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We study analytically and numerically the one-dimensional quantum Frenkel-Kontorova chain in the regime
where the classical model is located in the pinned phase characterized by the gaped phonon excitations and
devil's staircase. By extensive quantum Monte Carlo simulations, we show that for the effective Planck
constant: smaller than the critical valug, the quantum chain is in the pinned instanton glass phase. In this
phase, the elementary excitations have two brangitemons separated from zero energy by a finite gap, and
instantonsthat have an exponentially small excitation energy#At# . the quantum phase transition takes
place and fori >7 . the pinned instanton glass is transformed into the sliding phonon gas with gapless phonon
excitations. This transition is accompanied by the divergence of the spatial correlation length and appearance
of sliding modes ati>1#..
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[. INTRODUCTION ties of chaotic Hamiltonian dynamics. The density of par-
ticles in the equilibrium state determines the rotation number
The Frenkel-KontorovdFK) model[1] describes a one- of the invariant curves of the map, while the amplitude of the
dimensional chain of atoms or particles with harmonic cou-eriodic potential in the FK model gives the value of the
plings placed in a periodic potential. This model was intro-dimensionless paramet&r According to the known proper-
duced more than sixty years ago with the aim to study crystaiies of the map, it follows that there exist two phases of the
dislocationg 1,2]. It was also successfully applied later to the chain, the “sliding” phase and the “pinned” phase. Indeed at
description of commensurate-incommensurate phase transt-<K. the Kolmogorov-Arnold-MoseKAM) curves are
tions [3], epitaxial monolayers on the crystal surfaes, smooth and the chain can easily slide along the potential.
ionic conductors and glassy materi@s-7], and, more re- This implies the existence of a zero phonon mode. In con-
cently, to charge-density wavé8] and dry friction[9,10].  trast, atk >K_ the KAM curves are destroyed and replaced
Despite the fact that the relevant phenomena are at thiey an invariant cantor set that is called canto6i22—29.
atomic scale, all these works are based essentially on thHe this pinned phase the chain cannot slide being kept by a
classical approach. The first study of quantum effects wafinite Peierls-Nabarro barrier and the phonon spectrum is
done twelve years agl1-13 with the attempt to under- separated from zero by a finite gap. In this paper, we con-
stand the highly nontrivial quantum ground state of thesider only the gaped-pinned phase with> K.
Frenkel-Kontorova model in the regime where the classical It is important to stress that in the pinned phase, besides
ground state is characterized by the fractal “devil's stair-the equilibrium state of minimal energy, there exists a lot of
case”[6]. These studies were extended in R¢fst,15 and  other equilibrium configurations, corresponding ttocal
later the quantum dynamics at different values of quantunminima of the potential with energies very close to the mini-
parameter: was studied in Refd.16-20. mal energy, i.e., the energy of the ground sf&@&-2§. The
The physical properties even of the classical FK modetotal amount of these stategonfigurational excitations
are very rich and nontrivial. In 1978 Aubry discoverl@ a  grows exponentially both with the lengthof the chain, as
new type of ground state that has fractal properties known awell as with the parametés¢ [28]. Moreover, a great number
“devil's staircase.” In fact, the equilibrium positions of at- of them is practically degenerate since their energy separa-
oms in the FK chain are describ¢€l] by the well known tion from the ground state is exponentially small.
Chirikov standard maf21], which describes generic proper-  In the classical limit all these configurational excitations
are stable, while in the quantum case they become meta-
stable due to tunneling between different exponentially de-
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rational states. Such a nontrivial structure of the quantunWe also find that this transition is highly nontrivial and the
ground state of the chain has a profound analogy with thenodel reveals a nonanalytical behavior that can partially ex-
famous vacuum of quantum chromodynan(@cD) [29], in  plain the failure of simple analytical approaches developed
which tunneling transitions between different, practically de-in Refs.[14,16,17,2Q It should be stressed also that our
generate, states are known as “instantons.” This analogy be<esults have relevance to a wider class of quantum systems,
tween the two problems is very useful and implies that manye.g., quantum spin glass or other disordered systems with
of the methods developed in lattice QCD studies may benteractions. Indeed, the existence of highly degenerate clas-
applicable to the quantum FK model. sically stable configurations is a general property of such
Dynamical low-energy excitations in the classical FK systems.
chain consist only of phonon modes describing small vibra- The paper is organized as follows. In Sec. I, we outline
tions around a classical minimum of the chain potential enthe model, its quantum features and the main points of our
ergy. In the quasiclassical regime, where the effective dimenaumerical approach. In Sec. Ill, we study elementary excita-
sionless Planck constafitis very small, the quantization of tions of the chain at different values ®fand show that there
the FK chain can be reduced to a quantization of phonomxists a structural rearrangement of the excitation spectrum
modes only. Indeed the time of tunneling between differengt certain =#.. A detailed analysis of this rearrangement,
minima of the potential energy is exponentially large, com-given in Sec. 1V, indicates that we have a quantum phase
pared to periods of the vibrations, and the phonon modes aitgansition. Our results are summarized in Sec. V.
decoupled from the tunneling modésstantons This re-
minds the situation in the QC[29] where the quasiclassical  II. THE QUANTUM FRENKEL-KONTOROVA MODEL
regime for instantons appears at small distances on which
instantons are also decoupled from other excitations such as
guarks and gluons. The model describes a one-dimensional chain of particles
In this regime, the tunneling transitions are very slow,with harmonic couplings placed in a periodic potential. The
instantons are local and frozen in space. Due to exponentiddamiltonian reads
degeneracy of chain configurations the model reveals a glass-
like structure of instantons randomly distributed along the > F’iz (Xi—Xi,l)2
chain. We will call this phase the “instanton glass.” H :ZO omtTa——5 - pcosxi/d), (1)
One may expect that the phase structure changes signifi-
cantly with the increase ofi when the tunneling timé  wheres is the number of particle®?; andx; are their mo-
~exp@n/fh) (S, is the instanton actignbecomes compa- menta and coordinates, and in the quantum cRse
rable to the inverse frequency of phonons. In this case, pho-izg/gx;. In this paper, we use unit=d=a=1 that
non and instanton excitations can strongly influence eacBorrespond to dimensionless Hamiltoniésee for details,
other due to anharmonicity of the periodical potential. Thise g., Refs[11,12,14)
may lead to quantum melting of the instanton glass phase
and transition to another phase which appears above some S
critical values > H=2>
The existence of another quantum phase can be argued in
the following way. At sufficiently largei=%. the kinetic  \yith a dimensionless parametér= 8/ ad? and the dimen-
energy of quantum particl&,~#?2m(Ax)? starts 10 €x-  gionless Planck constafitis measured in units a?\ma.
ceed the height) of the periodic potential in which the chain | this way, K is the chaos parameter in the Chirikov stan-

is placed (here Ax is the mean particle separation in the garq mag[21,23. We use the standard boundary conditions
chain which is comparable with the period of the potential,

is the particle mags The condition E,~U gives f Xo=0, Xs=L, 3)

