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Quantum phase transition in the Frenkel-Kontorova chain: From pinned instanton glass
to sliding phonon gas
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We study analytically and numerically the one-dimensional quantum Frenkel-Kontorova chain in the regime
where the classical model is located in the pinned phase characterized by the gaped phonon excitations and
devil’s staircase. By extensive quantum Monte Carlo simulations, we show that for the effective Planck
constant\ smaller than the critical value\c the quantum chain is in the pinned instanton glass phase. In this
phase, the elementary excitations have two branches:phonons, separated from zero energy by a finite gap, and
instantonsthat have an exponentially small excitation energy. At\5\c the quantum phase transition takes
place and for\.\c the pinned instanton glass is transformed into the sliding phonon gas with gapless phonon
excitations. This transition is accompanied by the divergence of the spatial correlation length and appearance
of sliding modes at\.\c .
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I. INTRODUCTION

The Frenkel-Kontorova~FK! model @1# describes a one
dimensional chain of atoms or particles with harmonic co
plings placed in a periodic potential. This model was int
duced more than sixty years ago with the aim to study cry
dislocations@1,2#. It was also successfully applied later to th
description of commensurate-incommensurate phase tra
tions @3#, epitaxial monolayers on the crystal surface@4#,
ionic conductors and glassy materials@5–7#, and, more re-
cently, to charge-density waves@8# and dry friction @9,10#.
Despite the fact that the relevant phenomena are at
atomic scale, all these works are based essentially on
classical approach. The first study of quantum effects w
done twelve years ago@11–13# with the attempt to under
stand the highly nontrivial quantum ground state of t
Frenkel-Kontorova model in the regime where the class
ground state is characterized by the fractal ‘‘devil’s sta
case’’@6#. These studies were extended in Refs.@14,15# and
later the quantum dynamics at different values of quant
parameter\ was studied in Refs.@16–20#.

The physical properties even of the classical FK mo
are very rich and nontrivial. In 1978 Aubry discovered@6# a
new type of ground state that has fractal properties know
‘‘devil’s staircase.’’ In fact, the equilibrium positions of a
oms in the FK chain are described@6# by the well known
Chirikov standard map@21#, which describes generic prope
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ties of chaotic Hamiltonian dynamics. The density of p
ticles in the equilibrium state determines the rotation num
of the invariant curves of the map, while the amplitude of t
periodic potential in the FK model gives the value of t
dimensionless parameterK. According to the known proper
ties of the map, it follows that there exist two phases of
chain, the ‘‘sliding’’ phase and the ‘‘pinned’’ phase. Indeed
K,Kc the Kolmogorov-Arnold-Moser~KAM ! curves are
smooth and the chain can easily slide along the poten
This implies the existence of a zero phonon mode. In c
trast, atK.Kc the KAM curves are destroyed and replac
by an invariant cantor set that is called cantorus@6,22–25#.
In this pinned phase the chain cannot slide being kept b
finite Peierls-Nabarro barrier and the phonon spectrum
separated from zero by a finite gap. In this paper, we c
sider only the gaped-pinned phase withK.Kc .

It is important to stress that in the pinned phase, besi
the equilibrium state of minimal energy, there exists a lot
other equilibrium configurations, corresponding tolocal
minima of the potential with energies very close to the mi
mal energy, i.e., the energy of the ground state@26–28#. The
total amount of these states~configurational excitations!
grows exponentially both with the lengthL of the chain, as
well as with the parameterK @28#. Moreover, a great numbe
of them is practically degenerate since their energy sep
tion from the ground state is exponentially small.

In the classical limit all these configurational excitatio
are stable, while in the quantum case they become m
stable due to tunneling between different exponentially
generate minima of the potential. As a result one may exp
that the true eigenstates of the Hamiltonian, including
ground state, are built as superpositions of classical confi
©2003 The American Physical Society09-1
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rational states. Such a nontrivial structure of the quant
ground state of the chain has a profound analogy with
famous vacuum of quantum chromodynamics~QCD! @29#, in
which tunneling transitions between different, practically d
generate, states are known as ‘‘instantons.’’ This analogy
tween the two problems is very useful and implies that ma
of the methods developed in lattice QCD studies may
applicable to the quantum FK model.

Dynamical low-energy excitations in the classical F
chain consist only of phonon modes describing small vib
tions around a classical minimum of the chain potential
ergy. In the quasiclassical regime, where the effective dim
sionless Planck constant\ is very small, the quantization o
the FK chain can be reduced to a quantization of pho
modes only. Indeed the time of tunneling between differ
minima of the potential energy is exponentially large, co
pared to periods of the vibrations, and the phonon modes
decoupled from the tunneling modes~instantons!. This re-
minds the situation in the QCD@29# where the quasiclassica
regime for instantons appears at small distances on w
instantons are also decoupled from other excitations suc
quarks and gluons.

In this regime, the tunneling transitions are very slo
instantons are local and frozen in space. Due to expone
degeneracy of chain configurations the model reveals a g
like structure of instantons randomly distributed along
chain. We will call this phase the ‘‘instanton glass.’’

One may expect that the phase structure changes sig
cantly with the increase of\ when the tunneling timet
;exp(Sin /\) (Sin is the instanton action! becomes compa
rable to the inverse frequency of phonons. In this case, p
non and instanton excitations can strongly influence e
other due to anharmonicity of the periodical potential. T
may lead to quantum melting of the instanton glass ph
and transition to another phase which appears above s
critical value\.\c .

The existence of another quantum phase can be argu
the following way. At sufficiently large\>\c the kinetic
energy of quantum particleEk;\2/2m(Dx)2 starts to ex-
ceed the heightU of the periodic potential in which the chai
is placed~here Dx is the mean particle separation in th
chain which is comparable with the period of the potentialm
is the particle mass!. The condition Ek;U gives \c

;DxAmU. As a result, for\.\c the chain turns from the
pinned to the sliding phase. In this regime, tunneling is re
placed by direct propagation above the barrier. Hence,
instantonlike motion is replaced by phononlike motion c
responding to a new phase with gapless phonon excitati
This regime can be considered as sliding quantum ph
similar to classical sliding regime atK,Kc @23,24#. Quali-
tative different types of behavior of the quantum FK mod
at small and large\ values were already seen in the fir
numerical studies@11,12#. In summary, at\5\c one may
expect aquantum phase transition, with qualitative rear-
rangement of the spectrum of elementary quasiparticle e
tations.

In this work, devoted to a comprehensive numerical stu
of the transition we have just outlined, we present a comp
picture of low-energy excitations in the quantum FK cha
05620
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We also find that this transition is highly nontrivial and th
model reveals a nonanalytical behavior that can partially
plain the failure of simple analytical approaches develop
in Refs. @14,16,17,20#. It should be stressed also that o
results have relevance to a wider class of quantum syste
e.g., quantum spin glass or other disordered systems
interactions. Indeed, the existence of highly degenerate c
sically stable configurations is a general property of su
systems.

The paper is organized as follows. In Sec. II, we outli
the model, its quantum features and the main points of
numerical approach. In Sec. III, we study elementary exc
tions of the chain at different values of\ and show that there
exists a structural rearrangement of the excitation spect
at certain\5\c . A detailed analysis of this rearrangemen
given in Sec. IV, indicates that we have a quantum ph
transition. Our results are summarized in Sec. V.

