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Quantum computing of quantum chaos in the kicked rotator model

B. Lévi, B. Georgeot, and D. L. Shepelyansky
Laboratoire de Physique Quantique, UMR 5626 du CNRS, Universite´ Paul Sabatier, F-31062 Toulouse Cedex 4, France

~Received 21 October 2002; revised manuscript received 6 February 2003; published 25 April 2003!

We investigate a quantum algorithm that simulates efficiently the quantum kicked rotator model, a system
that displays rich physical properties and enables to study problems of quantum chaos, atomic physics, and
localization of electrons in solids. The effects of errors in gate operations are tested on this algorithm in
numerical simulations with up to 20 qubits. In this way various physical quantities are investigated. Some of
them, such as second moment of probability distribution and tunneling transitions through invariant curves, are
shown to be particularly sensitive to errors. However, investigations of the fidelity and the Wigner and Husimi
distributions show that these physical quantities are robust in presence of imperfections. This implies that the
algorithm can simulate the dynamics of quantum chaos in presence of a moderate amount of noise.
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I. INTRODUCTION

It is only recently that it was realized that quantum m
chanics can be used to process information in fundamen
new ways. In particular, Feynman@1# emphasized that the
massive parallelism due to the superposition principle m
allow to simulate efficiently some problems intractable
classical computers, the most obvious being many-b
quantum systems. Since that time, a model of quantum c
puter has been set up, viewed as an ensemble ofn qubits, i.e.,
two-level systems, with a Hilbert space of dimension 2n ~see
reviews @2–4#!. Computation is performed through unita
transformations applied to the quantum wave functions
this many-body system. In fact, it has been shown that
unitary transformation on this 2n-dimensional space can b
written in terms of a set of universal gates, for example, o
and two-qubit transformations. Also, important quantum
gorithms have been developed, such as Shor’s algorithm
factoring large numbers@5#, which is exponentially faste
than any known classical method, and Grover’s algorithm
search a database@6#, where the gain is polynomial.

Motivated by these developments, many experimen
implementations for actual realization of such a quant
computer were proposed~see Ref. @4# and references
therein!. Recent results include, for example, the NM
implementation of factorization algorithm with seven qub
made from nuclear spins in a molecule@7# and the simulation
of the quantum baker map@8#. Thus, small quantum compu
ers with a few qubits are already available experimenta
and systems of larger size can be envisioned at relati
short term.

Still, algorithms such as that of Shor require large num
of qubits and the use of many gates. It is, therefore, imp
tant to develop algorithms that need a smaller number
qubits and gates and still can yield interesting quantities
particular, algorithms enabling to simulate quantum m
chanical systems, as originally envisioned by Feynman,
be implemented relatively easily and solve problems inacc
sible to classical computers with less expense in numbe
qubits and gates. Several such algorithms have been d
oped for various systems, including many-body Hamil
nians@9# or spin lattices@10#. An especially interesting clas
1063-651X/2003/67~4!/046220~10!/$20.00 67 0462
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of systems corresponds to chaotic quantum maps. Such
tems can have a very complex dynamics while their Ham
tonians keep a relatively simple form. Algorithms for fa
simulation on a quantum computer were built for the qua
tum baker map@11#, the kicked rotator@12#, and the saw-
tooth map@13#. We note that recently the quantum baker m
was implemented on a NMR quantum computer@8#. The
kicked rotator is an especially rich and generic syste
which has been a cornerstone for the study of quantum ch
@14#. In the classical limit it reduces to the Chirikov standa
map, which has been also extensively studied in the field
classical chaos@15#. Implementation of this model can b
done on a small quantum computer with a few tens of qub
and classical supercomputers will be outperformed with
few hundreds of qubits. Still, real quantum computers w
not be free of imperfections and errors, and this will affe
the results of the computation. It is, therefore, important
understand the effects of different sources of errors on
results of such an algorithm. For example, first numeri
simulations of the quantum computation of this model@16#
have shown that errors affect in a different way the vario
physical quantities characterizing the model, and that
some of them the effect of errors can be exponentia
strong.

In this paper, after presenting in more detail the physics
the kicked rotator, we study the effects of errors on seve
physical quantities. We focus on random unitary erro
which may arise when imperfect gates are applied, and st
first how global quantities such as second moment or fide
are affected by errors. Our results confirm and extend th
obtained in Ref.@16# showing a marked contrast in the b
havior of these two quantities in presence of errors. We a
investigate how well the whole wave function is reproduc
by an imperfect quantum computer. A particularly interesti
way to display wave functions is to express them throu
phase-space distributions, such as the Wigner and Hu
functions. These distributions display the same informat
as the wave functions, but in a form which allows dire
comparisons between classical and quantum dynamic
property especially interesting to probe the classical limit
quantum mechanics. They have been extensively use
many fields, and recently a method has been devised@17# to
©2003 The American Physical Society20-1
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measure such distribution for quantum simulations on qu
tum computers. The effects of errors on the Wigner and H
simi functions will be investigated in details, showing ho
imperfections affect the different parts of phase space,
discussing how information can be retrieved through qu
tum measurement. A separate section is focused on ho
localized distribution may escape from an island of integ
bility, showing an especially large effect of quantum erro
on a quantity that is directly relevant to quantum tunnelin