~AxymU. As a result, forh > the chain turns from the

pinnedto the sliding phase. In this regime, tunneling is re- where the chain length =2#r consists ofr periods(and

p|aced by direct propagation above the barrier. Hence, thwe”S) of the external field. We analyze the standard case of

instantonlike motion is replaced by phononlike motion cor-golden mean ratio corresponding tés— (/5—1)/2 (see,

responding to a new phase with gapless phonon excitationRefs.[11,12,28). The potential energy of the chain,

This regime can be considered as sliding quantum phase s h 2

similar to classical sliding regime &<K. [23,24. Quali- Xi—Xj—1

tative different types of behavior of the quantum FK model U({X}):;O 2 —Kcogx)), )

at small and largé: values were already seen in the first

numerical studie$11,12. In summary, ati =%, one may has a large number of minima, corresponding to different

expect aquantum phase transitiorwith qualitative rear- possible distributions of particles among the wells. The clas-

rangement of the spectrum of elementary quasiparticle exceical ground statdabsolute minimum of the potential en-

tations. ergy) is characterized by some special ordering discovered
In this work, devoted to a comprehensive numerical studyby Aubry [6,23,24. In addition, there are also local minima,

of the transition we have just outlined, we present a complet&nown as “configurational excitation” statg80]. Many of

picture of low-energy excitations in the quantum FK chain.them have exponentially small energy separations from the

A. Definitions and outline of quantum features

P?  (Xxi—xi_1)?

74— T—Kcos{xi) , (2
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energy of the classical ground stdt@8]. In the classical ticular, the transformation to “Euclidean” time variable

case, all these states are well defifdistinguishableand  t=ir makes the tunneling transition, arstanton local in

absolutely stable. time 7. In the quasiclassical regime, the tunneling probability
In contrast, in thequantumworld these states amaeta- s very small and therefore the mean separation between in-

stabledue to quantum tunneling. Since they are practicallystantons is large compared to their size. This allows to use

degenerate with the classical ground state, the acuah- e approximation of dilute instanton gga2].

tumground state is built bynanyof them. The admixture of Feynman path formulation in the Euclidean time allows

metastable classical configurations in the quantum groungfice i numerical simulations of quantum systems with proba-
state was first discussed in Ref$4,15. Let us summarize gilistic treatmen{33] of the path integral
n

below the most important aspects of the quantum grou
state, related to the tunneling between these configurations. 1

In the quasiclassical region, the transition amplitudes be- Z=f Dx[r]ex;{ - %S[x(r)]), 5)
tween different metastable configurations are exponentially
sma[l. Hence, the ground state wave f.unctlomwaih €XPO-  \here the Euclidean action,
nential accuracya sum of nonoverlapping parts, each refer-

ring to a particular classical configuration. Any average over i 32 (X=X _1)?

the quantum ground state {svithin the same accuragya SIX( T)]:f OdTE SIS M bt S COSXi)),
weighted sum of averages over relevant classical configura- 0 T2 2

tions. Note that in this limit, the main contribution to quan- (6)

tum motion comes from phonons that characterize small vi- ] ) )
brations around a classical equilibrium configuration. In factas the same form as a total energy of a chain of particles in

the phonon Spectrum is Only Weak'y Sensitive to the Choicéhe Usual real t|me Variable, integrated over some t|me inter'
of specific configuratiofi31] and the influence of tunneling Val [0,70]. This is equivalent to the consideration of the
processes on the glob&hermodynamicalproperties of the —gquantum system at some finite temperaftd@|
chain is expected to be small. In particular, the phonon spec- T—#/r )
trum is still characterized by a phonon gap similar to the 0
classical case. In this _regim_e, the tunneling transitions be- \va assume periodic boundary conditions in tmee di-
tween metastablt_a configurations are very slow compared tfé(ftion, which correspond to a path closed on a torus
phonon frequencies and can be considered as well separate
instantons. . . Xi(79)=x;(0), i=1,...s5—-1, (8

At higher values off the tunneling rate increases and
becomes comparable with the frequency of phonons. In thiand integrate over the initial conditiong(0) in order to
regime, phonon oscillations are large and essentially anharestore homogeneity of paths along the time torus. This al-
monic and therefore the known analytical approachedows to improve the statistics in data measurements by aver-
[14,16,19,20 based on the gausslike wave-function profileaging the data along the torus.
are not quite adequate. Instead, interactions between instan- The numerical simulation of the path integi&) needs
tons and phonons come into play here. As it will be showndiscretization of the time variable,=Amn, n=1,... N by
later, this leads to a new sliding phase appearing=ati . splitting the time intervalry into N steps of sizeAr

In fact, the effects of quantum tunneling between classicak 7/N. As a result the original time-continuous modg)
configurations were already seen in the numerical studietirns into a two-dimensional lattice model with the action
[12] [see Fig. 4b)]. However, they were not attentively ana-

lyzed and the mixture of classical metastable configurations NS (xi,n+1—xi,n)2 (Xi+1,n_xi,n)2

induced by quantum tunneling was not discussed. Certainly, S=n:0 21 2AT AT 2

tunneling processes affect significantly the average positions

of particles at large time scales. Therefore, the quantities

based on mean expectation values of particle positions are —A7KCOSX; |- ©)
not adequate even in the deep quasiclassical regime. Hence,

the basic concepts of classical treatment, such ag &28] The time stepA 7 should be chosen small enough to ap-

andg functions[11,12, are also not adequate in this quan- proach the continuous limit of the original mod@). This

tum regime. The point is that in the case of particle tunnelingeads to the following requirements. At any time step the
between two classical equilibrium positions the expectatiorpath variablex; jumps by a random shifAx;~ JAA 7. The
value does not correspond to apgobable(in the classical first obvious requirement is that the shifk; should be small
sensg particle position. This is evident from the analogy compared to the spatial scale of the potential energy varia-
with the two-well potential problem, where the mean expec+ion. Another requirement comes from the standard deriva-
tation value of a particle position coincides with ttwp of  tion of the path integral33,34), the potential energy terms

the barrier. should be small compared to the kinetic energy,
B. Path integral and numerical simulations (Xit1n—Xi )2 (Xi pe1—Xi n)?
i i e K COSX: < —
Tunneling effects are best understood in the Feynman T 2 hn 2AT
path integral formulation of quantum mechaniigg]. In par- (10
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The latter condition makes our latti@nisotropic with re-  the system, and it provides a complete description of low-
spect to spatial-time directions. In spite of the common belietemperature thermodynamic and kinetic properties. We ex-
[35] on the equivalence between guantum one-dimensiondtact this spectrum using an approach based on the analysis
chains and classical two-dimensional statistitalg., XY) of Fourier spectrum of Feynman paths. This approach pro-
models, the above discussion shows that some particular cavaes a most direct way to see and resolve different excita-
has to be taken. tions in the system. Then, we compare our method with the
An accurate treatment of particle tunneling between twamore traditional one, based on the study of time correlation
wells in the chain requires some modifications of aci@n  functions. This comparison provides a self-consistency check
For a finite (not very small time stepAr, there exists a and demonstrates the advantages of our method.
probability for a particle to jump over the potential barrier in
onetime step[34]. The corresponding path contribution to A. Spectral properties of Feynman paths

h ion will rongly underestim n . . . . .
the actio be strongly underestimated by E®) and, In classical nonlinear dynamics, the Fourier analysis of

respectively, the probability of tunneling will be too high. To traiectori | K e derstandi ¢ veriodi
cure this problem, we use in our simulation an improved rajectories plays a key rolé in understanding or periodic mo-