II. THE QUANTUM FRENKEL-KONTOROVA MODEL

A. Definitions and outline of quantum features

The model describes a one-dimensional chain of partic
with harmonic couplings placed in a periodic potential. T
Hamiltonian reads

H5(
i 50

s F Pi
2

2m
1a

~xi2xi 21!2

2
2b cos~xi /d!G , ~1!

wheres is the number of particles,Pi and xi are their mo-
menta and coordinates, and in the quantum casePi5
2 i\]/]xi . In this paper, we use unitsm5d5a51 that
correspond to dimensionless Hamiltonian~see for details,
e.g., Refs.@11,12,14#!

H5(
i 50

s FPi
2

2
1

~xi2xi 21!2

2
2K cos~xi !G , ~2!

with a dimensionless parameterK5b/ad2 and the dimen-
sionless Planck constant\ is measured in units ofd2Ama.
In this way,K is the chaos parameter in the Chirikov sta
dard map@21,23#. We use the standard boundary conditio

x050, xs5L, ~3!

where the chain lengthL52pr consists ofr periods~and
wells! of the external field. We analyze the standard case
golden mean ratio corresponding tor /s→(A521)/2 ~see,
Refs.@11,12,28#!. The potential energy of the chain,

U~$x%!5(
i 50

s F ~xi2xi 21!2

2
2K cos~xi !G , ~4!

has a large number of minima, corresponding to differ
possible distributions of particles among the wells. The cl
sical ground state~absolute minimum of the potential en
ergy! is characterized by some special ordering discove
by Aubry @6,23,24#. In addition, there are also local minima
known as ‘‘configurational excitation’’ states@30#. Many of
them have exponentially small energy separations from
9-2
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energy of the classical ground state@28#. In the classical
case, all these states are well defined~distinguishable! and
absolutely stable.

In contrast, in thequantumworld these states aremeta-
stabledue to quantum tunneling. Since they are practica
degenerate with the classical ground state, the actualquan-
tumground state is built bymanyof them. The admixture of
metastable classical configurations in the quantum gro
state was first discussed in Refs.@14,15#. Let us summarize
below the most important aspects of the quantum gro
state, related to the tunneling between these configuratio

In the quasiclassical region, the transition amplitudes
tween different metastable configurations are exponenti
small. Hence, the ground state wave function is~with expo-
nential accuracy! a sum of nonoverlapping parts, each ref
ring to a particular classical configuration. Any average o
the quantum ground state is~within the same accuracy! a
weighted sum of averages over relevant classical config
tions. Note that in this limit, the main contribution to qua
tum motion comes from phonons that characterize small
brations around a classical equilibrium configuration. In fa
the phonon spectrum is only weakly sensitive to the cho
of specific configuration@31# and the influence of tunneling
processes on the global~thermodynamical! properties of the
chain is expected to be small. In particular, the phonon sp
trum is still characterized by a phonon gap similar to t
classical case. In this regime, the tunneling transitions
tween metastable configurations are very slow compare
phonon frequencies and can be considered as well sepa
instantons.

At higher values of\ the tunneling rate increases an
becomes comparable with the frequency of phonons. In
regime, phonon oscillations are large and essentially an
monic and therefore the known analytical approac
@14,16,19,20# based on the gausslike wave-function profi
are not quite adequate. Instead, interactions between in
tons and phonons come into play here. As it will be sho
later, this leads to a new sliding phase appearing at\.\c .

In fact, the effects of quantum tunneling between class
configurations were already seen in the numerical stu
@12# @see Fig. 4~b!#. However, they were not attentively an
lyzed and the mixture of classical metastable configurati
induced by quantum tunneling was not discussed. Certa
tunneling processes affect significantly the average posit
of particles at large time scales. Therefore, the quanti
based on mean expectation values of particle positions
not adequate even in the deep quasiclassical regime. He
the basic concepts of classical treatment, such as hull@6,23#
and g functions@11,12#, are also not adequate in this qua
tum regime. The point is that in the case of particle tunnel
between two classical equilibrium positions the expectat
value does not correspond to anyprobable~in the classical
sense! particle position. This is evident from the analog
with the two-well potential problem, where the mean exp
tation value of a particle position coincides with thetop of
the barrier.

B. Path integral and numerical simulations

Tunneling effects are best understood in the Feynm
path integral formulation of quantum mechanics@32#. In par-
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ticular, the transformation to ‘‘Euclidean’’ time variablet;
t5 i t makes the tunneling transition, orinstanton, local in
time t. In the quasiclassical regime, the tunneling probabi
is very small and therefore the mean separation between
stantons is large compared to their size. This allows to
the approximation of dilute instanton gas@32#.

Feynman path formulation in the Euclidean time allow
direct numerical simulations of quantum systems with pro
bilistic treatment@33# of the path integral

Z5E Dx@t#expS 2
1

\
S@x~t!# D , ~5!

where the Euclidean action,

S@x~t!#5E
0

t0
dt(

i
S ẋi

2

2
1

~xi2xi 21!2

2
2K cos~xi ! D ,

~6!

has the same form as a total energy of a chain of particle
the usual real time variable, integrated over some time in
val @0,t0#. This is equivalent to the consideration of th
quantum system at some finite temperature@33#

T5\/t0 . ~7!

We assume periodic boundary conditions in thetime di-
rection, which correspond to a path closed on a torus

xi~t0!5xi~0!, i 51, . . . ,s21, ~8!

and integrate over the initial conditionsxi(0) in order to
restore homogeneity of paths along the time torus. This
lows to improve the statistics in data measurements by a
aging the data along the torus.

The numerical simulation of the path integral~5! needs
discretization of the time variabletn5Dtn, n51, . . . ,N by
splitting the time intervalt0 into N steps of sizeDt
5t0 /N. As a result the original time-continuous model~2!
turns into a two-dimensional lattice model with the action

S5 (
n50

N

(
i 51

s F ~xi ,n112xi ,n!2

2Dt
1Dt

~xi 11,n2xi ,n!2

2

2Dt K cosxi ,nG . ~9!

The time stepDt should be chosen small enough to a
proach the continuous limit of the original model~2!. This
leads to the following requirements. At any time stepDt the
path variablexi jumps by a random shiftDxi;A\Dt. The
first obvious requirement is that the shiftDxi should be small
compared to the spatial scale of the potential energy va
tion. Another requirement comes from the standard deri
tion of the path integral@33,34#, the potential energy term
should be small compared to the kinetic energy,

DtS ~xi 11,n2xi ,n!2

2
2K cosxi ,nD!

~xi ,n112xi ,n!2

2Dt
.

~10!
9-3
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The latter condition makes our latticeanisotropic with re-
spect to spatial-time directions. In spite of the common be
@35# on the equivalence between quantum one-dimensio
chains and classical two-dimensional statistical~e.g., XY)
models, the above discussion shows that some particular
has to be taken.

