was developed in Ref.@14#. It is based
on the forward and backward quantum Fourier transform@1#
between momentum and coordinate bases. Such an appr
is convenient since the Floquet operatorU, introduced in Eq.
~2!, is the product of two operators,Ûk5eik( û2p)2/2 and
ÛT5e2 iTn̂2/2, which are diagonal in theu andn representa-
tions, respectively. Our quantum algorithm requires the f
lowing steps for one map iteration.

~i! We applyÛk to the wave functionc(u). In order to
decompose the operatorÛk in one- and two-qubit gates, w
first of all write u in binary notation:

u52p(
j 51

nq

a j2
2 j ~5!

with a iP$0,1%. From this expansion, we get

~u2p!254p2 (
j 1 , j 251

nq S a j 1

2 j 1
2

1

2nq
D S a j 2

2 j 2
2

1

2nq
D . ~6!

This term can be put into the unitary operatorUk , giving the
decomposition

eik(u2p)2/25 )
j 1 , j 251

nq

ei2p2k(a j 1
/2j 121/2nq)(a j 2

/2j 221/2nq), ~7!
2-2
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which is the product ofnq
2 two-qubit gates~controlled-phase

shifts!, each one acting nontrivially only on the qubitsj 1 and
j 2.

~ii ! The change from theu to then representation is ob
tained by means of the quantum Fourier transform, wh
requires nq Hadamard gates andnq(nq21)/2 controlled-
phase-shift gates@1#.

~iii ! In the n representation, the operatorÛT has essen-
tially the same form as the operatorÛk in the u representa-
tion, and therefore it can be decomposed innq

2 controlled-
phase shift gates, similar to Eq.~7!.

~iv! We go back to the initialu representation by applica
tion of the inverse quantum Fourier transform.

Thus, on the whole the algorithm requiresng53nq
21nq

gates per map iteration (3nq
22nq controlled-phase shifts an

2nq Hadamard gates!. This number has to be compared wi
the O(NlnN) operations required to a classical computer
simulate one map iteration by means of the fast Fou
transform.

In Fig. 1, we show that, using our quantum algorith
exponential localization can be clearly seen already withnq
56 qubits. After the break timet!, the probability distribu-
tion over the momentum eigenbasis decays exponentiall

Wn5uĉ~n!u2'
1

,
expS 2

2un2n0u
, D , ~8!

with n050 the initial momentum value. Here the localiz
tion length is,'12, and classical diffusion is suppress
after a break timet!',, in agreement with estimates~3!–
~4!. This requires a numberNg'3nq

2,;103 of one- or two-
qubit quantum gates. The full curve of Fig. 1 shows that
exponentially localized distribution indeed appears att't!.
Such a distribution is frozen in time, apart from quantu
fluctuations, which we partially smooth out by averagi
over a few map steps. The localization can be seen by

FIG. 1. Exact quantum computation of probability distributio
over the momentum basis withnq56 qubits fork5A3 and initial
momentumn050; the average is taken in the intervals 10<t<20
~full curve! and 290<t<300 ~dashed curve!. The straight-line fit,
Wn}exp(22unu/,), gives a localization length,'12. Here and in
the following figures, the logarithms are decimal.
05231
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comparison of the probability distributions taken immed
ately aftert! ~full curve in Fig. 1! and at a much longer time
t5300'25t! ~dashed curve in the same figure!.

We also note that the asymptotic tails of the wav
functions decay as a power law~see Fig. 2!,

Wn}
1

un2n0u4
. ~9!

This happens due to the discontinuity in the kicking force
Eq. ~1!, f (u)5k(u2p), when the angle variableu50. For
that reason the matrix elements of the one-period evolu
operatorÛ for quantum map~2! decay as a power law in th
momentum eigenbasis:Unm5^nuÛum&;1/un2mua, with a
52. This case was investigated for random matrices, wh
it was shown that eigenfunctions are also algebraically loc
ized with the same exponenta @23#. We also note that dy-
namical localization in discontinuous systems was studied
Ref. @24#. Since the localization picture is not very sensiti
to the behavior of the tails of the wave function, a rou
estimate of the crossover between the exponential decay~8!
and the power-law decay~9! is given by their crossing point

nc;
3

2
, ln ,, Wn~nc!;

1

,4 ln ,
. ~10!