[34] version of action(9), with the potential energy tion of complex systems. In a similar way, the spectral char-

. X1 acteristics of Feynman paths are closely related to the prop-
term A7U(xn) replaced by the integrah fo: U(x)dx/ erties of elementary excitations in quantum systems. We start

(Xh+1—X,) along a straight line that links subsequéit  our studies from the quasiclassical lintit—~0, where this

time) points (x,,Xn+1) of the particle path. This significantly relation is exact, and extend them to higher values .of

improves the accuracy of numerical simulations. Let us consider the Fourier image of the path variable
For simulations of path ensembles, we use the standarg(7);

Metropolis algorithn{36]. Each iteration looks as follows: at

any fixed time slice at number, we update sequentially the 1 (7 )

particles coordinates; ,, i=1,...s; then we go to the ai(wm):\/_—f d7x(7)exp(i wyT), 11)

next time slicen—n+1; and so on. 7070

_ The system has tw_o_principal c_haracteristic re_Iaxatior\Nhere wn=mw, w=2m/7, and —w<m<o. The path

time scales that are originated by different underlying Pro-,ariable x;(7) is real, thereforea (— w,)=[a(w,)]*. To

CESSEs. Eﬁically one car(wmeir?)timate the number of iterations aﬁt insight into the physical content of this quantity let us
Nii~1/0™PA 7, wherew ™" is the lowest frequency rel- - oonqiger the quasiclassical reginte<1. Then, for small

evant to the process anr is time discretization step. The it X+ Ox d the classical static t
shortest scale is related to the path relaxation with respect fna ionsx;(7) =x; i(7) around the classical static tra-

main phonon modes, and is typically of the order of a fewjectory {X}, one can expand actiof6) up to the second-
tens of iterations in the quasiclassical regime, where phonor@der terms inox;(7). Next, using the spectral expansion for
have a gap of the order of unity. Another time scale is muchdXi(7) and performing the integration over one gets

larger and is determined by the smallest frequency related to 1

either the tunneling rate between different classical configu- S=S.x]+ (028 —02)ai(— a

rations, or to the lowest phonon frequency available in the Solx] %“ |§|; Z(wm K W&(~ om)ad o),

system forh=#. (12
For the initial state, we choose the Aubry classical ground
state. Then, applying iterations, we generate a path ensemble. Q4 =6, (2+K cogx;))— Sik—1—Oi—1k- (13

To be sure that the system does actually relax to statistical

equilibrium with respect to the slowest processes describebdow, by the transformation to normal modes"(wy,)
above, we control the mean number of particle path cross:EiVi(')ai(wm), where eigenvector‘ﬁ!i(') satisfy the equation
ings over tops of potential barriers and we discard all conQ2 VY= 12V one gets the standard representation of the
figurations in the ensemble until this quantity stabilizes. Allaction as a sum of independent phonon modes:
computations are done for the chaos paramkter5. The L

required number of iterations to reach relaxation is very sen- R 2 Al 5

sitive to the value of quantum paramefer for example, at S= SO[X]JF% 2| 2 (@nt A (o2 (14
=3 this number i\~ (2—-4)x 10?, while atZ=1 it is of

the order of 18-1CP. This explains why in the first studies Finally, the path integra(5) turns into a product of ordinary
[11,12 done atN;;< 10" many details ak <2 were not seen. integrals

We study chains with up to 233 particles.

s—1
z=f [T dAD(0)exd — v?|AV(0)|%/24]
IIl. ELEMENTARY EXCITATIONS =t
The most important information about the quantum sys- % H dReAD(w,)d ImAD(w,,)
tem is contained in its spectrum of low-lying elementary m=1 m "

excitations. Being the net manifestation of system internal 2, 21 al) 5
structure it reflects any structural transition that can occur in xexfl — (ot v)|AY (o) [7/1],
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and one arrives to the well known result for the correlator of
free phonon modes:

1 Sy

0 D% (o)) = —omm’

(19

We note that this result is obtained from E), where the
action iscontinuousin time variable. In the discretized ver-
sion (9), the number of harmonics is finite]m|
=0,1,... M, whereM=7,/2A 7. It can be shown that the
only modification induced by discretization is the replace-
ment in Eq.(15): on— on=(20y/7)sin(Troy20y), oy
=Mw. As a result, the spectral function for phonons is
given by

FIG. 1. Dependence of the amplitude of the lowest Fourier har-
monica;=a;(w4) on the particle positionin the chain at different
~— (16 f. Here, o;=w=2m/7y, m=1. The chain parameters asgr
(wmtvp) =89/55, K=5, and 7,=80. Typical number of iterations is

) ) ) ) ~ (1.5-5)x10° at each value of. Here and in all other figures the
Hereafter, instead ob,, we assume its discretized version ypits are dimensionlegsee text for the definition of model param-

g, and in the following the tilde will be omitted. eters.
The expression(15) is the well known Wick rotated

Green functior(in the frequency representatiofor a single values off. In fact, the spectrum of low-lying excitations is

iree partl_cle n the phonon field theory, which has in our Casecrucially dependent o#i; there are domains with gualita-
one spatial dimension.

In the quasiclassical regime, the amplitudes of phonoryyelydﬁferent pehawor. In order to |IIu_strate thls,_let us con-
der the amplitude of quantum motion of particles in the

oscillations are small and the interactions between phonon%1 S by EQ(18). It i that th tributi f
due to anharmonicity of Hamiltonia(2) are negligible. At chain, given by Eq(18). It is seen at the contributions o
low-frequency modegsmall v;) dominate in the limitw,y,

higher#, the amplitudes of phonon vibrations grow 7a%? i : X )

and their interactions become more important. In general—0, Provided that their wave-function profila4" are not

interactions can essentially modify the Green functigf) ~ small at the particle position Therefore, the spectral func-

for phonon excitations. This actually happens for 7., tion (18), computed in this limit, gives a rough estimate for

where the spectrum of excitations is significantly changedthe frequencyy, of the lowest mode.

However, one may expect that the spectral function of el- In Fig. 1, the amplitude of théowestFourier harmonic

ementary excitation remains of the same form ai(wq) with w,=w=2m/7y is plotted as a function of the
particle positioni at different2=0.6—8. One can see that
the whole interval ofi splits naturally inthree regions of

2 2 17) qualitatively different behavior(i) the quasiclassical region

(wm* 7 - )

m h=1, where the amplitudes;(w,) of the harmonics are

which differs from Eq.(15) by the renormalized frequency Very small and depend on the particle positions in some
value »; and by an overall renormalization facthrin anal- ~ regular way;(ii) the transition region £4=<2, where this
ogy with the Green function behavior in the renormalizabledependence is highly irregular and interactions between in-
quantum field theorietsee, e.g., Ref29)). In fact, this idea  stantons and phonons are important; &iiid the region#
is well supported by numerical data. =2, where this dependence becomes regular again and
An extended elementary excitation involves all particleswhere, as we shall see below, a new phonon branch appears.
in the chain. In turn, the Fourier harmonics of any particleLet us note, that a <1 the regular structure along the chain
coordinate in the chain are a sum of contributions of manyis quasiperiodical, which reflect a fact that a classical chain is
elementary excitations built of “bricks” of two principal sizes[28]. Above % ~2
bricks are “melted” and chain properties become even more
o0 i) h homogeneous along the chain. In the intermediate region ir-
(la(on?)=2 0 ——, (18) . -
i (wh+ v?) regul_ar p_eaks come from different _nonoverlapplng |_nstantons
contributions, which as any tunneling effects are highly sen-
where the sum goes over all chain excitations. In the deepitive to small variations of potential barriers. Below their
quasiclassical case, the main contribution comes frontontributions are exponentially small, and above, as we see
phonons modes, and the sum goes over phonon midesfurther, they overlap and form nesliding phase of the sys-
with f1—[V{"|2 and v;— v, . tem.
The goal of our study here is a complete picture of low- In the following, we analyze in detail these regions, cor-
lying quantum excitations in the chain, both for low and highresponding to different intervals df.