An accurate treatment of particle tunneling between t
wells in the chain requires some modifications of action~9!.
For a finite ~not very small! time stepDt, there exists a
probability for a particle to jump over the potential barrier
one time step@34#. The corresponding path contribution
the action will be strongly underestimated by Eq.~9! and,
respectively, the probability of tunneling will be too high. T
cure this problem, we use in our simulation an improv
@34# version of action ~9!, with the potential energy
term DtU(xn) replaced by the integralDt*xn

xn11U(x)dx/

(xn112xn) along a straight line that links subsequent~in
time! points (xn ,xn11) of the particle path. This significantly
improves the accuracy of numerical simulations.

For simulations of path ensembles, we use the stand
Metropolis algorithm@36#. Each iteration looks as follows: a
any fixed time slice at numbern, we update sequentially th
particles coordinatesxi ,n , i 51, . . . ,s; then we go to the
next time slicen→n11; and so on.

The system has two principal characteristic relaxat
time scales that are originated by different underlying p
cesses. Basically one can estimate the number of iteration
Nit;1/v (min)Dt, wherev (min) is the lowest frequency rel
evant to the process andDt is time discretization step. Th
shortest scale is related to the path relaxation with respe
main phonon modes, and is typically of the order of a f
tens of iterations in the quasiclassical regime, where phon
have a gap of the order of unity. Another time scale is mu
larger and is determined by the smallest frequency relate
either the tunneling rate between different classical confi
rations, or to the lowest phonon frequency available in
system for\>\c .

For the initial state, we choose the Aubry classical grou
state. Then, applying iterations, we generate a path ensem
To be sure that the system does actually relax to statis
equilibrium with respect to the slowest processes descr
above, we control the mean number of particle path cro
ings over tops of potential barriers and we discard all c
figurations in the ensemble until this quantity stabilizes.
computations are done for the chaos parameterK55. The
required number of iterations to reach relaxation is very s
sitive to the value of quantum parameter\: for example, at
\53 this number isNit;(2 –4)3102, while at\51 it is of
the order of 105–106. This explains why in the first studie
@11,12# done atNit<104 many details at\<2 were not seen
We study chains with up to 233 particles.

III. ELEMENTARY EXCITATIONS

The most important information about the quantum s
tem is contained in its spectrum of low-lying elementa
excitations. Being the net manifestation of system inter
structure it reflects any structural transition that can occu
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the system, and it provides a complete description of lo
temperature thermodynamic and kinetic properties. We
tract this spectrum using an approach based on the ana
of Fourier spectrum of Feynman paths. This approach p
vides a most direct way to see and resolve different exc
tions in the system. Then, we compare our method with
more traditional one, based on the study of time correlat
functions. This comparison provides a self-consistency ch
and demonstrates the advantages of our method.

A. Spectral properties of Feynman paths

In classical nonlinear dynamics, the Fourier analysis
trajectories plays a key role in understanding of periodic m
tion of complex systems. In a similar way, the spectral ch
acteristics of Feynman paths are closely related to the p
erties of elementary excitations in quantum systems. We s
our studies from the quasiclassical limit\→0, where this
relation is exact, and extend them to higher values of\.

Let us consider the Fourier image of the path varia
xi(t);

ai~vm!5
1

At0
E

0

t0
dt xi~t!exp~ ivmt!, ~11!

where vm5mÃ, Ã[2p/t0, and 2`,m,`. The path
variable xi(t) is real, thereforeai(2vm)5@ai(vm)#* . To
get insight into the physical content of this quantity let
consider the quasiclassical regime\!1. Then, for small
variationsxi(t)5 x̄i1dxi(t) around the classical static tra
jectory $x̄i%, one can expand action~6! up to the second-
order terms indxi(t). Next, using the spectral expansion f
dxi(t) and performing the integration overt, one gets

S5S0@ x̄#1(
m

(
i ,k

1

2
~vm

2 d ik2V ik
2 !ai~2vm!ak~vm!,

~12!

V ik
2 5d ik„21K cos~xi !…2d i ,k212d i 21,k . ~13!

Now, by the transformation to normal modesA( l )(vm)
5( iVi

( l )ai(vm), where eigenvectorsVi
( l ) satisfy the equation

V ik
2 Vk

( l )5n l
2Vi

( l ) , one gets the standard representation of
action as a sum of independent phonon modes:

S5S0@ x̄#1(
m

(
l

1

2
~vm

2 1n l
2!uA( l )~vm!u2. ~14!

Finally, the path integral~5! turns into a product of ordinary
integrals

Z5E )
l 51

s21

dA( l )~0!exp@2n l
2uA( l )~0!u2/2\#

3 )
m51

`

d ReA( l )~vm!d Im A( l )~vm!

3exp@2~vm
2 1n l

2!uA( l )~vm!u2/\#,
9-4
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and one arrives to the well known result for the correlator
free phonon modes:

^A( l )~vm!A( l )* ~vm8!&5
\dmm8

~vm
2 1n l

2!
. ~15!

We note that this result is obtained from Eq.~6!, where the
action iscontinuousin time variable. In the discretized ve
sion ~9!, the number of harmonics is finite:umu
50,1, . . . ,M , whereM5t0/2Dt. It can be shown that the
only modification induced by discretization is the replac
ment in Eq.~15!: vm→ṽm5(2vM /p)sin(pvm/2vM), vM
[MÃ. As a result, the spectral function for phonons
given by

F ( l )~ṽm![^uA( l )~vm!u2&5
\

~ṽm
2 1n l

2!
. ~16!

Hereafter, instead ofvm we assume its discretized versio
ṽm , and in the following the tilde will be omitted.

The expression~15! is the well known Wick rotated
Green function~in the frequency representation! for a single
free particle in the phonon field theory, which has in our ca
one spatial dimension.

In the quasiclassical regime, the amplitudes of phon
oscillations are small and the interactions between phon
due to anharmonicity of Hamiltonian~2! are negligible. At
higher\, the amplitudes of phonon vibrations grow as\1/2

and their interactions become more important. In gene
interactions can essentially modify the Green function~15!
for phonon excitations. This actually happens for\.\c ,
where the spectrum of excitations is significantly chang
However, one may expect that the spectral function of
ementary excitation remains of the same form

F ( l )~vm!5 f
\

~vm
2 1n l

2!
, ~17!

which differs from Eq.~15! by the renormalized frequenc
valuen l and by an overall renormalization factorf, in anal-
ogy with the Green function behavior in the renormaliza
quantum field theories~see, e.g., Ref.@29#!. In fact, this idea
is well supported by numerical data.

An extended elementary excitation involves all partic
in the chain. In turn, the Fourier harmonics of any parti
coordinate in the chain are a sum of contributions of ma
elementary excitations

^uai~vm!u2&5(
j

f i
( j ) \

~vm
2 1n j

2!
, ~18!

where the sum goes over all chain excitations. In the d
quasiclassical case, the main contribution comes fr
phonons modes, and the sum goes over phonon modl,
with f i

j→uVi
( l )u2 andn j→n l .