This implies that by increasing, the exponential localization
is pushed to larger momentum windows and down to sma
probabilities.

IV. MEASUREMENTS

We now discuss how it would be possible to extract
formation~the value of the localization length! from a quan-
tum computer simulating the above described dynamics.
localization length can be measured by running the algorit
several times up to a timet.t!. Each run is followed by a
standard projective measurement on the computational~mo-

FIG. 2. Probability distributions fork52, nq511, n050, J
50. From bottom to top:e50, 1024 ~gray line!, 1023 ~shifted up
by a factor of 4!, and 1022 ~shifted up by a factor of 8!. The straight
line gives a localization length,'15.
2-3
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mentum! basis. Since the wave function at timet can be
written as

uc~ t !&5(
n

ĉ~n,t !un&, ~11!

with un& momentum eigenstates, such a measurement g
outcomen̄ with probability

Wn̄5u^n̄uc~ t !&u25uĉ~ n̄,t !u2. ~12!

A first series of measurements would allow us to give
rough estimate of the variancê(Dn)2& of the distribution
Wn . In turn,A^(Dn)2& gives a first estimate of the localiza
tion length,. After that, we can store the outcomes of t
measurements in histogram bins of widthdn},
'A^(Dn)2&. Finally, the localization length is extracte
from a fit of the exponential decay of this coarse-grain
distribution over the momentum basis. Elementary statist
theory tells us that, in this way, the localization length can
obtained with accuracyn after the order of 1/n2 computer
runs. It is important to note that it is sufficient to perform
coarse grained measurement to generate a coarse-gr
distribution. This means that it will be sufficient to measu
the most significant qubits, and ignore those that would g
a measurement accuracy below the coarse-grainingdn.
Thus, the number of runs and measurements is indepen
of ,.

We now come to the crucial point, of estimating the ga
of quantum computation of the localization length with r
spect to classical computation. First of all, we recall that i
necessary to make aboutt!;, map iterations to obtain the
localized distribution@see Eqs.~3! and~4!#. This is true, both
for the present quantum algorithm and for classical com
tation. It is reasonable to use a basis sizeN}, to detect
localization~let us sayN equal to a few times the localizatio
length!. In such a situation (N;,), a classical compute
needsO(,2 ln ,) operations to extract the localization lengt
while a quantum computer would requireO„,(ln ,)2

… el-
ementary gates. In this sense, for,;N52nq the quantum
computer gives aquadratic speed up, since both classica
and quantum computers performO(N) map iterations. How-
ever, for a fixed number of iterationst the quantum compu
tation gives anexponential gain, since, in this case, on
should compareO„t(ln N)2

… gates ~quantum computation!
with O(tN ln N) gates~classical computation!. We note that,
as explained above, these quantum simulations up to timt
can also be used to estimate the variance^„Dn(t)…2&. From
this quantity, it is possible to get an important characteris
related to the transport properties of the system, namely,
diffusion coefficientDn'^(Dn(t))2&/t.

Finally, we note that in more complex transport problem
quantum computation of the localization length could p
vide new important physical insights. Indeed, the quant
computer has enormous memory capabilities, since the
of the Hilbert space grows exponentially with the number
qubits. This would be very useful in the study of compl
many-body systems. In these problems, it would be hig
desirable to access huge Hilbert-space dimensions, in o
05231
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to check if a system is truly localized. We also note that t
is a difficult task not only in many-body quantum system
but also in single-particle models such as the Harper mo
@25#.

V. EFFECTS OF STATIC IMPERFECTIONS

In order to study the effects of static imperfections on t
stability of the above described algorithm, we model t
quantum computer hardware as a linear array of qubits w
static imperfections, represented by fluctuations in the in
vidual qubit energies and residual short-range interqubit c
plings @17#. The model is described by the following man
body Hamiltonian:

Ĥs5(
i

~D01d i !ŝ i
z1(

i , j
Ji j ŝ i

xŝ j
x , ~13!

where theŝ i i ’s are the Pauli matrices for the qubiti, andD0
is the average level spacing for one qubit. The second su
Eq. ~13! runs over nearest-neighbor qubit pairs, zero bou
ary conditions are applied, andd i ,Ji j are randomly and uni-
formly distributed in the intervals@2d/2,d/2# and @2J,J#,
respectively. We model the implementation of the above
gorithm on this hardware architecture as a sequence o
stantaneous and perfect one- and two-qubit gates, sepa
by a time intervaltg . Therefore, we study numerically th
evolution in the time of the quantum computer wave functi
in the presence of the following many-body Hamiltonian:

Ĥ~t!5Ĥs1Ĥg~t!, ~14!

where

Ĥg~t!5(
k

d~t2ktg!ĥk . ~15!