II. THE KICKED ROTATOR

The classical kicked rotator is described by the Chirik
standard map@14,15#:

n̄5n1k sinu, ū5u1Tn̄, ~1!

where (n,u) is the pair of conjugated momentum~action!
and angle variables, and the bars denote the resulting
ables after one iteration of the map. It describes a free a
rotation and a kick in momentum. This area-preserving m
has been extensively studied during the past decades an
been applied to problems such as particle confinemen
magnetic traps, beam dynamics in accelerators, comet tra
tories, and many others@15#.

The dynamics of this map takes place on a cylinder~pe-
riodicity in u) and is controlled by a single parameterK
5kT. For K50 the system is integrable and all trajectori
lie on one-dimensional tori~lines n5constant). ForK.0,
the system undergoes a transition to chaos, which follows
Kolmogorov-Arnold-Moser~KAM ! theorem. Periodic orbits
corresponding to rational frequencies are transformed
chains of integrable islands mixed with chaotic region.
the contrary, tori with irrational frequencies are deformed
survive, forming invariant curves that separate zones
phase space. AsK is increased, these surviving tori becom
Cantor sets~cantori! and disappear. The most robust tor
corresponds to the golden number (11A5)/2, and disap-
pears forK5Kg'0.9716 . . . . Thus, forK.Kg global chaos
sets in, with appearance of an extended chaotic regio
phase space and with dynamics characterized by a pos
Kolmogorov-Sinai entropyh' ln(K/2).0 ~for K>6). In
this régime, a typical trajectory shows diffusive growth o
momentum, which statistically can be described by
Fokker-Planck equation, with diffusion rateD5n2/t'k2/2,
wheret is measured in number of iterations~kicks! @14,15#.
For lower values ofK, the phase space displays a comp
hierarchical structure with integrable islands surrounded
chaotic zones at smaller and smaller scales.

Map ~1! is periodic inn with period 2p/T, so the phase-
space structures repeat themselves on each cell of size 2p/T.
Such a cell is shown in Fig. 1 forK5Kg , displaying the
complex hierarchical structures that appear in the ph
space.

The quantization of Eq.~1! yields a Hamiltonian, which
after integration over one period gives a unitary evolut
operator acting on wave functionc:

c̄5Ûc5e2 ik cosûe2 iTn̂2/2c, ~2!
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wheren̂52 i ]/]u, \51, andc(u12p)5c(u). The quan-
tum dynamics depends on two parametersk andT ~instead of
the single parameterK5kT for the classical one!. The clas-
sical limit corresponds tok→`, T→0 while keepingK
5kT5constant@14,18,19#. In a sense,T plays the role of an
effective\.

Depending on the values of theses parameters, the sy
follows different régimes, from regularity to quantum chao
Due to this variety of behaviors, the quantum kicked rota
has been intensively studied~see Refs.@14,18,19# and refer-
ences therein!. Indeed, most of the phenomena characteris
of quantum chaos are present, such as quantum ergod
random matrix theory statistics, chaos assisted tunneling,
others. In particular, forK.Kg , the phenomenon of dynami
cal localization appears. Although in this re´gime a typical
classical trajectory diffuses in momentum, eigenstatesxm(n)
of operatorÛ in momentum space are exponentially loca
ized for typical values ofk andT. Their envelopes obey the
law xm(n);exp(2un2mu/l)/Al , wherem marks the center of
the eigenstate andl is the localization length. Fork@K@1
this length is determined by the classical diffusion ratel
5D/2'k2/4 @18#. This phenomenon has close relationsh
with the Anderson localization of electrons in disordered s
ids @20#, and investigation of the kicked rotator gives info
mation on this important solid-state problem still under
tensive investigation nowadays. The quantum kicked rota
describes also the properties of microwave ionization of
Rydberg atoms@21#. It has been realized experimentally wit
cold atoms, and the effects of dynamical localization, ext
nal noise, and decoherence have been studied experimen
@22#.

For numerical studies of quantum evolution~2! it is con-
venient to choose the case of quantum resonance
T/(4p)5M /N, whereM ,N are integers@19#. In this way

FIG. 1. Plot of the classical phase space atK5Kg

50.9716 . . . @ t5104 iterations of Eq.~1! for 200 points#.
0-2
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the quantum dynamics takes place on a torus withN levels.
For l @N the eigenstates of evolution operator become
godic and the level spacing statistics is described by the
dom matrix theory@19#.