The goal of our study here is a complete picture of lo
lying quantum excitations in the chain, both for low and hi
05620
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values of\. In fact, the spectrum of low-lying excitations i
crucially dependent on\; there are domains with aqualita-
tively different behavior. In order to illustrate this, let us co
sider the amplitude of quantum motion of particles in t
chain, given by Eq.~18!. It is seen that the contributions o
low-frequency modes~small n l) dominate in the limitvm

→0, provided that their wave-function profilesVi
( l ) are not

small at the particle positioni. Therefore, the spectral func
tion ~18!, computed in this limit, gives a rough estimate f
the frequencyn l of the lowest mode.

In Fig. 1, the amplitude of thelowestFourier harmonic
ai(v1) with v15Ã52p/t0 is plotted as a function of the
particle positioni at different\50.628. One can see tha
the whole interval of\ splits naturally inthree regions of
qualitatively different behavior:~i! the quasiclassical region
\&1, where the amplitudesai(v1) of the harmonics are
very small and depend on the particle positions in so
regular way;~ii ! the transition region 1&\&2, where this
dependence is highly irregular and interactions between
stantons and phonons are important; and~iii ! the region\
*2, where this dependence becomes regular again
where, as we shall see below, a new phonon branch app
Let us note, that at\,1 the regular structure along the cha
is quasiperiodical, which reflect a fact that a classical chai
built of ‘‘bricks’’ of two principal sizes @28#. Above \'2
bricks are ‘‘melted’’ and chain properties become even m
homogeneous along the chain. In the intermediate region
regular peaks come from different nonoverlapping instant
contributions, which as any tunneling effects are highly s
sitive to small variations of potential barriers. Below the
contributions are exponentially small, and above, as we
further, they overlap and form newsliding phase of the sys-
tem.

In the following, we analyze in detail these regions, co
responding to different intervals of\.

FIG. 1. Dependence of the amplitude of the lowest Fourier h
monicai[ai(v1) on the particle positioni in the chain at different
\. Here, v15Ã52p/t0 , m51. The chain parameters ares/r
589/55, K55, and t0580. Typical number of iterations is
(1.5–5)3105 at each value of\. Here and in all other figures the
units are dimensionless~see text for the definition of model param
eters!.
9-5
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B. Quasiclassical region\›1

For \&1 the tunneling between different metastable cl
sical configurations is negligible, and the particles mai
vibrate around some classical equilibrium positions. In t
case, the elementary excitations are phonons, and the q
tization of the chain is reduced to the quantization of phon
modes, see, e.g., Ref.@18#.

To single out low-energy excitations, we use the follo
ing approach. Of course, a particular excitation can be
lected if the corresponding modeVj

( l ) is known, but, in gen-
eral, this is not a trivial task. However, for low-lyin
excitations one may expect that the modes have a sim
harmonic form

Vj~kl ![Vj
( l )5A2

L
sin~kl j !,

kl5p l /L ~ l 51,2, . . .!, ~19!

where the wavelengthl l[2p/kl is much larger than a char
acteristic size of inhomogeneity in the chain. Direct nume
cal computations@31# of phonon modes in the classical F
chain support this ansatz~19!.

The numerical test of this anzatz~19! is given in Fig. 2.
Here, a typical result of the quantum simulations of the sp
tral functionF ( l )(vm) is shown for the lowest phonon mod
l 51 at \50.8. Fitting the data by Eq.~17! with the renor-
malization factorf and the frequency of the phonon moden l

as free parameters, we obtainf 51.003460.0034 andn1
2

53.17060.012. This fit shows that the renormalization fa
tor f is remarkably close to unity, in spite of the fact that t
value \50.8 is not small. Hence, ansatz~19! provides a
good approximation to actual profiles of lowest phon
modes. This also indicates that the Gauss approxima
used in the Sec. III A and in papers@16,19,20# works fine
here. However, we note that at the same time the quan
effects renormalize substantially the phonon frequencyn1

2

FIG. 2. The phonon spectral functionF (1)(vm) versus the res-
caled frequencyvm , data are shown for the lowest spatial mo
with l 51. The chain parameters ares/r 589/55, K55, t0580,
and \50.8. Here,m varies from 1 to 89, but for clarity only se
lected values are shown. The solid curve gives the fit by Eqs.~16!
and ~17!, open circles show numerical data. The fit determines
phonon frequency of the first mode (n1

253.17060.012) and the
renormalization factorf 51.003460.0034.
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53.170) compared to its value at\50.2 (n1
253.706

60.019). The computations for the classical FK chain g
n1

253.717 (\50).
These data show that at small\ the frequencyn1 obtained

from the quantum simulations approaches to the freque
of phonon mode in the classical chain. This fact gives a v
important check of the consistency of our quantum simu
tions. We stress that a good agreement between the num
cal data of Fig. 2 and the theoretical spectral function~17!
takes place in thewhole frequency range ofvm . This is, in
fact, a very important consistency check of the good rel
ation of our paths ensemble at all frequencies, includ
paths fluctuations at the lowest frequency available in
system.

By fitting the data for different phonon modesl 51 –30
one can extract the dispersion relation for phononsn(k),
where k5p l /L ~see Fig. 3!. The majority of data points
follow the straight line given by the formula

n2~k!5n0
21c2k2, ~20!

wheren0 is the phonon frequency gap andc is the velocity of
sound. The fit of numerical data givesn0

253.20460.026,
c2515.060.7 for \50.8; n0

253.70660.019, c2513.3
60.5 for \50.2. These quantum data should be compa
with the classical case wheren0

253.697, c2511.5 (\50).
We note that there is a difference between the frequenc
the first spatial harmonicn1 and the frequency gap valuen0
obtained from the dispersion law. However, this difference
small and comparable with the statistical errors. For sma\
the parameters of the dispersion law converge to their c
sical values.

The described approach allows to obtain a complete
formation about low-energy phonon excitations in the wh
quasiclassical region\&1.

C. Transition region 1›\›2

As it is seen from Fig. 1, this region corresponds to t
transition between two regimes\&1 and\*2, where the
dependence of the quantum excitations on the particle lo
tion in the chain looks quite regular.

e

FIG. 3. The phonon dispersion lawn(k): open circles show the
data obtained from the fit as it is shown in Fig. 2 forl 51 –30 and
the straight line shows the fit given by Eq.~20!. The chain param-
eters are the same as in Fig. 2, the wave vectork5p l /L.
9-6
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QUANTUM PHASE TRANSITION IN THE FRENKEL- . . . PHYSICAL REVIEW E 67, 056209 ~2003!
As it will be shown later the irregular behavior in th
region 1&\&2 is related to a significant increase of th
density of instantons. At high density the interaction betwe
instantons becomes important and results in onset of
phonon branch at\.2. In this section, we discuss the pro
erties of instantons and phonons and obtain estimates
their frequencies.