F(I)(Z)m)5<|A(l)(wm)|2>=

FO(on)=f
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FIG. 2. The phonon spectral functidf”)(wy,) versus the res- FIG. 3. The phonon dispersion lak): open circles show the

caled frequencyw,, data are shown for the lowest spatial mode gata obtained from the fit as it is shown in Fig. 2 fer1—-30 and

with I=1. The chain parameters aser =89/55, K=5, 70=80,  the straight line shows the fit given by E@0). The chain param-
and£=0.8. Here,m varies from 1 to 89, but for clarity only se- eters are the same as in Fig. 2, the wave vektonr! /L.
lected values are shown. The solid curve gives the fit by Bd®.

and(17), open circles show numerical data. The fit determines the

. _ 2_
phonon frequency of the first mode/4=3.170+0.012) and the :3'170) compared to its value di—Q.Z (vy 3'7.06 )
renormalization factof = 1.0034+ 0.0034. +0.019). The computations for the classical FK chain give

p2=3.717 ¢:=0).

These data show that at sm&lthe frequency; obtained
from the quantum simulations approaches to the frequency

Forf=<1 the tunneling between different metastable clas-of phonon mode in the classical chain. This fact gives a very
sical configurations is negligible, and the particles mainlyimportant check of the consistency of our quantum simula-
vibrate around some classical equilibrium positions. In thistions. We stress that a good agreement between the numeri-
case, the elementary excitations are phonons, and the quagal data of Fig. 2 and the theoretical spectral functibd)
tization of the chain is reduced to the quantization of phononakes place in thevholefrequency range oé,,. This is, in
modes, see, e.g., Réf8]. fact, a very important consistency check of the good relax-

To single out low-energy excitations, we use the follow-ation of our paths ensemble at all frequencies, including
ing approach. Of course, a particular excitation can be sepaths fluctuations at the lowest frequency available in the
lected if the corresponding modd" is known, but, in gen-  system.
eral, this is not a trivial task. However, for low-lying By fitting the data for different phonon modés 1-30
excitations one may expect that the modes have a simplene can extract the dispersion relation for phone(k),

B. Quasiclassical regiomi=<1

harmonic form where k=ml/L (see Fig. 3 The majority of data points
5 follow the straight line given by the formula
Vi (k)=vih= \ﬁsi kij),
j( I) i L r( |]) Vz(k):V(2)+C2k2, (20)
k=mal/L (1=12,...), (190  Wherey, is the phonon frequency gap aais the velocity of

sound. The fit of numerical data give§=3.204+0.026,
c?=15.0+0.7 for £=0.8; »3=3.706-0.019, c*=13.3
+0.5 for 2=0.2. These quantum data should be compared
with the classical case Whem%:3.697, c’=11.5 (% =0).
We note that there is a difference between the frequency of

where the wavelength,=27/k, is much larger than a char-
acteristic size of inhomogeneity in the chain. Direct numeri-
cal computation$31] of phonon modes in the classical FK

chain support this ansatao). the first spatial harmonie; and the frequency gap valug

The numencal test of this anza¢19)' 'S given in Fig. 2. obtained from the dispersion law. However, this difference is
Here, a typical result of the quantum simulations of the spec-

tral functionF(w,) is shown for the lowest phonon mode small and comparable with the statistical errors. For sﬁnall
=1 ath=0.8 Fitrt?ng the data by Eq17) with the renor- the parameters of the dispersion law converge to their clas-

T sical values.
malization factorf and the frequency of the phonon mode The described approach allows to obtain a complete in-

as free parameters, we obtafr=1.0034+0.0034 a”.d’/i formation about low-energy phonon excitations in the whole
=3.170+0.012. This fit shows that the renormalization fac- quasiclassical regioh=<1.

tor f is remarkably close to unity, in spite of the fact that the
value #=0.8 is not small. Hence, ansaf29) provides a
good approximation to actual profiles of lowest phonon
modes. This also indicates that the Gauss approximation As it is seen from Fig. 1, this region corresponds to the
used in the Sec. Ill A and in papef$6,19,2Q works fine transition between two regimés<1 and%=2, where the
here. However, we note that at the same time the quantumiependence of the quantum excitations on the particle loca-
effects renormalize substantially the phonon frequenegy ( tion in the chain looks quite regular.

C. Transition region 1=A=<2
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As it will be shown later the irregular behavior in the 0 (a) (b)
region 1=#=<2 is related to a significant increase of the 10
density of instantons. At high density the interaction between_\
instantons becomes important and results in onset of nevy ol e o o °
phonon branch at>2. In this section, we discuss the prop- £ 10 %0 oo ° o °°°,,,
erties of instantons and phonons and obtain estimates fo » 000 L P
their frequencies. - °

Let us start with a discussion of tunneling effects. Ror 10 T T
<1 the contribution of tunneling to the spectral function is 10 L _
exponentially small being proportional to expgonsth).

However ath>1 the tunneling probability becomes large

(]

net)

and it gives a significant contribution to the spectral function. £ 107 ] i
The transition to this regime is seen in Fig. 1 as a sequenci%s

of sharp isolated peaks. Following the pioneering p4pa}, 1Y . s
a tunneling event can be associated toirstanton In the 1 34 B 34
imaginary time representation, the instanton is a local jump i %

between two wells, which is fast compared to the mean time _ inst)
interval between subsequent jumps: while the size of instan- 7/C- 4 (Eg)oendence of the instanton frgquem&? (top) and
tons(in time 7) is practically independent df, the separa- its weightf; _ (bottom on the position inside the chairfsee text
tion between them is exponentially large in the quasiclassiceLf?'rr?x'cilanatl'(on.}S (a? h=12 mstanftct);:s do nct’.t loverlapt;mtfleltgree
limit (low instanton density In particular, this means that in ighest peaks involves a group of three particles eéht =1.