The algorithm for the quantum simulation of the kicke
rotator was presented in Ref.@12#. Evolution ~2! consists of
the product of two unitary operators that are diagonal in
angle and momentum bases, respectively. The most effic
classical algorithm available consists in changing back
the forth between the angle and the momentum represe
tion by the fast Fourier transforms~FFT!. The operator that
is diagonal in the basis is then implemented by direct mu
plication of the coefficients of the wave function. In tota
one iteration of Eq.~2! on a Hilbert space of dimensionN
52nq requiresO(N logN) classical operations, the limiting
steps being the FFT. The quantum algorithm follows
classical one, and speeds up all parts of it to obtain expon
tial increase of computation rate. First, an initial distributi
is built, in a polynomial number of operations~in nq). Vari-
ous initial wave functions can be built in this way. In th
following, we will use as initial stateuC0& a wave function
localized at a precise value of momentumn, which can be
built in nq single-qubit rotations starting from the groun
state. The general state of the system can be written
(n50

N21anun&, wherean are the amplitudes of the wave fun
tion on theun& basis state. Then the first unitary operator
applied. In then representation it is diagonal and can
written as exp(2iTn2/2). This operator can be implemente
efficiently by using the binary decomposition ofn: if
n5( j 50

nq21a j2
j , then n25( j 1 , j 2

a j 1
a j 2

2 j 11 j 2. Therefore,

exp(2iTn2/2)5P j 1 , j 2
exp(2iTaj1

aj2
2j11j221) with a j 1,2

50

or 1. Thus, one needs to implement the two-qubit gate
plied to each qubit pair (j 1 , j 2) that keeps the state
u00&,u01&,u10& unchanged, whileu11& is transformed to
exp(2iT2j11j221)u11&. O(nq

2) applications of this gate ar
sufficient to simulate exp(2iTn2/2).

Then a quantum Fourier transform~QFT! ~see, e.g., Ref.
@2#! is performed to shift fromn to u representation, yielding
( i 50

N21bi uu i&. This transformation needs onlyO(nq
2) one- and

two-qubit gates, and yields the wave function inu represen-
tation. In this representation, the second opera
exp(2ik cosû) is diagonal. Direct~sequential! multiplication
by exp(2ik cosui) for each u i will require exponentially
many operations, so a parallel way to apply this operator
to be devised. In Ref.@12#, it was proposed to use supple
mentary registers in which the values of cos(ui) will be com-
puted in parallel. The procedure transforms( i 50

N21bi uu i&u0&
into ( i 50

N21bi uu i&ucosui&, with cos(ui) computed up to a fixed
precision using a recursive method based on Moivre’s
mula @12#. This is actually the slowest step of the algorith
requiring O(nq

3) elementary operations. From the sta
( i 50

N21bi uu i&ucosui&, it is easy by usingnq one-qubit opera-
tions to build the state( i 50

N21biexp(2ik cosui)uui&ucosui&.
Then the cosines in the last register are revers
erased by running backward the sequence of gates
constructed them, and one ends up with the s
( i 50

N21biexp(2ik cosui)uui&u0&, which is the result of the action
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of the unitary operator exp(2ik cosû). Another QFT@requir-
ing O(nq

2) operations# takes the wave function back to then
representation.

Increasingnq , which exponentially increases the dime
sion of the Hilbert space available, enables to probe vari
physical limits in the system. IfK5kT is kept constant, the
classical mechanics remains the same. IfT is kept constant,
the effective\ is fixed, and increasingnq will increase ex-
ponentially the size of the phase space of the system~number
of cells!. In contrast, ifT52p/N, with N52nq, the size of
the phase space remains the same, allN momentum states
correspond to the same cell of size 2p/T. In this case, in-
creasingnq increases the number of quantum levels cor
sponding to the same classical structure, and is equivale
decreasing\ toward the classical limit.

The whole quantum algorithm described above requ
O(nq

3) gate operations to perform one iteration of quantu
map~2!, exponentially less than the classical algorithm. St
a physical quantum computer will not be an ideal perf
machine, and there will be imperfections, which may ham
the computation. In the following sections, we will inves
gate the effects of noise and imperfections on the phys
quantities that are simulated, and estimate the accurac
the quantum computation of quantum map~2!. The numeri-
cal simulation of many qubits is very resource consuming
a classical computer. Due to that we took in all numeri
computations the action of exp(2ik cosû) as exact, and per
formed by direct multiplication inu representation all othe
operations being made with errors. We think that this a
proximation does not alter the qualitative features of the
sults, although the number of quantum gates is reduced f
O(nq

3) to O(nq
2). Also in this approximation all supplemen

tary registers required for the computation ofucosui& are
eliminated and the quantum evolution onN52nq levels is
performed with onlynq qubits.