Let us start with a discussion of tunneling effects. For\
,1 the contribution of tunneling to the spectral function
exponentially small being proportional to exp(2const/\).
However at\.1 the tunneling probability becomes larg
and it gives a significant contribution to the spectral functio
The transition to this regime is seen in Fig. 1 as a seque
of sharp isolated peaks. Following the pioneering paper@32#,
a tunneling event can be associated to aninstanton. In the
imaginary time representation, the instanton is a local ju
between two wells, which is fast compared to the mean t
interval between subsequent jumps: while the size of ins
tons ~in time t) is practically independent of\, the separa-
tion between them is exponentially large in the quasiclass
limit ~low instanton density!. In particular, this means that i
the first approximation one may consider instantons as in
pendent jumps, as can be also checked from a direct ex
nation of our path ensemble. Here, we should stress on
important properties of instantons in the quantum FK cha

~i! Each jump of a particlei in its positionxi gives dis-
placements of neighboring particles, which decay expon
tially with the distance from the jump location, i.e., insta
tons are exponentially localized in space inside the chain

~ii ! Instantons are distributed inhomogeneously along
chain since the tunneling probability is highly sensitive
variations of barrier heights due to chain inhomogeneity.

A simple explanation of the exponential localization of
instanton~along the chain! comes from the fact that the ne
static configuration produced by it can be seen as a lo
staticdefect on the original configuration, which is known
die away exponentially with the classical Lyapunov expon
@6,23,24#. Indeed, in Fig. 1 one can see that at\;1.2–1.3
instanton contributions are exponentially peaked aro
some particular positions along the chain.

Let us now consider the properties of elementary exc
tions originated by instantons. There is a question how
select numerically a single instanton excitation. Obvious
ansatz~19! used for phonons is good only for extend
modes, while instantons are localized in space. Therefor
this case, we analyze numerically the frequency spectrum
a given particlei in the chain@defined by Eq.~11!#. If \ is
not too high~close to one!, instantons do not overlap, and th
main contribution to the spectrum comes from the instan
that is near to the given particle. This contribution reaches
maximum for a particle that actually jumps.

At the same time besides instanton jumps, the quan
motion of a particle in the chain contains a contribution
many phonons with different frequencies@see, e.g., Eq.~18!#.
This phonon background should be subtracted in orde
single out the contribution of instanton. Fortunately, the f
quenciesn l of phonon excitations are much higher than t
frequencyn ( inst) of chosen instanton. Hence, these two typ
of excitations are well separated in the frequency dom
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Therefore, in our analysis of the instanton contribution to
spectral functionFi(vm)[^uai(vm)u2&, we can restrict our-
selves to the frequency domainvm,vbound, where the
boundaryvbound is chosen by the conditionn ( inst)!vbound
!n l for all phonon modesl. In this frequency domain, the
phonon contribution~16! is practically independent ofvm
and can be replaced by some constantCi . Thus, we can
extract the frequencyn ( inst) and the weightf i

( inst) of the in-
stanton excitation by following fit for the spectral functio
Fi(vm),

Fi~vm!5 f i
( inst)\/@vm

2 1~n i
( inst)!2#1Ci . ~21!

This fit contains three free parametersn i
( inst) , f i

( inst) , and
Ci .

If instantons do not overlap then one may expect t
there are groups of particles whose motion is dominated b
single instanton. Inside each group, fit~21! should give the
same values for the frequenciesn i

( inst) , while the variation of
weight f i

( inst) with i determines the instanton profile alon
the chain. This case is illustrated in Fig. 4~a!, which corre-
sponds to the early onset of instanton contribution at\
51.2. The six peaks in the bottom part of Fig. 4~a! show six
nonoverlapping instantons, while the top part shows the c
responding frequencies as a function of particle indexi in-
side the chain. The peaks have different amplitudes, and
highest three of them involve groups of three particles t
have the same frequency inside each group.

At higher \ the number of instantons starts to grow ra
idly and they begin to overlap. A direct confirmation of th
trend is seen in Fig. 4~b! which corresponds to\51.8. Here,
all instantons have about 10% overlap with their neighb
and their interaction is rather strong. As a result the step
structure of frequencies, seen at the top of Fig. 4~a!, is prac-
tically destroyed. Thus, the instantons are ‘‘collectivize

FIG. 4. Dependence of the instanton frequencyn i
( inst) ~top! and

its weight f i
( inst) ~bottom! on the positioni inside the chain~see text

for explanations!. ~a! \51.2 instantons do not overlap; the thre
highest peaks involves a group of three particles each.~b! \51.8
instantons overlap. Chain parameters ares/r 534/21, K55, and
t05320.
9-7
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and the consideration of a single instanton as one-par
jump over barrier becomes not adequate. At higher\ values,
this process leads to appearance of a new phonon mode

Let us now discuss the phonon properties in the reg
1&\&2. As in Sec. III B, we extract them from the spectr
function F(vm ,kl)[F ( l )(vm) obtained on the basis of an
satz~19! for a phonon model. However, in this region of\
the spectral functionF ( l )(vm) has an admixture of instan
tons, which grows rapidly with\; a change of\ from 1.1 to
1.2 results in more than ten times of the admixture wei
~see Fig. 5!. We note that in the absence of instanton con
bution the rescaled phonon spectral functionFR(v,kl)
[(n l

2/\)F(v,kl) plotted in Fig. 5 should have an univers
limit equal to unity independent of the value of\. Hence, the
increase ofFR(v,kl) at smallv stresses the important con
tribution of instantons. These instantons have different
quencies and their contribution to the spectral function
be rather complicated. However, we can use again the st
frequency separation between instanon and phonon ex
tions. Indeed, forvm*n l@n ( inst), all instanton contributions
have an universal behavior}vm

22 . Therefore, we may re
place them by a single ‘‘instanton contribution’’ with som
average instanton frequencyn̄ inst. Then, the spectral func
tion can be fitted by a sum of two contributions

F~vm ,kl !5 f ph\/@vm
2 1n l

2~kl !#1 f inst\/$vm
2 1@ n̄ inst~kl !

2#%,

~22!

where f ph(k),n l(k), and f inst(k),n̄ in(k) are free fit param-
eters for phonons and instantons, respectively.

Fitting the data for different phonon modes atl 51230,
we extract the phonon dispersion law~20! ~see Fig. 6, com-
pare with fit procedure for\,1). Contrary to the case o
Fig. 3 at\,1, now the data for the dispersion lawn(k) are
scattered inside some finite band. This indicates that an
~19! for the phonon profile is not so good to single out p
ticular phonon modes. Actually, the width of the band p
vides some measure of the inaccuracy. Nevertheless, the

FIG. 5. Rescaled spectral functionFR(v,k1)5(n1
2/\)F(v,k1)

at the very beginning of instanton onset. The bump which app
atv&0.2 corresponds to instanton admixture to the phonon spe
function. Black points, open circles, and stars correspond to\
51, 1.1, and 1.2. Lines show the fit to numerical data with E
~22!. Chain parameters used in simulations ares/r 534/21, K55,
andt05320.
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non modes are still approximately defined in the domain o\
under consideration. Their frequency decreases as\→2 but
remains separated from zero by a finite gap.

We also note that fit~22! allows formally to determine the
dispersion lawn inst(k) for the instanton branch. Howeve
the numerical data give irregular scattering of points insid
band 0<n inst

2 &0.01 without any clear dependence onk. The
reason of such behavior is simple; projections of irregu
positions of instantons on the harmonic ansatz~19! produce
random weights for contributions of different instanton
This result represents another manifestation of glass
structure formed by instantons frozen or pinned inside
chain. Since the positions of instantons are random
phonons cannot propagate along the chain on large distan
In fact, they become localized by disorder in a way similar
the one-dimensional Anderson localization~more details on
the phonon properties in this regime will be presented e
where@31#!.

