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Quantum computing of quantum chaos in the kicked rotator model
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We investigate a quantum algorithm that simulates efficiently the quantum kicked rotator model, a system
that displays rich physical properties and enables to study problems of quantum chaos, atomic physics, and
localization of electrons in solids. The effects of errors in gate operations are tested on this algorithm in
numerical simulations with up to 20 qubits. In this way various physical quantities are investigated. Some of
them, such as second moment of probability distribution and tunneling transitions through invariant curves, are
shown to be particularly sensitive to errors. However, investigations of the fidelity and the Wigner and Husimi
distributions show that these physical quantities are robust in presence of imperfections. This implies that the
algorithm can simulate the dynamics of quantum chaos in presence of a moderate amount of noise.
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[. INTRODUCTION of systems corresponds to chaotic quantum maps. Such sys-
tems can have a very complex dynamics while their Hamil-
It is only recently that it was realized that quantum me-tonians keep a relatively simple form. Algorithms for fast
chanics can be used to process information in fundamentallgimulation on a quantum computer were built for the quan-
new ways. In particular, Feynmdri] emphasized that the tum baker magd11], the kicked rotatof12], and the saw-
massive parallelism due to the superposition principle mayooth mag13]. We note that recently the quantum baker map
allow to simulate efficiently some problems intractable onwas implemented on a NMR quantum compui8f. The
classical computers, the most obvious being many-bodgicked rotator is an especially rich and generic system,
guantum systems. Since that time, a model of quantum conwhich has been a cornerstone for the study of quantum chaos
puter has been set up, viewed as an ensembieqobits i.e.,  [14]. In the classical limit it reduces to the Chirikov standard
two-level systems, with a Hilbert space of dimensidn@e  map, which has been also extensively studied in the field of
reviews[2—4]). Computation is performed through unitary classical chao$15]. Implementation of this model can be
transformations applied to the quantum wave functions oflone on a small quantum computer with a few tens of qubits,
this many-body system. In fact, it has been shown that angnd classical supercomputers will be outperformed with a
unitary transformation on this"2dimensional space can be few hundreds of qubits. Still, real quantum computers will
written in terms of a set of universal gates, for example, onenot be free of imperfections and errors, and this will affect
and two-qubit transformations. Also, important quantum al-the results of the computation. It is, therefore, important to
gorithms have been developed, such as Shor’s algorithm farnderstand the effects of different sources of errors on the
factoring large number§5], which is exponentially faster results of such an algorithm. For example, first numerical
than any known classical method, and Grover’s algorithm tasimulations of the quantum computation of this mofdis)
search a databa$6], where the gain is polynomial. have shown that errors affect in a different way the various
Motivated by these developments, many experimentaphysical quantities characterizing the model, and that for
implementations for actual realization of such a quantunsome of them the effect of errors can be exponentially
computer were proposedsee Ref.[4] and references strong.
therein. Recent results include, for example, the NMR In this paper, after presenting in more detail the physics of
implementation of factorization algorithm with seven qubitsthe kicked rotator, we study the effects of errors on several
made from nuclear spins in a molec(i§ and the simulation physical quantities. We focus on random unitary errors,
of the quantum baker mdg]. Thus, small quantum comput- which may arise when imperfect gates are applied, and study
ers with a few qubits are already available experimentallyfirst how global quantities such as second moment or fidelity
and systems of larger size can be envisioned at relativelgre affected by errors. Our results confirm and extend those
short term. obtained in Ref[16] showing a marked contrast in the be-
Still, algorithms such as that of Shor require large numbeihavior of these two quantities in presence of errors. We also
of qubits and the use of many gates. It is, therefore, imporinvestigate how well the whole wave function is reproduced
tant to develop algorithms that need a smaller number oby an imperfect quantum computer. A particularly interesting
qubits and gates and still can yield interesting quantities. Irway to display wave functions is to express them through
particular, algorithms enabling to simulate quantum me-phase-space distributions, such as the Wigner and Husimi
chanical systems, as originally envisioned by Feynman, cafunctions. These distributions display the same information
be implemented relatively easily and solve problems inaccesas the wave functions, but in a form which allows direct
sible to classical computers with less expense in number afomparisons between classical and quantum dynamics, a
qubits and gates. Several such algorithms have been devedroperty especially interesting to probe the classical limit of
oped for various systems, including many-body Hamilto-quantum mechanics. They have been extensively used in
nians[9] or spin latticed10]. An especially interesting class many fields, and recently a method has been devisépto
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tum computers. The effects of errors on the Wigner and Hu- “"'
simi functions will be investigated in details, showing how .~ __ :

. . . P e e e e
imperfections affect the different parts of phase space, an@;::f:i_-:’:v,——_r.’-'ﬁ"'f;__ =
discussing how information can be retrieved through quan-~ . - '"-5:'.\," = s
tum measurement. A separate section is focused on how  =i%&=="

localized distribution may escape from an island of integra-;..* . %"
bility, showing an especially large effect of quantum errors =+ >

on a quantity that is directly relevant to quantum tunneling. |

measure such distribution for quantum simulations on quan% SRR e
- ¢ Kol y
= e

Il. THE KICKED ROTATOR

The classical kicked rotator is described by the Chirikov ‘
standard maj14,15:

n=n+ksing, 6=0+Tn, (1) i T e
n=n+ksing, 6=60+Tn, L _ S

N S e o

where (,0) is the pair of conjugated momentu(actl_or) %:5.““.#\‘} A g ":‘;‘;‘?;5:;’““:‘3.