III. GLOBAL QUANTITIES

We first study the effects of imperfections and errors
the global quantities of the system.

To model these imperfections, we introduce a random u
tary error during the operation of elementary quantum ga
These errors are present for each gate performing the q
tum Fourier transform and the action of the unitary opera
e2 iTn̂2/2. Two elementary gates are used: the single-qu
Hadamard gatesH5diag(1,1,1,21) and the two-qubit gate
B5diag„1,1,1,exp(ia)…, wherea is a phase. Transformatio
H can be written asH5uW 0•sW , where uW 05(1/A2,0,1/A2)
and sW 5(sx ,sy ,sz). It is replaced by an imperfect gat
H85uW •sW , whereuW is a unit vector with a random angleb
from uW 0. In a similar way, eachB is replaced byB8
5diag„1,1,1,exp(ia1ig)…, whereg is again a random angle
At a given strengthe.0 of noise, each gate is implemente
with a b or g randomly selected from a uniform distributio
such thatubu,pe or ugu,pe @23#. As explained in Sec. II,
we made the approximation of taking the action
exp(2ik cosû) as exact, all other operations being made w
0-3
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errors. The use ofnq qubits gives a Hilbert space for wav
functions of the kicked rotator onN levels, withN52nq, i.e.,
values of momentum range fromn51 to n5N. In all nu-
merical computations, initial stateuC0& was chosen as local
ized on a precise value of the momentumn0, i.e., uC0&
5un0&, with n051 ~lowest value of momentum! or n0

5N/2. The rotation is computed as exp@2iT(n2n̄)2/2# with
n̄5N/2.

Depending on the choice of parameters in Eq.~2!, in-
creasing the number of qubitsnq will increase the number o
values of momentum in each phase-space cell of sizeDn
52p/T, or increase the number of cells, or both. In R
@16#, it was shown that ifT is constant whilenq increases,
errors in the QFT may lead to anexponentialgrowth of
errors withnq for the second moment^n2& of the probability
distribution. In this case, the size of phase space grows
ponentially withnq , but K and effective\ are kept fixed.
Due to quantum localization, exact wave functions can
spread beyond a region of size given by the localizat
length, which remains fixed whennq increases. Therefore fo
all values ofnq , the second moment of a distribution in
tially located atn05N/2 will saturate with time at a value
independent ofnq ~full line in Fig. 2! if Eq. ~2! is exactly
simulated. On the contrary, errors in the QFT lead to sm
transfer of probabilities to the regions of phase space tha
exponentially far away from where the exact wave funct
is localized. This induces the exponential increase of the
ond moment withnq . We confirm here this effect in Fig. 2
for different parameters with more complete set of err
used in this paper, and with simulations up to larger num
of qubits.

To be more quantitative, Fig. 3 shows the time scaletq on
which the presence of errors leads to a doubling of the va
of the second moment̂n2& as a function ofnq and error
strengthe. In Ref. @16# the formula

tq'Cqk4/~e2nq22nq! ~3!

FIG. 2. Dependence of the second moment^n2&5^(n2n0)2& of
the probability distribution on timet for T50.5 andK515. Data
are shown from top to bottom fornq516,15,14,13 ande51024

~four curves!. The lowest fifth full curve is fore50, nq514. The
initial state isuC0&5un0&, with n05N/2.
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was proposed and checked numerically with up to 13 qub
It stems from the fact that each imperfect gate operat
transfers on average a probability ofe2 equally divided
amongnq spurious peaks located at integer powers of
Thus, due to imperfectionŝn2&;nqe222nqt ~each time step
involves ;nq

2 gate operations!, whereas for the exact wav
function ^n2&'D2'4l 2'k4/4. Both expressions becom
comparable at timetq given by Eq.~3!. Figure 3 confirms
this formula by extensive numerical computations, with up
20 qubits, and for two different values ofK. This enables to
get the numerical constantCq'0.23.

Although time scaletq drops exponentially withnq , there
are other observables that show only polynomial sensitiv
to errors. A standard quantity used to characterize the glo
influence of errors is the fidelity defined by the projection
the wave function with errorsce(t) on the perfect onec0(t):
f (t)5u^ce(t)uc0(t)&u2. The dependence of this fidelity o
time in presence of errors is shown in Fig. 4, showing tha
slowly decreases witht and amplitude of noisee. One can
define a time scalet f such thatf (t f)50.5. Figure 5 presents
the variation oft f with system parameters in two differen
régimes. It shows that the relation

t f'Cf /~e2nq
2! ~4!

holds with the numerical constantCf'0.35. Figures 4 and 5
are consistent with a fidelity decayf (t);exp(2Gt) where
G;e2nq