Here ĥk realizes thekth elementary gate according to th
sequence prescribed by the algorithm. We assume tha
phase accumulation given byD0 is eliminated by standard
spin echo techniques@1#. In this case, the remaining terms
the static Hamiltonian~13! can be seen as residual term
after imperfect spin echoes@1# and give unwanted phase ro
tations and qubit couplings.

The effect of static imperfections on the probability di
tribution over the momentum basis is shown in Fig. 2,
k52, nq511, t5100, J50, and different rescaled imper
fection strengthse5dtg . Fore51024, the localization peak
is reproduced with high fidelity, while the tails of the wav
function are strongly enhanced. This is due to the fact t
errors affecting the most significant qubits can induce a
rect transfer of probability very far in the momentum ba
@26,14#. For e51023, a measurement of the decay of th
localization peak would overestimate the localization len
by a factor of 2, while fore51022, any trace of dynamica
localization has been destroyed.

In order to study in a more quantitative way the stabil
of quantum computation in the presence of static imperf
tions, we consider the following two quantities.
2-4
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~i! The diffusion coefficientDn(e), obtained from the re-
lation

^~Dn!2&'Dn~e!t. ~16!

This is an important characteristic related to transport pr
erties of the system;

~ii ! The inverse participation ratio

j5
1

(nWn
2

; ~17!

this quantity determines the number of basis states sig
cantly populated by the wave function and gives an estim
of the localization length of the system. We stress that,
ferently from the previous quantity,j is local in the localized
regime, i.e., it is insensitive to the behavior of exponentia
small tails.

In Fig. 3 we shoŵ (Dn)2& as a function of time, fornq
511 qubits,J50, and different imperfection strengthse. By
means of these curves we extract the diffusion coefficie
Dn(e) from linear fits extended to the first few map steps.
the same figure, we show that similar curves are obtained
J5d. The dependence of the inverse participation ratio ot
is shown in Fig. 4, again fork52, nq511. We note that, for
imperfection strengths strong enough to induce huge va
tions in the diffusion coefficient (Dn(e)@Dn(0)), j is only
slightly modified @j(e)'j(0)#. Iterating map ~2! long
enough@ t.j(e)#, we get the saturation valuej`(e). This
quantity increases withe and one has complete delocaliz
tion whenj`(e);N ~this is evident fore5531023 in Fig.
4; in this casej saturates aftert,100 map iterations!. Again,
we note that similar curves are obtained forJ5d ~see
Fig. 4!.

In Fig. 5, we plot the dependence of diffusion coefficie
Dn on e for differentnq values. From each curve we extra
the critical imperfection strengtheD(nq) corresponding to

FIG. 3. Dependence of the wave-function second moment
time, fork52, nq511, J50 ~full symbols!, andJ5d ~empty sym-
bols! at e50 ~circles!, 531025 ~squares!, 1024 ~diamonds!, and
231024 ~triangles!. The straight line fits give the diffusion coeffi
cient Dn(e). The curves are averaged over 10 disorder realizati
and 10 initial conditionsn0P@25,5@ .
05231
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doubling of the diffusion coefficientDn(eD)52Dn(0). The
data of Fig. 7 show thateD drops exponentially withnq .
This result is similar to that found in Ref.@26# for noisy gate
errors and can be explained by means of the following ar
ment. Static imperfections can couple states very far in m
mentum space via a single spin flip. As a consequence,
createnq peaks@26# with probabilityWp;eeff

2 t in each peak.
Hereeeff;dnq

2tg5enq
2 is the effective perturbation strength

with nq
2tg time between the Hadamard gates acting on

given qubit. These gates transfer the accumulated phase
eeff into amplitude errors. Integrating the contribution of ea
peak, one gets

^~Dn!2&;WpN2;D̄et ~18!

with

n

s

FIG. 4. Time dependence of the inverse participation ratioj for
k52, nq511 qubits,J50 ~solid lines!, and J5d ~dashed lines!.
From bottom to top:e50, 531024, 1023, 231023, 531023.
The curves are averaged as in Fig. 3.