. . . . . . instantons overlap. Chain parameters ahe=34/21, K=5, and
the first approximation one may consider instantons as mdeT- — 320
pendent jumps, as can be also checked from a direct exami® '
nation of our path ensemble. Here, we should stress on thPh f . Ivsis of the instant tribution to th
important properties of instantons in the quantum FK chain, eretore, in our analysis otthe instanton contribution fo the

. . = . 2 . _

(i) Each jump of a particlé in its positionx; gives dis- zgﬁggaltéu?ﬁgo;fe'(ﬁ’emr)] <|§' (r:)m')| Qwe can rv(\a/f]ert (t)#r
placements of neighboring particles, which decay exponent—) equency domaw, “’P?“”‘(’i’nso ere the
oundarywy,,ngis chosen by the condition <Wpound

tially with the distance from the jump location, i.e., instan- ; )
y Jump on 1.8 1 <y, for all phonon modes. In this frequency domain, the

tons are exponentially localized in space inside the chain. o ; . !
(i) Instantons are distributed inhomogeneously along thé’honon contribution(16) is practically independent obr
and can be replaced by some const@nt Thus, we can

chain since the tunneling probability is highly sensitive to (ins) L inst) )
variations of barrier heights due to chain inhomogeneity. €Xtract the frequency™” and the weight{™=" of the in-

A simple explanation of the exponential localization of an stanton excitation by following fit for the spectral function
instanton(along the chaincomes from the fact that the new Fi(@m),
static configuration produced by it can be seen as a local
staticdefect on the original configuration, which is known to
die away exponentially with the classical Lyapunov exponent ] ins) ¢ (ins)
[6,23,24. Indeed, in Fig. 1 one can see thatfat 1.2—1.3  This fit contains three free parameters™?, £{"Y, and
instanton contributions are exponentially peaked around:i -
some particular positions along the chain. If instantons do not overlap then one may expect that

Let us now consider the properties of elementary excitathere are groups of particles whose motion is dominated by a
tions originated by instantons. There is a question how tgingle instanton. Inside each group, @1) should give the
select numerically a single instanton excitation. Obviously;same values for the frequencigd'?, while the variation of
ansatz(19) used for phonons is good only for extendedweight "9 with i determines the instanton profile along
modes, while instantons are localized in space. Therefore ithe chain. This case is illustrated in Figa4 which corre-
this case, we analyze numerically the frequency spectrum afponds to the early onset of instanton contributionfat
a given particle in the chain[defined by Eq(11)]. If A is =1.2. The six peaks in the bottom part of Figagshow six
not too high(close to ong instantons do not overlap, and the nonoverlapping instantons, while the top part shows the cor-
main contribution to the spectrum comes from the instantomesponding frequencies as a function of particle indéx-
that is near to the given particle. This contribution reaches itside the chain. The peaks have different amplitudes, and the
maximum for a particle that actually jumps. highest three of them involve groups of three particles that

At the same time besides instanton jumps, the quanturhave the same frequency inside each group.
motion of a particle in the chain contains a contribution of At higher# the number of instantons starts to grow rap-
many phonons with different frequenciese, e.g., Eq18)]. idly and they begin to overlap. A direct confirmation of this
This phonon background should be subtracted in order térend is seen in Fig.(#) which corresponds th=1.8. Here,
single out the contribution of instanton. Fortunately, the fre-all instantons have about 10% overlap with their neighbors
qguenciesy; of phonon excitations are much higher than theand their interaction is rather strong. As a result the steplike
frequencyr("sY of chosen instanton. Hence, these two typesstructure of frequencies, seen at the top of Fig),4s prac-
of excitations are well separated in the frequency domaintically destroyed. Thus, the instantons are *“collectivized”

Fi(om) = "%/ w?+(1("Y)2]+C;. (22)
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X 3 27.2
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FIG. 6. Frequency(k) of phonons versus wave numbepb-
FIG. 5. Rescaled spectral functidif(w,k;) = (v2/%)F(w,ky) tained from fit(22) at #=1.5 (in the middle of the transition re-
at the very beginning of instanton onset. The bump which appear@ion). Chain parameters used in simulations afe=89/55, K
at w=0.2 corresponds to instanton admixture to the phonon spectraff5: andro=80.
function. Black points, open circles, and stars correspond to
=1,1.1, and 1.2. Lines show the fit to numerical data with Eq.
(22). Chain parameters used in simulations sie=34/21,K=5,
and 7= 320.

non modes are still approximately defined in the domaifa of
under consideration. Their frequency decreases-a® but
remains separated from zero by a finite gap.

We also note that fif22) allows formally to determine the

dispersion lawy;,s(k) for the instanton branch. However,

gnd ihe consu;ieratlon of a single instanton as one—partlclfhe numerical data give irregular scattering of points inside a
jump over barrier becomes not adequate. At highealues, band O< v2 <

thi leads t : h 4 inst=0.01 without any clear dependenceloThe
IS process Ieads 1o appearance of a New phonon MOde. o454n of such behavior is simple; projections of irregular
Let us now discuss the phonon properties in the regio

. rbositions of instantons on the harmonic angd9 produce
flsh_sz.FAs in kSei.Fll(ll)B, we e;trgctéhem frr]ombth(_a sp]:actral random weights for contributions of different instantons.
uncnonf(wm,h,)— (wgi obtaine on th_e asis ooflan- This result represents another manifestation of glasslike
satz(19) for a p o_non(lr)no - However, m? IS region structure formed by instantons frozen or pinned inside the
the spectral functior"’(w,) has an admixture of instan-

: . o chain. Since the positions of instantons are random the
tons, which grows rapidly witt; a change ofi from 1.1t0 ;15015 cannot propagate along the chain on large distances.
1.2 results in more than ten times of the admixture weigh

X | X In fact, they become localized by disorder in a way similar to
(see Fig. 5. We note that in the absence of instanton contri-he one_dimensional Anderson localizatitmore details on

bution the rescaled phonon spectral functiéfi(w,k)  the phonon properties in this regime will be presented else-
=(vf/h)F(w,k) plotted in Fig. 5 should have an universal where[31]).

limit equal to unity independent of the valuefof Hence, the

increase oF R(w,k|) at smallw stresses the important con- D. New sliding phonon branch at#>2

tribution of instantons. These instantons have different fre- From Fig. 1 one can see that the variation of the ampli-
quencies and their contribution to the spectral function can qe a( ).with i (low-frequency excitations becomes

be rather complicated. However, we can use again the strong i1 g y
frequency separation between instanon and phonon excita- 80
tions. Indeed, fomw = ;> v("SY all instanton contributions

have an universal behaviorw,,?. Therefore, we may re-

] L

place them by a single “instanton contribution” with some 60
average instanton frequenays'. Then, the spectral func-
tion can be fitted by a sum of two contributions - 40

F(wm k)= f ot/ 02+ vE(K) 1+ Finsdi/ {0+ [ v"SY(k) 2]},

(22 20 -

where f (k) »(K), and fi,s(k),»""(k) are free fit param- :
eters for phonons and instantons, respectively. 22 4 26