and angle variables, and the bars denote the resulting varizz, M % -~ s ﬁ_;;'"",-- =TS oy

ables after one iteration of the map. It describes a free angle- " s . .; oy _{___.__
rotation and a kick in momentum. This area-preserving maps ¥ ' i;"..-:;? o (&
has been extensively studied during the past decades and has
been applied to problems such as particle confinement in FIG. 1. Plot of the classical phase space Kt=Kj
magnetic traps, beam dynamics in accelerators, comet trajee=0.9786 . . . [t=10" iterations of Eq/(1) for 200 points.
tories, and many othefd5]. A

The dynamics of this map takes place on a cylinger-  wheren=—id/90, h=1, andy( 6+ 2m)= (6). The quan-
riodicity in ) and is controlled by a single parametér tum dynamics depends on two parameteasidT (instead of
=kT. ForK=0 the system is integrable and all trajectoriesthe single parametdt =kT for the classical one The clas-
lie on one-dimensional torflines n=constant). FoK>0, sical limit corresponds tkk—o, T—0 while keepingK
the system undergoes a transition to chaos, which follows thekT=constan{14,18,19. In a senseT plays the role of an
Kolmogorov-Arnold-MoserKAM ) theorem. Periodic orbits effective.
corresponding to rational frequencies are transformed into Depending on the values of theses parameters, the system
chains of integrable islands mixed with chaotic region. Onfollows different rgjimes, from regularity to quantum chaos.
the contrary, tori with irrational frequencies are deformed butDue to this variety of behaviors, the quantum kicked rotator
survive, forming invariant curves that separate zones irhas been intensively studiédee Refs[14,18,19 and refer-
phase space. AK is increased, these surviving tori become ences therein Indeed, most of the phenomena characteristic
Cantor setdcantor) and disappear. The most robust torusof quantum chaos are present, such as quantum ergodicity,
corresponds to the golden number+35)/2, and disap- random matrix theory statistics, chaos assisted tunneling, and
pears foK =K ~0.97%6 . .. . Thus, forK>K global chaos  others. In particular, foK>Kg, the phenorr)enon of dynami-
sets in, with appearance of an extended chaotic region inal localization appears. Although in thisgime a typical
phase space and with dynamics characterized by a positivdassical trajectory diffuses in momentum, eigenstgig@)

Kolmogorov-Sinai entropyh~In(K/2)>0 (for K=6). In  of operatorU in momentum space are exponentially local-
this regime, a typical trajectory shows diffusive growth of jzed for typical values ok and T. Their envelopes obey the
momentum, which statistically can be described by thQawXm(n)~exp(—|n—m|/l)/\/l_, wherem marks the center of
Fokker-Planck equation, with diffusion ra=n?/t~k?2,  the eigenstate antlis the localization length. Fdt>K> 1
wheret is measured in number of iteratiofisicks) [14,15.  this length is determined by the classical diffusion rate
For lower values oK, the phase space displays a complex— p/2~k?/4 [18]. This phenomenon has close relationship
hierarchical structure with integrable islands surrounded byyith the Anderson localization of electrons in disordered sol-
chaotic zones at smaller and smaller scales. ids [20], and investigation of the kicked rotator gives infor-
Map (1) is periodic inn with period 27/T, so the phase- mation on this important solid-state problem still under in-
space structures repeat themselves on each cell of #iZB.2  tensijve investigation nowadays. The quantum kicked rotator
Such a cell is shown in Fig. 1 foK=Kg, displaying the describes also the properties of microwave ionization of the
complex hierarchical structures that appear in the phasgydberg atom§21]. It has been realized experimentally with
space. cold atoms, and the effects of dynamical localization, exter-

The quantization of Eq(l) yields a Hamiltonian, which  na| noise, and decoherence have been studied experimentally
after integration over one period gives a unitary evolution[22].