2 .
Relation~4! can be understood from the following phys

cal considerations. Each imperfect unitary gate is rotated
a random angle of ordere from the exact one. Therefore,
probability of ordere2 is transferred from the exact state
each gate operation. Each time step of map~2! takesO(nq

2)
operations, in the approximation that we have taken wh
the building of the cosines is supposed exact. This imp
that t f , which is in units of time steps of Eq.~2!, should vary

FIG. 3. Dependence of the rescaled time scaletq on the number
of qubits nq for 1026,e,0.03, T50.5, K55 (3), and K515
(s). The initial state isuC0&5un0& with n05N/2. Data are aver-
aged over 10 to 1000 realizations of noise. Full and dashed l
correspond to the theoretical formula~3! with Cq50.23. The loga-
rithm is decimal.
0-4



-
ur

on
n

ith
e

ed

lity,

ase
ws

ical
e
c-
ve

m-
not
dy
n
tion
igner
ld

irect
ich

the
o
s in
the
um

ep-
thm
c-
cilla

s

,
s

r-

to
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as 1/(e2nq
2). We expect that if the full algorithm was imple

mented, with the cosines computed following the proced
explained in Sec. II, a time step of Eq.~2! should takeO(nq

3)
operations, and accordinglyt f should vary as 1/(e2nq

3).
The data shown in this section exemplify the sharp c

trast in the behavior of the different observables in prese

FIG. 4. Evolution of fidelityf with time t. Full curves are for
K51.3, T52p/N (N52nq), nq514, and from top to bottome
5331023, e51022, e50.03. The initial state isuC0&5un0& with
n051. Dashed curves are forT50.5, K55, andnq514, and from
top to bottom e5331023, e51022. The initial state isuC0&
5un0& with n05N/2. The logarithm is decimal.

FIG. 5. Dependence of the time scalet f on system parameter
for nq54 (s), 6 (h), 8 (L), 10 (n), 12 (v), 14 (,), 16 (x),
18 (1). Here K51.3, T52p/N (N52nq) ~open symbols! or K
55, T50.5 ~full symbols!. The dashed line is the theoretical fo
mula ~4! with Cf50.35. The initial state isuC0&5un0&, with n0

51 (K51.3) or n05N/2 (K55). Data are averaged over 10
100 realizations of noise. Data forT50.5 andK515 are nearly
indistinguishable fromT50.5, K55 ~not shown!. Logarithms are
decimal.
04622
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of errors. The fidelity shows only a polynomial decrease w
respect to bothe andnq , whereas the second moment of th
wave function grows exponentially withnq , but polynomi-
ally with e. The resolution of this apparent paradox is relat
to the fact that the second moment is sensitive to thesizeof
the Hilbert space, which grows exponentially withnq . Small
spurious peaks due to imperfections do not spoil the fide
but strongly modify the variancên2& if they appear very far
away from the exact location of the wave function@24#.

IV. WIGNER AND HUSIMI DISTRIBUTIONS

In the preceding section we focused mainly on the c
whereT ~effective\) is fixed but the phase-space size gro
exponentially with nq . In contrast, atT52p/N and N
52nq the system size in classical momentum~number of
2p/T cells in n) remains fixed whennq increases. In this
way the effective\ drops exponentially withnq and going to
larger number of qubits means approaching the class
limit ~exponentially fast!. Smaller and smaller details of th
classical structure will be visible in the quantum wave fun
tions. In this re´gime, data presented in Figs. 4 and 5 ha
already shown that the fidelity follows law~4! as in the case
T5constant. However, the fidelity characterizes in one nu
ber the accuracy of the whole wave function, and does
tell how well the local properties are reproduced. To stu
the local properties of wave functions, one can express it iu
or n representation. However, a very useful representa
corresponds to phase-space distributions, such as the W
or Husimi distributions. They are especially used in the fie
of quantum chaos, since such representations permit a d
comparison with classical Hamiltonian mechanics, wh
takes place in phase space. They also enable to probe
classical/quantum border when\ is decreased compare t
other parameters of the system. Plotting such quantitie
presence of errors allows to probe how local properties of
wave functions are sensitive to imperfections in the quant
algorithm.

An additional motivation to study such phase-space r
resentations stems from the fact that recently an algori
was proposed@17# that enables to compute the Wigner fun
tion on a chosen point in phase space by the use of an an
qubit.