Fitting the data for different phonon modeslat1— 30, well number
we extract the phonon dispersion 1420) (see Fig. 6, com- FIG. 7. A sample of quantum paths of particles inside some
pare with fit procedure foi<1). Contrary to the case of cpain fragment, which corresponds to periods of the external poten-
Fig. 3 at<1, now the data for the dispersion lawik) are tja| with numbers 22—30. Dashed lines show bottoms of the wells,
scattered inside some finite band. This indicates that anzatgick solid lines show the tops of the barriers. Note an example of
(19) for the phonon profile is not so good to single out par-highly correlated instanton transitions &t 15— 30 which involve
ticular phonon modes. Actually, the width of the band pro-particles in up to five periods of the potential. Parameters of the
vides some measure of the inaccuracy. Nevertheless, the phsimulation aret =2.3, s/r =89/55,K=5, andr,=80.
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FIG. 8. The dispersion law(k) for sliding phonons ati k
=2.5. The numerical datécircles with error barsare obtained FIG. 10. Dependence of the phonon gapand sound velocity
from fit (22) for the instanton branchri,s (k). The straight line ¢ on 4 for the case of Fig. 9 & =5. Open symbols correspond to
shows the best fit20) to numerical data. The chain parameters usedsheet 1 in Fig. 9. Circles and triangles are obtained,at80 for
in simulations ares/r =89/55,K=5, ando=80. chain sizes/r =89/55 and 233/144, respectively. Stars correspond

] ) to s/r =34/21 andry=320. The solid line(bottom) gives fit (23)
rather smooth ati>2. This means that the instantons arefor 1.3<#<2 (see text The full circles(top) for #>2 refer to the

strongly overlapped here. In fact, this means that several pagtiding phonon branch from sheet 2 of Fig. 9, they indicate a zero
ticles of some chain fragment jumps from one well to thephonon gap.
next simultaneouslysee Fig. 7. This is nothing but sliding ]
of a local chain fragment along the periodical potential. Thetions become close to the harmonic wave angz Hence,
typical size of such fragments should grow with If their these excitations are plelocallzed. This I_eads us to the conclu-
sizes reach the size of the chain then the sliding mode beion that for>2 the instanton branch is replaced by a new
comes open, and the phonon gap disappears. At this point tiggPless branch of new sliding phonons.
pinned instanton glass turns into the sliding phonon gas.

A confirmation of this picture is presented in Fig. 8, which E. Global picture of elementary excitations in the FK chain
corresponds td =2.5 being just above the transition point

hc~=2. The numerical data for the dispersion lafk) in  ementary excitations at different valuesfofs shown in Fig.
Fig. 8 are obtameo_l from fi22) at#>2. Here, the behav!or 9 by the two sheets representing the phonon brafgiand
of phonon and instanton modes changes dramaticallythe instanton brancli2). The numerical data are obtained
phonons data(k) are now irregularly scattered over a wide \yith ansatz(19) by fit (22).
band, while the data points for instanton branch follow a gpeet 1 refers to phonons originated from classical pho-
single line, reproducing fairly well a phononlike dispersion 5, modes, which are well reproduced in the lirhit-0.
law with zero gap(see Figs. 8 and)9In particular, fit(20) ~ The frequencies of these modes are well separated from zero
gives v9=0.04i 0.01, which is clpge to zero. In fact, this by a large gap. Therefore, one may say that they form the
value is smaller than the minimal frequencym/Zo  optical phonon branch. Ab=1 these modes show a ten-
(=~0.079, atry=280) and therefore itis compatible WIth Zero. dency to become softer andfat 1.5 their dependence dn

On the contrary, the wide scattering of data points for the;ng 1, pecomes irregular. As it was explained in the preced-
phonon branch indicates that ansit9) is not good for pho-  jng section, this irregular dependence is related to the glass-
hon contribution ath=2 (see Fig. 9. This scattering of jike structure of randomly pinned instantons where density
points is related to the localization of high-frequency phonon,creases with the growth of. Sheet 2 appears #t<2

modes. In contrast, a smooth behavior of data points for thgom the instanton contributions into the Feynman path inte-
instanton branch demonstrates that the instanton wave fungia| For#>#%.~2 this instanton branch turns into a new

gapless branch of sliding phono(see the discussion related
to Fig. 8.

A more quantitative picture can be obtained from the nu-
merical data for the gap, and the sound velocity for both
sheets in Fig. 9. For the optical phonon branch the values of
vy andc are determined from fi{22) for different values of
i (see Fig. 10 The data show that the phonon gap remains
finite and large ati<#.~2. In contrast, the sound velocity
c drops to zero aé approaches the valug,. This decay is
compatible with the fit

The ensemble of data for the dispersion lagk) of el-

80

FIG. 9. The frequency(k) of elementary excitations versus the cl= a(h—h)*, (23
wave numbek at differentz. Chain parameters used in simulations
ares/r =89/55,K=5, andr,=80. The two sheets 1 and 2 refer to shown by the solid line witha=20.5+1.3, .=2.0£0.1,
phonon and instanton excitations, respectively. and the critical exponent=0.52+0.07. Even if the numeri-
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60 man paths described above. We compare the results obtained

by these two different methods.

40- The one-particle time correlators are directly related to the
~ Fourier spectrum of Feynman paths, and are given by the
© following expression:

201

1 :
0 I (x(0)xi(7))=—= 2 [ai(@m)|*exp —iwy7).
0 2 4 . 6 8 10 To “m

. o In fact, many elementary excitations with different frequen-
FIG. 11. Dependence of sound velooitgn# for excitations on  cjes contribute to a particle motion in the chain. In order to
the soft phonon sheet 2 in Fig. 9. Points correspond to chain paran§1ng|e out a particular phonon mode, we study the correlators
eterss/r =89/55,K=5, andr,=80. The solid line shows the lin- Iy — s Dy 0) ; _
ear fit to the sound velocity data inside the region2 (see text of normal mOde.é( (7)=2Vi 'xi(r) whereV” are eigen
vectors defined in Eq$13) and(14). Then from Eq(15), we

cal data forc have certain fluctuations they still clearly indi- obtain

cate the quantum phase transitiorigt=2, where the sound 1

velocity ¢ drops to zero. Further extensive numerical studies  (x1(0)X!(7))=— > |Al(wm)|2exp(—iwmr)
are required to determine the behavior in the vicinity of tran- To ©m

sition in a more precise way.

For the sliding phonon branch, we extract the parameters
vy and c from the data of sheet 2 in Fig. 9 using a more
general fit given by

=((X'(0)*)(e""7+e 1077, (25)

where((X'(0))?)=#/2v, is the contribution of a single pho-

non mode and the periodicity along the time torus results in
201 — 21 ~21,2 2/1,2 a second exponential term in E@5).

vk =vot kT (L+ K kg). However, Eq.(15) assumes only small quantum fluctua-
tions (~#) around somelassicaltrajectory. But due to the

f tunneling effectgor instantons a particle jumps from one

classicaltrajectory to another and its actual motion is given

by a sum of phono(""(7) and instantorx{""s%(7) contri-
utions:

Compared to the standard ca@®), we introduce an addi-
tional parametekg to take into account the saturation o
v(k) at largek (see, Figs. 8 and)9The numerical data show
that the gapy, is small and does not exceed the minimal
frequency in the systenw=2m/1,. Hence, the gapy is
compatible with zerdsee Fig. 10(top)]. At the same time
the sound velocityc for the sliding phonon branch grows
approximately linearly with: (see Fig. 11 The best fit of
numerical data fok>2 gives

(1) =xP(7)+x("V(7).