D. New sliding phonon branch at\Ì2

From Fig. 1 one can see that the variation of the am
tude ai(v1) with i ~low-frequency excitations! becomes

FIG. 6. Frequencyn(k) of phonons versus wave numberk ob-
tained from fit ~22! at \51.5 ~in the middle of the transition re-
gion!. Chain parameters used in simulations ares/r 589/55, K
55, andt0580.

FIG. 7. A sample of quantum paths of particles inside so
chain fragment, which corresponds to periods of the external po
tial with numbers 22–30. Dashed lines show bottoms of the we
thick solid lines show the tops of the barriers. Note an example
highly correlated instanton transitions att515230 which involve
particles in up to five periods of the potential. Parameters of
simulation are\52.3, s/r 589/55, K55, andt0580.
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QUANTUM PHASE TRANSITION IN THE FRENKEL- . . . PHYSICAL REVIEW E 67, 056209 ~2003!
rather smooth at\.2. This means that the instantons a
strongly overlapped here. In fact, this means that several
ticles of some chain fragment jumps from one well to t
next simultaneously~see Fig. 7!. This is nothing but sliding
of a local chain fragment along the periodical potential. T
typical size of such fragments should grow with\. If their
sizes reach the size of the chain then the sliding mode
comes open, and the phonon gap disappears. At this poin
pinned instanton glass turns into the sliding phonon gas.

A confirmation of this picture is presented in Fig. 8, whi
corresponds to\52.5 being just above the transition poi
\c'2. The numerical data for the dispersion lawn(k) in
Fig. 8 are obtained from fit~22! at \.2. Here, the behavio
of phonon and instanton modes changes dramatica
phonons datan(k) are now irregularly scattered over a wid
band, while the data points for instanton branch follow
single line, reproducing fairly well a phononlike dispersio
law with zero gap~see Figs. 8 and 9!. In particular, fit~20!
gives n050.0460.01, which is close to zero. In fact, th
value is smaller than the minimal frequency 2p/t0
('0.079, att0580) and therefore it is compatible with zer

On the contrary, the wide scattering of data points for
phonon branch indicates that ansatz~19! is not good for pho-
non contribution at\*2 ~see Fig. 9!. This scattering of
points is related to the localization of high-frequency phon
modes. In contrast, a smooth behavior of data points for
instanton branch demonstrates that the instanton wave f

FIG. 8. The dispersion lawn(k) for sliding phonons at\
52.5. The numerical data~circles with error bars! are obtained
from fit ~22! for the instanton branchn inst(kl). The straight line
shows the best fit~20! to numerical data. The chain parameters us
in simulations ares/r 589/55, K55, andt0580.

FIG. 9. The frequencyn(k) of elementary excitations versus th
wave numberk at different\. Chain parameters used in simulatio
ares/r 589/55,K55, andt0580. The two sheets 1 and 2 refer
phonon and instanton excitations, respectively.
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tions become close to the harmonic wave ansatz~19!. Hence,
these excitations are delocalized. This leads us to the con
sion that for\.2 the instanton branch is replaced by a ne
gapless branch of new sliding phonons.

E. Global picture of elementary excitations in the FK chain

The ensemble of data for the dispersion lawn(k) of el-
ementary excitations at different values of\ is shown in Fig.
9 by the two sheets representing the phonon branch~1! and
the instanton branch~2!. The numerical data are obtaine
with ansatz~19! by fit ~22!.

Sheet 1 refers to phonons originated from classical p
non modes, which are well reproduced in the limit\→0.
The frequencies of these modes are well separated from
by a large gap. Therefore, one may say that they form
optical phonon branch. At\*1 these modes show a ten
dency to become softer and at\*1.5 their dependence onk
and\ becomes irregular. As it was explained in the prece
ing section, this irregular dependence is related to the gl
like structure of randomly pinned instantons where dens
increases with the growth of\. Sheet 2 appears at\,2
from the instanton contributions into the Feynman path in
gral. For \.\c'2 this instanton branch turns into a ne
gapless branch of sliding phonons~see the discussion relate
to Fig. 8!.

A more quantitative picture can be obtained from the n
merical data for the gapn0 and the sound velocityc for both
sheets in Fig. 9. For the optical phonon branch the value
n0 andc are determined from fit~22! for different values of
\ ~see Fig. 10!. The data show that the phonon gap rema
finite and large at\,\c'2. In contrast, the sound velocit
c drops to zero as\ approaches the value\c . This decay is
compatible with the fit

c25a~\c2\!a, ~23!

shown by the solid line witha520.561.3, \c52.060.1,
and the critical exponenta50.5260.07. Even if the numeri-

d

FIG. 10. Dependence of the phonon gapn0 and sound velocity
c on \ for the case of Fig. 9 atK55. Open symbols correspond t
sheet 1 in Fig. 9. Circles and triangles are obtained att0580 for
chain sizess/r 589/55 and 233/144, respectively. Stars correspo
to s/r 534/21 andt05320. The solid line~bottom! gives fit ~23!
for 1.3<\<2 ~see text!. The full circles~top! for \.2 refer to the
sliding phonon branch from sheet 2 of Fig. 9, they indicate a z
phonon gap.
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ZHIROV, CASATI, AND SHEPELYANSKY PHYSICAL REVIEW E67, 056209 ~2003!
cal data forc have certain fluctuations they still clearly ind
cate the quantum phase transition at\c'2, where the sound
velocity c drops to zero. Further extensive numerical stud
are required to determine the behavior in the vicinity of tra
sition in a more precise way.

For the sliding phonon branch, we extract the parame
n0 and c from the data of sheet 2 in Fig. 9 using a mo
general fit given by

n2~k!5n0
21c2k2/~11k2/kB

2 !.

Compared to the standard case~20!, we introduce an addi-
tional parameterkB to take into account the saturation
n(k) at largek ~see, Figs. 8 and 9!. The numerical data show
that the gapn0 is small and does not exceed the minim
frequency in the systemÃ52p/t0. Hence, the gapn0 is
compatible with zero@see Fig. 10~top!#. At the same time
the sound velocityc for the sliding phonon branch grow
approximately linearly with\ ~see Fig. 11!. The best fit of
numerical data for\.2 gives

c25a~\2b!, ~24!

with a57.660.1, b51.5760.05. Formally, the value ofb is
different from the value\c52.0 in Eq. ~23!. However, in
view of large statistical fluctuations both fits for optic
phonons and sliding phonons are compatible with the qu
tum phase transition at\c'2. Indeed, the formal statistica
error given by the error bars do not take into account a p
sibility that in the vicinity of critical point the sound velocit
may have systematic deviations from the simple fit used
Eq. ~24!. Also it is well known that the formal power law fit
are not very accurate in the vicinity of a critical point. Fro
this point of view a slight difference for the critical values
\c are acceptable. In addition, the longwave response g
\c'2 ~see Sec. IV B!.