FIG. 5. Dependence of the diffusion coefficientDn on the im-
perfection strengthe for k52, J50 ~full symbols!, nq56 ~tri-
angles down!, 8 ~stars!, 10 ~triangles up!, 12 ~squares!, 15 ~dia-
monds!, 18 ~circles!, and forJ5d, nq510 ~empty triangles!. The
straight lines show the theoretical dependenceD}e2 @full line, see
Eq. ~19!# and the result without imperfections,D(e50)'16 ~chain
line!.
2-5
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D̄e;e2nq
4N2. ~19!

One can estimate the critical valueeD to double the exac
(e50) diffusion coefficient fromD̄e5Dn(e50), giving

eD;
ADn~0!

nq
2N

, ~20!

in good agreement with the data of Fig. 7.
In Fig. 6 we show the dependence of the inverse part

pation ratioj(e) on e for different number of qubitsnq .
From each curve, we extract two critical imperfectio
strengths.

FIG. 6. Dependence of the saturation valuej` of the inverse
participation ratio on the imperfection strengthe, with same param-
eter values and same meaning of symbols as in the previous fig
The straight line shows the result without imperfections,j`(e
50)'14.

FIG. 7. Dependence of the critical imperfection strengths on
number of qubits fork52, J50: thresholdseD ~circles!, ejE ~full
diamonds!, andej ~empty diamonds!. The full line gives the theo-
retical dependenceejE5Anq

25/2, with the fitting constantA'0.5.
The dashed lines giveeD5BAD(e50)22nqnq

22 , with the fitting
constantB'3.6.
05231
i-

~i! ejE , to get an inverse participation ratio equal to
given fraction of the full Hilbert space, for example,j
5N/4. This threshold characterizes the transition to ergo
completely delocalized wave functions.

~ii ! ej , to double the exact inverse participation ratio. W
stress that this quantity gives a rough estimate of the imp
fection threshold for reliable quantum computation of loc
ization in the absence of error correction.

The dependence ofejE andej on nq is shown in Fig. 7.
These quantities drop polynomially withnq , in sharp con-
trast with the exponential drop ofeD . This algebraic thresh-
old can be understood as follows. The eigenstates of
unperturbed (e50,J50) Floquet operatorÛ in Eq. ~2! can
be written as

fa
(0)5 (

m51

N

ca
(m)um , ~21!

whereum are the quantum register~momentum! states. In the
localized regime,ca

(m)’s are randomly fluctuating inside th
localization domain of size,, and exponentially small out
side it. Wave-function normalization imposesuca

(m)u;1/A,.
Due to exponential localization, static imperfections cou
significantly the unperturbed eigenfunctions only when th
localization domains overlap. We estimate in this case
transition matrix elements according to perturbation theo
For J50, they have a typical value

Vtyp;u^fb
(0)u(

i 51

nq

d i ŝ i
ztgngufa

(0)&u

;tgnq
2u (

m,n51
,ca

(m)cb
(n)!(

i 51

nq

d i^unuŝ i
zuum&u

;enq
5/2U (

m51
,ca

(m)cb
(m)!h (m)U;enq

5/2,21/2. ~22!

In this expression, the typical phase error isdAnqh (m) ~sum
of nq random detuningsd i ’s!, with h (m) random sign, and
tgng;tgnq

2 is the time taken by the quantum computer
simulate one map step. The last estimate in Eq.~22! results
from the sum of order, terms of amplitudeuca

(m)cb
(m)!u

;1/, and random phases. Since the spacing between sig
cantly coupled quasienergy eigenstates isDE;1/,, the
threshold for the breaking of perturbation theory can be
timated as

Vtyp /DE;ejEnq
5/2A,;1. ~23!