In general, both motions influence each other, but in the qua-

siclassical limith — 0 they can be considered as independent.

c2=a(i—b) (24) In this limit, they have quite different frequency scales; the
' phonon frequency, is of the order ofk*?, while the fre-

with a=7.620.1, b=1.57+0.05. Formally, the value dfis ~ duency of tunneling jumps:ins; is exponentially small. In
different from the valuefi.=2.0 in Eq.(23). However, in c_:or_ltrast, Wh_lle the amplltuhde of phonon oscnlat_lons in the
view of large statistical fluctuations both fits for optical limit A—0 is small: ([x(P"(r)]*)=, the amplitude of
phonons and sliding phonons are compatible with the quanlmps is defined by the difference between equilibrium par-
tum phase transition at,~2. Indeed, the formal statistical ficle positions in two neighboring wellgin our case it is
error given by the error bars do not take into account a pos=3—4), i.€., it does not depend dn Hence, for a jumping
sibility that in the vicinity of critical point the sound velocity Particle ([x{"*%(7)]2)~10 which is not small even in the
may have systematic deviations from the simple fit used irfluasiclassical limiti—0. Therefore, the instanton contribu-
Eq. (24). Also it is well known that the formal power law fits tion to the time correlator has the forf84]

are not very accurate in the vicinity of a critical point. From .

this point of view a slight difference for the critical values of ~ (Xi(0)Xi(7))ins=([X{"*V(7)]?)(e" ¥ins"+ e~ ¥insi(70™ 7))

h. are acceptable. In addition, the longwave response gives (26)

fig~2 Y . . : . :
¢ (see Sec. VR The preexponent factor is large for jumping particles even in

the deep quasiclassical regime.

In fact, not any particle can easily jump from one well to

Time correlations are closely related to the frequencyanother: different classical trajectories have different actions
spectrum of elementary excitations in the system. Theiand all jumps that result in a large change of actid®=7#
analysis is probably the most traditional way to extract prop-are inhibited. In particular, it is clearly seen in Fig. 1 that the
erties of the elementary excitations, see, e.g., H8(3,34. number of instanton peaks is smaller at smatlesince the
Below, we discuss the connection of this traditional methodcontribution of transitions with large difference in actiais
with our approach based on the Fourier spectrum of Feynis suppressed.

F. Time correlations
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10° 5 accuracy of this data is not so good compared to data
§ circles obtained from the analysis of Fourier spectrum of
Feynman paths described in the previous sections.

101
E ] IV. QUANTUM PHASE TRANSITION
[y ]
J The structual rearrangement of the elementary excitations
10°d e, spectrum can be related to t@antum phase transitiom

3 tosrnesesseecseaneses . the chain from a pinned to sliding phase. However, we would
like to stress that in contrast to the classical picf@®24] in
the quantum case the absence of energy gap for excitations is
not necessarily related to the opening of the sliding phase.
FIG. 12. The numerically computed time correlat@®(7)  Indeed, due to quantum tunneling through Peierls-Nabbarro
=(X'(0)X!(n)) for I=1 at different time separationsfor i=1.4  parriers related to instantons there are excitations with en-
(lower points and 7 =2.5 (upper points The parameters of the ergy which decreases exponentially with the increase of bar-
chain ares/r =89/55,K=5, and7,=80. rier heights. Formally, this corresponds to the disappearance
of excitation gap. Therefore, to confirm firmly the appear-
Fina”y, the general form for the time correlator that takeSance of S“d'ng phase, we need to consider Spatia| correla-
into account the instantons contribution takes the form tions of partic|e motion in the Chain' The S“d'ng phase ap_
pears when the spatial correlation length becomes
C(n)=(X'(0)X!(7))=((X'(0))?)(e"""+e~"(077) comparable with the length of the chain.

+ %t Wip(e~ inst7+ e ¥insi(707 7)), (27) A. Spatial correlation length

The analysis of spatial correlatioisorrelations between

Here, the first term describes the phonon contribution and ithe motion of different particles in the chaiis the most
the second term the sum is taken over instantons and trevident way to observe the transition between pinned and
instanton Weights’vinst:Ei,kvi(l)v(kl)<xi(o)xk(0)> describe sliding phases. In principle, the spatial correlation function
the overlap with ansat9). Both types of contribution27) ~ ¢an be explicitly computed if the spectrum and the wave
are clearly seen in Fig. 12 &t=1.4. The initial rapid drop at functions of elementary excitations are known. In fact, we
7=1.5 corresponds to phonon contribution, while the slowhave a complete quantitative picture fehononmodes, at
decay atr>1.5 corresponds to the instanton contribution.!€ast for the low-lying ones. To obtain numerically the value
This initial drop is related to the existence of large quasiclasOf the spatial correlation length,, we assume that the el-
sical gap for phonon excitations. Fér=2.5>%., the gap €mentary excitation spectrum is given by the dispersion re-
disappears and the correlator decay very sldsée Fig. 12 lation »*(k)=wv§+ck? and the corresponding phonon

For i>%., we have a new phase where instantons arénodes are given in ansafz9). Then the same-time spatial
replaced by sliding phonons. Therefore in this regime, we ficorrelator reads
the numerical data fo€(7) by Eq. (27) with w;,;=0. The
results for different allow to obtain numerically the disper- <(Xi—(Xi>)(Xj—(XJ>)>=Z VOV x'(0)1?)
sion law»(k) shown in Fig. 13open circles However, the [

cogk(i—j)]
25 | 1 | | _ s S S
LW
o)
2.0 °0 o~ o"F .
€ 54 0 ol =—Kolli=jl/lo), (28)
Nh OO',"'
_ °. 5 o B
e 10 o 099’ ¢ whereK(x) is McDonald’s function, with a known asymp-
0.5 Qa‘a" L totics: Ko(X) =y . \(7/2x)e > andl ;=c/ v.
» Fit (28) of the numerical data gives the value lgf for
0 0-& T T T T 1 different values ofi as it is shown in Fig. 14. It is seen that

2 2 the lengthl . has a sharp increasefat~2, and forh >#. it
10%k becomes comparable with the length of the chain. This indi-

FIG. 13. Frequency of elementary excitation) versusk for ~ Cates that we have thguantum phase transitionear .
sliding phonon branch dt=2.5. Open circles show data extracted ~2- Indeed at.<2 the lengthl; is practically independent
from the time correlatoiC(7) for different | (see Fig. 12 full of the chain length., while at# >2 it starts to increase with
circles present the results obtained from(fig) for the frequency L. This is confirmed by the data of Fig. 14, where in spite of
spectrum of Feynman patlisee Fig. 8 The chain parameters are strong fluctuations fori>2 the lengthl, becomes compa-
the same as in Fig. 12. rable with the chain sizé.
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FIG. 14. The dependence of the spatial correlation lehgtin )

f. Crosses, full, and open circles correspond to chains wfith FIG. 16. Dependence of the response func{n) on the par-

=34/21, 89/55, and 233/144, respectiveily=5, 7,=80. The ver- ti_cle positioni in _the chain aﬁ=1_.8(fu|| circles) gndﬁ:2.2(open _
tical dot-dashed line marks the quantum phase transitiofi at circles. The horizontal dashed lines show the interval of averaging

~2. The positions of the horizontal dotted lines are proportional to© the minimal response valugy,, in Fig. 17. Parameters of the
the chain length. =27 chain ares/r=34/21,K=5, andry=80.