For a continuous system with two conjugate variablep
and q the Wigner transform@25# of a wave functionc is
defined by

W~p,q!5E e2( i /\)pq8

A2p\
cS q1

q8

2 D *
cS q2

q8

2 Ddq8. ~5!

In a discrete system withN-dimensional Hilbert space
one is led to define the Wigner function on a lattice of 2N
32N points ~see, e.g., Ref.@26#!. In the case of the kicked
rotator, the formula becomes

W~u,n!5 (
m50

N21
e2(2ip/N)n(m2Q/2)

2N
c~Q2m!* c~m!, ~6!
0-5
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LÉVI, GEORGEOT, AND SHEPELYANSKY PHYSICAL REVIEW E67, 046220 ~2003!
with Q5Nu/2p. The Wigner function is always real, bu
contrary to classical Liouville phase-space distributions
can take negative values. It verifies( iW(u i ,n)5uc(n)u2
and( iW(u,ni)5uc(u)u2.

The Wigner transform has the drawback of being nega
or positive. Nevertheless, coarse graining this function o
cells of size\ gives non-negative values. Such a proced
gives theHusimi distribution~see, e.g., Ref.@27#! that cor-
responds to a Gaussian smoothing of the Wigner function
the case of the kicked rotator, the Husimi distribution can
computed through

h~u,n!5 (
m5n2N/2

n1N/2 S T

p D 1/4c~m!

AN
e2(T/2)(m2n)2

eimu, ~7!

where the Gaussian for simplicity is truncated for valu
larger thanN/2, andc(m) is the wave function in momen
tum representation. The Husimi distribution is always no
negative, and allows a direct comparison between class
Liouville density distributions and quantum wave function

The Wigner and Husimi distributions of wave functions
the quantum kicked rotator simulated on a quantum co
puter are shown in Fig. 6 for different level of errors. Bo
functions have similar patterns, although as expected
Wigner function displays interference structures absent in
Husimi distribution. In the regime of parameters studie
classical invariant curves are still present in phase space
prevent the exact wave function to enter the large ellipti
island in the middle. In the presence of moderate leve
noise, main structures are still present and distinguishab

Figure 7 confirms this result, showing the Husimi dist
bution for larger number of qubits, together with the classi
phase-space distribution. The Husimi distributions in pha
space show features mimicking the classical phase space
tributions, in accordance with the correspondence princi
Figure 7~left! shows that whennq is changed, finer and fine
details of the classical structures are visible in the ex
quantum wave function, in accordance with the fact that
creasingnq amounts to reduce\ and approach the classic
limit. The same figure shows that the wave function is spr
over a larger domain of phase space asnq increases. This can
be explained by the following effect. In this mixed re´gime
between integrability and strong chaos atK51.3, the invari-
ant classical curves that prevent any transport are no lo
present since the last one is destroyed atK5Kg50.97 . . . .
But cantori are present, which are remnants of the dis
peared invariant curves. They have a fractal structure, a
wave packet can cross them only if the holes are la
enough. These holes scale as (K2Kg)3 and become compa
rable with the minimal area scale of the Husimi distributi
determined by the effective\ given by T. Hence, forK
2Kg!1, the wave function is prevented to cross the c
torus for (K2Kg)3,T. Due to that quantum interferenc
prevents the transport via cantori@14,18,28#.

The quantum Husimi distributions shown in Figs. 6 and
display structures of increasing complexity with largernq .
Still, with moderate level of noise, the quantum compute
able to reproduce the exact distributions with reasonable
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curacy. For larger errors in gate operations, significant pr
ability is present at wrong phase-space locations, and ph
space structures become blurred. The comparison with
effect of classical noise visible in Fig. 7 shows that in th
case the quantum errors enable the wave function to e
classically forbidden zones much faster, a fact that will
analyzed in more details in the following section.

It is interesting to evaluate the effects of noise and imp
fections not only on the broad features of the full Wign
function, but also on individual values. In Figs. 8 and 9, t
behavior of individual values of the Wigner function in pre
ence of noise in the gates is investigated. Figure 8 shows
the relative error ~i.e., the error̂ uW2Weu& divided by the
average individual value of the exact Wigner function^uWu&)
increases slowly with the growth oft and e even in the
chaotic zone. Similar results can be observed in the in
grable zone and in the localized re´gime ~data not shown!. In
a more quantitative way, Fig. 9 shows the behavior of ti
scaletW when the error on the Wigner function become co
parable to its mean value in the re´gime chosen@^uW(tW)
2We(tW)u&5^uWu&/2#. In all three cases considered, on
obtains

FIG. 6. ~Color on line! Plot of Husimi~left! and Wigner~right!
distributions att5103 for K51.3.Kg , T52p/N, N52nq, and
nq57. The initial state isuC0&5un0&, with n051. Top, e50;
middle, e50.002; bottom,e50.004. Left: color~grayness! repre-
sents the intensity level from blue~white! ~minimal! to red ~black!
~maximal!. Right: grayness represents the amplitude of the Wig
function, from white~minimal negative value! to black ~maximal
positive value!.
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tW'CW /~nq
ae2!, ~8!

with a51 or a51.5. Thus, individual values of the Wigne
function in the kicked rotator model are robust quantit
with respect to noise, even in the chaotic re´gime. These re-
sults are interesting also in view of the recent discussion
the effects of decoherence on the Wigner functions@29#. Our
results clearly show that in the framework of quantum co
putation, the errors on the Wigner function are polynom
and not exponential.