F. Time correlations

Time correlations are closely related to the frequen
spectrum of elementary excitations in the system. Th
analysis is probably the most traditional way to extract pr
erties of the elementary excitations, see, e.g., Refs.@33,34#.
Below, we discuss the connection of this traditional meth
with our approach based on the Fourier spectrum of Fe

FIG. 11. Dependence of sound velocityc on \ for excitations on
the soft phonon sheet 2 in Fig. 9. Points correspond to chain pa
eterss/r 589/55, K55, andt0580. The solid line shows the lin
ear fit to the sound velocity data inside the region\.2 ~see text!.
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man paths described above. We compare the results obta
by these two different methods.

The one-particle time correlators are directly related to
Fourier spectrum of Feynman paths, and are given by
following expression:

^xi~0!xi~t!&5
1

At0
(
vm

uai~vm!u2 exp~2 ivmt!.

In fact, many elementary excitations with different freque
cies contribute to a particle motion in the chain. In order
single out a particular phonon mode, we study the correla
of normal modesXl(t)5( iVi

( l )xi(t) whereVi
( l ) are eigen-

vectors defined in Eqs.~13! and~14!. Then from Eq.~15!, we
obtain

^Xl~0!Xl~t!&5
1

At0
(
vm

uAl~vm!u2 exp~2 ivmt!

5^~Xl~0!!2&~e2n lt1e2n l (t02t)!, ~25!

where^(Xl(0))2&5\/2n l is the contribution of a single pho
non mode and the periodicity along the time torus results
a second exponential term in Eq.~25!.

However, Eq.~15! assumes only small quantum fluctu
tions (;\) around someclassicaltrajectory. But due to the
tunneling effects~or instantons! a particle jumps from one
classicaltrajectory to another and its actual motion is giv
by a sum of phononxi

(ph)(t) and instantonxi
( inst)(t) contri-

butions:

xi~t!5xi
(ph)~t!1xi

( inst)~t!.

In general, both motions influence each other, but in the q
siclassical limit\→0 they can be considered as independe
In this limit, they have quite different frequency scales; t
phonon frequencyn l is of the order ofK1/2, while the fre-
quency of tunneling jumpsn inst is exponentially small. In
contrast, while the amplitude of phonon oscillations in t
limit \→0 is small: ^@xi

(ph)(t)#2&}\, the amplitude of
jumps is defined by the difference between equilibrium p
ticle positions in two neighboring wells~in our case it is
;3 –4), i.e., it does not depend on\. Hence, for a jumping
particle ^@xi

( inst)(t)#2&;10 which is not small even in the
quasiclassical limit\→0. Therefore, the instanton contribu
tion to the time correlator has the form@34#

^xi~0!xi~t!& inst5^@xi
( inst)~t!#2&~e2n instt1e2n inst(t02t)!.

~26!

The preexponent factor is large for jumping particles even
the deep quasiclassical regime.

In fact, not any particle can easily jump from one well
another: different classical trajectories have different acti
and all jumps that result in a large change of actionDS*\
are inhibited. In particular, it is clearly seen in Fig. 1 that t
number of instanton peaks is smaller at smaller\ since the
contribution of transitions with large difference in actionDS
is suppressed.

m-
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QUANTUM PHASE TRANSITION IN THE FRENKEL- . . . PHYSICAL REVIEW E 67, 056209 ~2003!
Finally, the general form for the time correlator that tak
into account the instantons contribution takes the form

C~t![^Xl~0!Xl~t!&5^~Xl~0!!2&~e2n lt1e2n l (t02t)!

1(
inst

win~e2n instt1e2n inst(t02t)!. ~27!

Here, the first term describes the phonon contribution an
the second term the sum is taken over instantons and
instanton weightswinst5( i ,kVi

( l )Vk
( l )^xi(0)xk(0)& describe

the overlap with ansatz~19!. Both types of contributions~27!
are clearly seen in Fig. 12 at\51.4. The initial rapid drop at
t&1.5 corresponds to phonon contribution, while the sl
decay att.1.5 corresponds to the instanton contributio
This initial drop is related to the existence of large quasicl
sical gap for phonon excitations. For\52.5.\c , the gap
disappears and the correlator decay very slowly~see Fig. 12!.

For \.\c , we have a new phase where instantons
replaced by sliding phonons. Therefore in this regime, we
the numerical data forC(t) by Eq. ~27! with winst50. The
results for differentl allow to obtain numerically the disper
sion lawn(k) shown in Fig. 13~open circles!. However, the

FIG. 12. The numerically computed time correlatorC(t)
5^Xl(0)Xl(t)& for l 51 at different time separationst for \51.4
~lower points! and \52.5 ~upper points!. The parameters of the
chain ares/r 589/55, K55, andt0580.

FIG. 13. Frequency of elementary excitationsn(k) versusk for
sliding phonon branch at\52.5. Open circles show data extracte
from the time correlatorC(t) for different l ~see Fig. 12!, full
circles present the results obtained from fit~22! for the frequency
spectrum of Feynman paths~see Fig. 8!. The chain parameters ar
the same as in Fig. 12.
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accuracy of this data is not so good compared to data~full
circles! obtained from the analysis of Fourier spectrum
Feynman paths described in the previous sections.

IV. QUANTUM PHASE TRANSITION

The structual rearrangement of the elementary excitati
spectrum can be related to thequantum phase transitionin
the chain from a pinned to sliding phase. However, we wo
like to stress that in contrast to the classical picture@23,24# in
the quantum case the absence of energy gap for excitatio
not necessarily related to the opening of the sliding pha
Indeed, due to quantum tunneling through Peierls-Nabba
barriers related to instantons there are excitations with
ergy which decreases exponentially with the increase of b
rier heights. Formally, this corresponds to the disappeara
of excitation gap. Therefore, to confirm firmly the appea
ance of sliding phase, we need to consider spatial corr
tions of particle motion in the chain. The sliding phase a
pears when the spatial correlation length becom
comparable with the length of the chain.

A. Spatial correlation length

The analysis of spatial correlations~correlations between
the motion of different particles in the chain! is the most
evident way to observe the transition between pinned
sliding phases. In principle, the spatial correlation functi
can be explicitly computed if the spectrum and the wa
functions of elementary excitations are known. In fact,
have a complete quantitative picture forphononmodes, at
least for the low-lying ones. To obtain numerically the val
of the spatial correlation lengthl c , we assume that the el
ementary excitation spectrum is given by the dispersion
lation n2(k)5n0

21c2k2 and the corresponding phono
modes are given in ansatz~19!. Then the same-time spatia
correlator reads

^~xi2^xi&!~xj2^xj&!&5(
l

Vi
( l )Vk

( l )^@Xl~0!#2&

5\(
k

cos@k~ i 2 j !#

Ln~k!

5
\

pc
K0~ u i 2 j u/ l c!, ~28!

whereK0(x) is McDonald’s function, with a known asymp
totics: K0(x)→x→`A(p/2x)e2x and l c5c/n0.