C. Other characteristics

B. Longwave response Another way to test the transition from the pinned instan-

The appearance of the new sliding phonon phase implietn glass to the sliding phonon phase is to measure the sen-
that the response of amplitude of the longwave modes shoufgitivity to small shifts of boundaries of the chain. With this
be large in this regime. To test this expectation, we preser®im, we consider the shift of boundary particiesO andi
the dependence of the amplitu& »=0) on# in Fig. 15. =S given by
The numerical data demonstrate a sharp increas&' (@)

nearfi.~2. It is interesting to note that due to the existence Xo(7)=asco42m /7o), Xe(7)=XpT L, (30)
of frequency gap for phonon excitationsfat 7i. the ampli-  where the amplitudag was fixed atag=0.5. In Fig. 16, we
tudeA'(0) is not very sensitive to the variations lofOn the present the dependence of the response funcign)
contrary, forzi>#. the gap disappears aml(0) starts to  —(x(x;—(x)))/(x2) on the particle numbef inside the

depend orl [see Fig. 1)]. In a similar wayA'(0) is inde-  chain. It is seen that the response in the center of the chain
pendent of the chain length for 2<%, while atZi>%. it drops strongly when the parametechanges fronk = 2.2 to
grows with L [see Fig. 18b)]. The numerical data of Fig. 7—1.8. This means that the chain is locked forfi.~2,
15(b) for 1.5<=<2 can be described by the fit while for 2>7 the chain slides following the displacements

| 2 - of the boundary particles.

([AOI)~Alhe=h) "7, (29 In order to get a more quantitative picture, we estimate
the value of the response functi®{i) at its minimum in the
middle of the chain by taking its average value inside the
central region ai =12-22: Ry,;,=(R(i)); (this interval is
shown in Fig. 16 by horizontal dashed line¥he depen-
(@) (b) dence ofR,i, on the parametet is presented in Fig. 17. We

which givesy=5.06+1.72 andi.=2.01+0.05.

10 ) see that the correlator in the central region of the chain de-
3 viates from zero afi>2. According to the numerical data
107 the respons®,,, is very small for <#.~2, while it be-
N 2 comes rather strong fdr>#.. This confirms the existence
I~ of the quantum phase transition from the pinned to sliding
§1O1 phase ati=h.~2.
3 0.8
0
10 0.6 ' by
-1
10 £0.4 i
£ L]
R 3!
0.2 1 st
FIG. 15. The amplitude square of zero-frequency quantum fluc- s
tuations[ A'(0)]? as a function ofi for K=5 andr,=80. (a) Full 0.0 {3332t
circles, squares, and open circles are for mdde§,3, and 5, re- T T
spectively, for the chain withs/r =89/55. (b) Open circles, full 2 4 3 4
circles, and stars are fafr =233/144, 89/55, and 34/21, respec-
tively; I =1. The vertical dot-dashed lines matk~2, the horizon- FIG. 17. Dependence of the minimal respof&sg, on# for the
tal dotted lines give the average values fior 2. parameters of Fig. 16.
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instanton density is small and instantons are local and iso-
0.9M~ . uesrs™s™y, lated. With the increase of their density grows and they
.2 Tt ., start to overlap.
§°~913- Y, At sufficiently large# the instantons are coupled and be-
¥ 5912 ' come collectivized. As a result, the tunneling of particles in
@ s some fragments of the chain proceeds in correlated way. The
0.911 ' size of these correlations grows until it reaches the size of the
. system. This leads to appearance of extended excitations and
OO T T oo 22 24 opening of a new gapless sliding phonon branch. Our data
3 show that a quantum phase transition takes place between the

FIG. 18. D d fth | chai icl pinned and sliding phases. Absence of hysteresis effects, as
for th ‘ h epen encte (?Kt_g tOt? SBaS;?SEnergxaper_pSaorpc O \well as continuous dependence of chain energy @xclude
or the chain parameters=>, Sir= » ANA7o=SM € e first-order phase transition, so we can classify this tran-
=5.302 is an energy point chosen from convenience or illustration_... . "
sition as a continuous quantum phase transition. We stress
reasons. . . .
that the quantum phase transition from pinned to sliding
phase takes place in the regime where the classical chain

always remains in the pinned phase with the finite phonon
p.

What is the order of this transition? In our simulations, we
have repeated a cycle changing slovilyfrom 2=1 to #

=4 and back about hundred times, but no hysteresis Wa%aThe direct analysis of Fourier spectrum of Feynman paths
found within the statistical errors. Indeed, the difference of y P y P

the chain ener er particle at the uoward and b(,kawargnsemble allowed to obtain detailed information on the dis-

) dy perp - P persion law of low-lying excitations in both quantum phases.
paths did not exceed 18. This difference should be com- Nevertheless, some questions remain open for further inves-
pared with the change of the energy per partile~2.4 ' d P

. = - tigations. For example, one can analyze in more detail the
\;vt?sl(;i(tzzkc?fshplsa}tgfevsvirs]efxglr;?jne%etigoEﬁ;eltr?nf;ig:ﬁ ;chtﬁe fi reffects of interactions between instantons at low density and
y P Ldy their propagation properties in this regime. Another

grr]ieizrr]. eWnZ ?Isoodrﬁo Tr?tos;ggratgyn?;iaekssnlqr;rlhge?/ie;tieonrfjselggemogt eteresting remark concerns the behavior of the system in the
gy o vicinity of the transition point ati.~2. Indeed, in this re-

linear law more visible, we plot in Fig. 18 the quantity ( . P e .
- = . gion the kinetic energy per particle 4s0.6, that is, about ten
<o)/, Whereeo=5.302, The numerical data show that thetimes smaller than the height of the potential barrieKat

slope of energy _dependence char_lges Mear~2. This =5. Therefore, more insights are required to understand the
change of slope is located approximately at the same Valu&nderlying physics of this transition

of 2 where the divergence of the correlation length takes One can ask on how general are our results obtained in

place gseed Fig. mt Theshe datta mc_itl_catethtr:at we have 3the frame of the Frenkel-Kontorova model? In fact, we never
second-order quantum phase transition that appearsfiear used any specific features of this model related to its non-

%2 However, more extensive F‘“me”ca' simulations are "irivial number theory properties. The only essential point is
quired to determine more precisely the order of the trans

! 'the existence of an exponential number of quasidegenerate
tion. s ) ;
states which is common for glassy materials and other disor-
der systems. Therefore, it is very interesting to study an
V. CONCLUSIONS analogous quantum phase transition in systems with disorder

We have studied quantum tunneling phenomena in a pa|"’—md interactions.
tlcu!ar mpdel of glassy material, the FrgnkeI—Kontorova ACKNOWLEDGMENTS
chain. This system has a lot of states, which are exponen-
tially degenerate andmetgstable in the(quasjclassical This work was supported in part by the EC RTN network
limit. In the quantum case, there are tunneling transition<ontract No. HPRN-CT-2000-0156; O.V.Z. thanks the
between these states that can be understood in terms of igroups in Como and Toulouse for their hospitality during the
stanton dynamics. In the quasiclassical limit, at siathe  work on this problem.
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