As noted previously, a recent algorithm@17# enables to
measure the value of the Wigner function of a system
density matrixr on a selected point in phase space, with
help of an ancilla qubita. First, H ~Hadamard gate! is ap-
plied on a, followed by a controlled-U operation (U is ap-
plied to the system to be measured depending on the sta
a) and againH is applied ona. Then the expectation value o
a is ^sz&5Re@Tr(Ur)#. The use of a particular operatorU,
which can be implemented efficiently@17#, enables to get
W(p,q)5^sz&/2N ~whereN52nq).

FIG. 7. ~Color on line! First three rows: the Husimi distribution
at t5103 for K51.3.Kg andT52p/N, N52nq; from top to bot-
tom: nq59, nq512, nq514; quantum noisee50 ~left!, e
50.002~center!, e50.004~right!. Bottom row: the classical phase
space distribution att5103 with classical noisee50 ~left!, e
50.002~center!, e50.004~right!. For clarity, the distributions are
averaged over ten iterations aroundt5103. The initial quantum or
classical state isn051. Color ~grayness! represents the intensit
level from blue~white! ~minimal! to red ~black! ~maximal!.
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However, we should note that even ifU can be imple-
mented efficiently,̂ sz& can be evaluated only by iteratin
the procedure a number of times to get a good estim
Therefore, the amplitude of the signal is crucial to make
whole process efficient. Thus, it is interesting to study
amplitude of peaks in the Wigner function, in order to kno
if strong peaks are present, which can be detected relia
through this method. This can be investigated through
quantity, which we call inverse participation ratio of th
Wigner function, in analogy with the inverse participatio
ratio for wave functions used in quantum chaos and syst
with Anderson localization@30#. For a wave function withN
projectionsc i on some basis, the inverse participation ra
(uc i u2/((uc i u4) measures the number of significant comp
nents in this basis. For the Wigner function, one has
additional sum rules(Wi51 and(Wi

251/N. To define an
inverse participation ratio for the Wigner function, we ther
fore use the formulaj51/(N2(Wi

4). If N peaks of approxi-
mately equal weights 1/N are present, thenj5N, whereas
N2 components of equal weights~in absolute value! 1/N3/2

give j5N2. Quantity j therefore permits to estimate th
number of main components of the Wigner function. Figu
10 and 11 show the scaling of this quantity withnq for dif-
ferent values of parameters. In all the cases whereT
52p/N (N52nq) the ratioj/N2 reaches a saturation value
This implies that asymptoticallŷsz&5NW(p,q);1/AN, a
value that requiresN iterations followed by the measure
ments to be reliably estimated. In this case, the asympt
gain in number of operations compared to the classical a
rithm is only O„log(N)…, although the resources needed a
exponentially smaller (nq qubits instead of 2nq classical reg-
isters!. This should be contrasted with the case where
number of cells increases (T constant!, where Fig. 11 shows
that j;N. This gives ^sz&5NW(p,q);1, which means
that in this regime with localization, any of the;N compo-

FIG. 8. Relative error on the Wigner functiondWe5^uW
2Weu&/^uWu& as a function of time forK5Kg , T52p/N, N
52nq, andnq510. The initial state isuC0&5un0&, with n05N/2.
From bottom to top quantum noise ise51024, e51023.5, e
51023. The Wigner function is averaged over 2N values in the
chaotic zone. Data are averaged over ten realizations of noise
0-7
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nents of the Wigner function which are important can
estimated reliably and efficiently through this method~pro-
vided one knows beforehand the approximate position of
localized state!. The results presented in Figs. 8 and 9 sh

FIG. 9. Dependence of time scaletW on system parameters fo
5<nq<11. HereK5Kg , T52p/N (N52nq). The Wigner func-
tion is averaged over 2N values in the chaotic zone (s) or in the
integrable zone (n). Straight lines are theoretical formula~8! with
a51.5 andCW50.02 ~full line! or CW50.03 ~dashed line!. The
initial state isuC0&5un0&, with n05N/2. Data are averaged over 1
to 1000 realizations of noise. Inset: dependence of the time scatW

on system parameters for 5<nq<14. HereT50.5 andK55. The
Wigner function is averaged over 2N values in the localized zone
(h). The full line is theoretical formula~8! with a51 and CW

50.012. The initial state isuC0&5un0&, with n05N/2. Data are
averaged over 10 to 1000 realizations of noise. Logarithms are d
mal.