Fit ~28! of the numerical data gives the value ofl c for
different values of\ as it is shown in Fig. 14. It is seen tha
the lengthl c has a sharp increase at\c'2, and for\.\c it
becomes comparable with the length of the chain. This in
cates that we have thequantum phase transitionnear \c
'2. Indeed at\,2 the lengthl c is practically independen
of the chain lengthL, while at\.2 it starts to increase with
L. This is confirmed by the data of Fig. 14, where in spite
strong fluctuations for\.2 the lengthl c becomes compa
rable with the chain sizeL.
9-11
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B. Longwave response

The appearance of the new sliding phonon phase imp
that the response of amplitude of the longwave modes sh
be large in this regime. To test this expectation, we pres
the dependence of the amplitudeAl(v50) on \ in Fig. 15.
The numerical data demonstrate a sharp increase ofAl(0)
near\c'2. It is interesting to note that due to the existen
of frequency gap for phonon excitations at\,\c the ampli-
tudeAl(0) is not very sensitive to the variations ofl. On the
contrary, for\.\c the gap disappears andAl(0) starts to
depend onl @see Fig. 15~a!#. In a similar wayAl(0) is inde-
pendent of the chain lengthL for \,\c , while at \.\c it
grows with L @see Fig. 15~b!#. The numerical data of Fig
15~b! for 1.5<\<2 can be described by the fit

^@Al~0!#2&'A~\c2\!2g, ~29!

which givesg55.0661.72 and\c52.0160.05.

FIG. 14. The dependence of the spatial correlation lengthl c on
\. Crosses, full, and open circles correspond to chains withs/r
534/21, 89/55, and 233/144, respectively;K55, t0580. The ver-
tical dot-dashed line marks the quantum phase transition a\c

'2. The positions of the horizontal dotted lines are proportiona
the chain lengthL52pr .

FIG. 15. The amplitude square of zero-frequency quantum fl
tuations@Al(0)#2 as a function of\ for K55 andt0580. ~a! Full
circles, squares, and open circles are for modesl 51,3, and 5, re-
spectively, for the chain withs/r 589/55. ~b! Open circles, full
circles, and stars are fors/r 5233/144, 89/55, and 34/21, respe
tively; l 51. The vertical dot-dashed lines mark\c'2, the horizon-
tal dotted lines give the average values for\.2.
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C. Other characteristics

Another way to test the transition from the pinned insta
ton glass to the sliding phonon phase is to measure the
sitivity to small shifts of boundaries of the chain. With th
aim, we consider the shift of boundary particlesi 50 and i
5s given by

x0~t!5aS cos~2pt/t0!, xs~t!5x01L, ~30!

where the amplitudeaS was fixed ataS50.5. In Fig. 16, we
present the dependence of the response functionR( i )
5^x0(xi2^xi&)&/^x0

2& on the particle numberi inside the
chain. It is seen that the response in the center of the c
drops strongly when the parameter\ changes from\52.2 to
\51.8. This means that the chain is locked for\,\c'2,
while for \.\c the chain slides following the displacemen
of the boundary particles.

In order to get a more quantitative picture, we estim
the value of the response functionR( i ) at its minimum in the
middle of the chain by taking its average value inside
central region ati 512–22: Rmin5^R( i )& i ~this interval is
shown in Fig. 16 by horizontal dashed lines!. The depen-
dence ofRmin on the parameter\ is presented in Fig. 17. We
see that the correlator in the central region of the chain
viates from zero at\.2. According to the numerical dat
the responseRmin is very small for\,\c'2, while it be-
comes rather strong for\.\c . This confirms the existence
of the quantum phase transition from the pinned to slid
phase at\5\c'2.

o

-

FIG. 16. Dependence of the response functionR( i ) on the par-
ticle positioni in the chain at\51.8 ~full circles! and\52.2 ~open
circles!. The horizontal dashed lines show the interval of averag
for the minimal response valueRmin in Fig. 17. Parameters of the
chain ares/r 534/21, K55, andt0580.

FIG. 17. Dependence of the minimal responseRmin on \ for the
parameters of Fig. 16.
9-12
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QUANTUM PHASE TRANSITION IN THE FRENKEL- . . . PHYSICAL REVIEW E 67, 056209 ~2003!
What is the order of this transition? In our simulations, w
have repeated a cycle changing slowly\ from \51 to \
54 and back about hundred times, but no hysteresis
found within the statistical errors. Indeed, the difference
the chain energy per particle at the upward and backw
paths did not exceed 1023. This difference should be com
pared with the change of the energy per particledE'2.4
which takes place when\ changes from\51 to \54. The
absence of hysteresis excludes the phase transition of the
order. We also do not see any breaks in the dependence o
chain energy on\. In order to make small deviations from
linear law more visible, we plot in Fig. 18 the quantity (e
2e0)/\, wheree055.302. The numerical data show that t
slope of energy dependence changes near\5\c'2. This
change of slope is located approximately at the same v
of \ where the divergence of the correlation length tak
place ~see Fig. 14!. These data indicate that we have
second-order quantum phase transition that appears ne\c
'2. However, more extensive numerical simulations are
quired to determine more precisely the order of the tran
tion.

V. CONCLUSIONS

We have studied quantum tunneling phenomena in a
ticular model of glassy material, the Frenkel-Kontoro
chain. This system has a lot of states, which are expon
tially degenerate and~meta!stable in the ~quasi!classical
limit. In the quantum case, there are tunneling transitio
between these states that can be understood in terms o
stanton dynamics. In the quasiclassical limit, at small\ the

FIG. 18. Dependence of the total chain energy per particle o\
for the chain parametersK55, s/r 589/55, and t0580; e0

55.302 is an energy point chosen from convenience or illustra
reasons.
e
ys
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instanton density is small and instantons are local and
lated. With the increase of\ their density grows and they
start to overlap.

At sufficiently large\ the instantons are coupled and b
come collectivized. As a result, the tunneling of particles
some fragments of the chain proceeds in correlated way.
size of these correlations grows until it reaches the size of
system. This leads to appearance of extended excitations
opening of a new gapless sliding phonon branch. Our d
show that a quantum phase transition takes place betwee
pinned and sliding phases. Absence of hysteresis effects
well as continuous dependence of chain energy on\ exclude
the first-order phase transition, so we can classify this tr
sition as a continuous quantum phase transition. We st
that the quantum phase transition from pinned to slid
phase takes place in the regime where the classical c
always remains in the pinned phase with the finite phon
gap.

The direct analysis of Fourier spectrum of Feynman pa
ensemble allowed to obtain detailed information on the d
persion law of low-lying excitations in both quantum phas
Nevertheless, some questions remain open for further in
tigations. For example, one can analyze in more detail
effects of interactions between instantons at low density
study their propagation properties in this regime. Anoth
interesting remark concerns the behavior of the system in
vicinity of the transition point at\c'2. Indeed, in this re-
gion the kinetic energy per particle is'0.6, that is, about ten
times smaller than the height of the potential barrier atK
55. Therefore, more insights are required to understand
underlying physics of this transition.

One can ask on how general are our results obtaine
the frame of the Frenkel-Kontorova model? In fact, we ne
used any specific features of this model related to its n
trivial number theory properties. The only essential point
the existence of an exponential number of quasidegene
states which is common for glassy materials and other di
der systems. Therefore, it is very interesting to study
analogous quantum phase transition in systems with diso
and interactions.
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