The analytical result

ejE;
1

nq
5/2A,

~24!

is confirmed by the numerical data of Fig. 7. For the ca
J5d, the thresholdejE is reduced~see Fig. 4! since residual
interqubit interactions introduce further couplings betwe
the Floquet eigenstates. However, an estimate similar to

re.

e
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~22!, which does not modify the functional dependence~23!,
can be derived. We stress the striking difference between
polynomial scaling and the exponential scaling for the m
ing of unperturbed eigenstates obtained in the ergodic reg
~in which ,;N) and in the more general quasi-integrab
regime@20,21#. We also note that the different sensitivity o
local and nonlocal quantities was pointed out in Ref.@26#.
However, the authors of Ref.@26# considered the effect o
noisy gates, while we consider internal static imperfectio

VI. SPECTRAL STATISTICS

In this section, we show that spectral statistics is an i
ally suited tool to detect the destruction of localization
static imperfections. We study the spectral statistics of
Floquet operator for a quantum computer running the qu
tum sawtooth map algorithm in the presence of static imp
fections,

Ûe5expS 2 i E
0

tgng
dtĤ~t! D , ~25!

whereH(t) is the Hamiltonian~14! andng is the number of
gates per map iteration. We construct numerically the F
quet operator in the computational~momentum! basis, using
the fact that a single-map iteration of each quantum regi
state gives a column in the matrix representation of this
erator. Then we diagonalize the Floquet matrix and get
so-called quasienergy eigenvaluesla

(e) and eigenvectors
fa

(e) ,

Ûefa
(e)5exp~ ila

(e)!fa
(e) . ~26!

A convenient way to characterize the spectral proper
of the system is to study the level spacing statisticsP(s),
whereP(s)ds gives the probability to find two adjacent lev
els ~quasienergies! whose energy difference, normalized
the average level spacing, belongs to the interval@s,s1ds#
~see, e.g., Refs.@27,28#!. In the localized regime, the Floque
eigenvectors with very close eigenvalues may lay so far a
that their overlap is negligible. As a consequence, eigen
ues are uncorrelated, that is, their spectral statistic is give
the Poisson distribution,

PP~s!5exp~2s!. ~27!

On the contrary, in the delocalized regime wave functions
ergodic, and their overlap gives a significant coupling ma
element between states nearby in energy. In this case
spectral statisticsP(s) follows the Wigner-Dyson distribu-
tion

PWD~s!5
32s2

p2
expS 2

4s2

p D , ~28!

typical of random matrices in the absence of time-reve
symmetry @27,28# ~static imperfections break this symm
try!. In Fig. 8, we show that static imperfections indeed
05231
is
-
e

.

-

e
n-
r-

-

er
-
e

s

rt
l-

by

re
x
he

al

-

duce a crossover from the localized regime with the Pois
statistics to quantum chaos characterized by the Wign
Dyson statistics. We have also studied this crossover a
function of the number of qubits~data not shown!: the
thresholdec(nq) for the emergence of quantum chaos is co
sistent with the scalingec(nq)}nq

25/2, in agreement with the
threshold~24! obtained for the mixing of unperturbed eige
functions.

VII. CONCLUSIONS

In summary, we have shown that a quantum compu
operating with a small number of qubits can simulate e
ciently the quantum localization effects. The evaluation
the localization length, with accuracyn requires a number
of computer runs of order 1/n2, followed by a projective
measurement in the computational~momentum! basis. We
stress that, in the presence of static imperfections, a reli
computation of the localization length is possible even wi
out quantum error correction, up to an imperfection stren
threshold that drops only algebraically with the number
qubits. We also stress that localization is a purely quant
phenomenon, which is quite fragile in the presence of no
@29,26#. Therefore, we believe that the simulation of th
physics of localization can be an interesting testing grou
for the coming generation of quantum processors opera
in the presence of decoherence and static imperfections

This research was supported in part by the EC RTN C
tract No. HPRN-CT-2000-0156, the NSA and ARDA und
ARO Contracts No. DAAD19-01-1-0553 and No. DAAD19
02-1-0086, the project EDIQIP of the IST-FET program
the EC, and the PRIN-2000 ‘‘Chaos and localization in cla
sical and quantum mechanics.’’

FIG. 8. Level spacing statistics fork52, nq511, J50, e
51025 ~circles!, ande52.631023 ~squares!. The dashed and full
curves give the Poisson~27! and the Wigner-Dyson distribution
~28!, respectively. In order to reduce statistical fluctuations, data
averaged overND55 random realizations ofd i ’s, so that the total
number of spacings isNDN'104.
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