FIG. 10. Dependence of inverse participation ratioj of the
Wigner function on the number of qubitsnq at t5103 for T
52p/N, N52nq, andK50.5 ~full curve!, K50.9 ~dashed curve!,
K51.3 ~long-dashed curve!, K52.0 ~dot-dashed curve!. Initial state
is uC0&5un0&, with n051, ande50.
04622
e

that despite the different scaling laws of^uWu&, the relative
errors grow only polynomially in all cases considered, th
enabling such measurements of individual values ofW to be
reliable for moderate amounts of noise.

V. QUANTUM TUNNELING THROUGH
INVARIANT CURVES

In the preceding section, it was shown that the class
and quantum errors affect the dynamics in a rather differ
way. This difference is particularly striking in the re´gime
where classical invariant curves are present~integrable or
mixed systems, which correspond to moderate values oK
here, as in Fig. 7!. Such invariant curves cannot be cross
classically, and only quantum tunneling can transfer pr
ability inside integrable islands from chaotic region
Whereas small classical errors enable to cross only neigh
ing invariant curves, small quantum errors may lead to lo
distance ‘‘jumps’’ of probability deep into integrable islan
~see Fig. 7, last column!.

To study the effects of errors on quantum tunneling,
show in Fig. 12 the dependence of probability of the Husi
distributionh(u,n) inside the classically forbidden region o
time t. The quantityI (t)5*Dh(u,n)dudn, whereD is the
domain enclosed by the circle in Fig. 10~inset!, shows a
linear growth witht. This can be understood by a physic
argument similar to the one justifying Eq.~4!. Indeed, imper-
fect gates transfer on average a probability of ordere2 from
the exact wave function to wrong phase-space positio
However, not all gates will transfer probability insideD but
only a subset of them. This predicts thatI (t);nq

ae2t. Data
from Figs. 12 and 13 and additional data~not shown! con-
firm this prediction, witha'1.3.

To exemplify the effect of quantum errors, Fig. 13 sho
I (t) at fixed timet as a function of number of qubitsnq for

ci-

FIG. 11. Dependence of the inverse participation ratioj of the
Wigner function on the number of qubitsnq at t5103 for T
52p/N, N52nq, and K52 ~full line!, and T50.5 and K55
~dashed line!. Dotted lines showj}N2 andj}N. The initial state is
uC0&5un0&, with n051 ande50. The logarithm is decimal.
0-8
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zero and nonzero noise in the gates. In the case of zero n
there is an exponentialdecreasewith nq . Indeed, the only
process that allows to enter the island for the wave packe
quantum tunneling. In general, the probability of such a tr
sition scales like exp(2S/\), whereS is a classical action
Increase ofnq amounts to decrease the effective\ and leads
to the exponential drop ofI obtained numerically ate50. In
sharp contrast, the presence of imperfections in the g
(e.0) leads to direct jumps inside the island that gives
increaseof I with nq according to the estimate of the prev
ous paragraph. Thus, for this specific process, the effec
noise in the gates results in a qualitative change of the
pendence of tunneling probabilityI on nq .

VI. CONCLUSION

The results presented in this paper show that it is poss
to simulate efficiently the quantum kicked rotator on a qu
tum computer. For the quantum algorithm simulating the
namics of kicked rotator, we investigated the effects of g
errors and showed that certain quantities such as fidelity
the Wigner and Husimi distributions are sufficiently robu
against noise in the gates. Thus, for small amplitude of no
these quantities can be computed reliably without applica

FIG. 12. Dependence of probabilityI of the Husimi distribution
inside the circle~see text and inset! on time t for e51023 andnq

514 at K51.3 andT52p/N (N52nq). The initial state isuC0&
5un0&, with n051. Inset: The position of 100 points initially a
n051 after 104 iterations of classical map~1! and location of cir-
cular domainD ~see text!.
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of quantum error corrections. At the same time we found t
there exist other characteristics, e.g., variance of probab
distribution and tunneling probability inside stability island
which are very sensitive to errors in quantum gates. In ad
tion, the study of the Wigner function shows that individu
values of this function are robust with respect to quant
errors and can be reliably estimated. However, the comp
tion of the Wigner function at specific points meets certa
readout problems in deep quasiclassical regime where
erally a large number of measurements is required.

On the basis of obtained results we believe that the qu
tum algorithms simulating quantum chaotic maps will pr
vide important grounds for testing the accuracy of the n
generation of experimental implementations of quant
computers.
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FIG. 13. Dependence of probabilityI of the Husimi distribution
inside the circle~see text and Fig. 12! on nq for K51.3 andT
52p/N, N52nq, e5331023 ~solid curve!, and e50 ~dashed
curve!. Data are averaged over 100 iterations aroundt5103. The
initial state isuC0&5un0& with n051. The logarithm is decimal.
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