operator acting on wave functiop: For numerical studies of quantum evoluti®) it is con-
. _ ., venient to choose the case of quantum resonance with
y=U =g kcoslgiTn72,, (2 TI/(4m)=MIN, whereM,N are integerd19]. In this way
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the quantum dynamlcs takes place. on a torus Witlevels. ¢ ihe unitary operator expﬂkcos@). Another QFT[requir-
For >N the eigenstates of evolution operator become erjyq O(n3) operations takes the wave function back to the
godic and the level spacing statistics is described by the ralepresentation.
dom matrix theory[19]. _ _ . Increasingn,, which exponentially increases the dimen-
The algorithm for the quantum simulation of the kicked sjon of the Hilbert space available, enables to probe various
rotator was presented in R¢fl2]. Evolution (2) consists of  physical limits in the system. IK=KT is kept constant, the
the product of two unitary operators that are diagonal in the:Jassical mechanics remains the samér i§ kept constant,
angle and momentum bases, respectively. The most efficieffie effectivet: is fixed, and increasing, will increase ex-
classical algorithm available consists in changing back angonentially the size of the phase space of the systember
the forth between the angle and the momentum representaf cells). In contrast, ifT=2#/N, with N=2"q, the size of
tion by the fast Fourier transforn{&FT). The operator that the phase space remains the sameNathomentum states
is diagonal in the basis is then implemented by direct multi-correspond to the same cell of sizer/X. In this case, in-
plication of the coefficients of the wave function. In total, creasingn, increases the number of quantum levels corre-
one iteration of Eq(2) on a Hilbert space of dimensiax sponding to the same classical structure, and is equivalent to
=2"qa requiresO(N logN) classical operations, the limiting decreasing: toward the classical limit.
steps being the FFT. The quantum algorithm follows the The whole quantum algorithm described above requires
classical one, and speeds up all parts of it to obtain exponer@(ng) gate operations to perform one iteration of quantum
tial increase of computation rate. First, an initial distributionmap(2), exponentially less than the classical algorithm. Still,
is built, in a polynomial number of operatiofi® ny). Vari-  a physical quantum computer will not be an ideal perfect
ous initial wave functions can be built in this way. In the machine, and there will be imperfections, which may hamper
following, we will use as initial stat¢¥,) a wave function the computation. In the following sections, we will investi-
localized at a precise value of momentunmwhich can be gate the effects of noise and imperfections on the physical
built in ng single-qubit rotations starting from the ground quantities that are simulated, and estimate the accuracy of
state. The general state of the system can be written dbe quantum computation of quantum m@p. The numeri-
>N"ta,|n), wherea, are the amplitudes of the wave func- cal simulation of many qubits is very resource consuming on
tion on the|n) basis state. Then the first unitary operator isa classical computer. Due to that we took in all numerical
applied. In then representation it is diagonal and can becomputations the action of exp(k cos@) as exact, and per-
written as exp€iTn%2). This operator can be implemented formed by direct multiplication iré representation all other
efficiently by using the binary decomposition of. if operations being made with errors. We think that this ap-
n:E?g;lajzj, then nz:Eil!jzajlaj2211+j2' Therefore, proximation does not alter the qualitative features of the re-
exp(_iTn2/2)=Hjl'J_zexp(_iTajlajzzjlﬂzfl) with @, =0 sults, although the number of quantum gates is reduced from

3 2 . . . .
or 1. Thus, one needs to implement the two-qubit gate ap2 (") © O(ng). Also in this approximation all supplemen-

plied to each qubit pair jg,j,) that keeps the states ta_ry_reg|sters required for the com_putatlon [ebs6) are
|00),|01),|10) unchanged, while|11) is transformed to ehn;mated anﬂ th? quantum evolution Bh=2" levels is
exp(-iT21"27[11). O(n?) applications of this gate are performed with onlyng qubits.
sufficient to simulate expfiTn%/2).

Then a quantum Fourier transforf@FT) (see, e.g., Ref. IIl. GLOBAL QUANTITIES
[2]) is performed to shift fronm to 6 representation, yielding
31C5'hi| 6;). This transformation needs on@(n3) one- and
tW(.)'qL'b't gates, and yields thg wave functiondmepresen- To model these imperfections, we introduce a random uni-
tation. In . this representation, the ~second operatogary error during the operation of elementary quantum gates.
exp(—ik cosd) is diagonal. Directsequentigl multiplication  These errors are present for each gate performing the quan-
by exp(-ikcosé) for each ¢; will require exponentially  tum Fourier transform and the action of the unitary operator
many operations, so apara_lllel way to apply this operator haéfiTﬁZIZ_ Two elementary gates are used: the single-qubit
to be deV|se_d. In _Re1[1_2], it was proposed to_ use supple- Hadamard gatesl =diag(1,1,1>- 1) and the two-qubit gate
mentary registers in which the values of agpill be com- 5 _ a1 17 expi)), wheree is a phase. Transformation
puted in parallel. The procedure transforiS ;'b;| 6;)|0) ¥ b it H—Uy 0. where U= (1/V2.0,142
into =N b;| 6,)|cos@), with cos@) computed up to a fixed + Con P€ W asi=Uo- o, where UO_(, 0,1N2)
precision using a recursive method based on Moivre's for@nd 0=(0y,0y,0,). It is replaced by an imperfect gate
mula[12]. This is actually the slowest step of the algorithm, H’=u- o, whereu is a unit vector with a random angje
requiring O(ng) elementary operations. From the statefrom GO. In a similar way, eachB is replaced byB’
=N tbi| 6,)|cosa), it is easy by usingly one-qubit opera- =diag(1,1,1,expia+iy)), wherey is again a random angle.
tions to build the stateEi’\':_olbiexp(—ik c0s#,)|6)|cosa,). At a given strengthe>0 of noise, each gate is implemented
Then the cosines in the last register are reversiblyvith a g or y randomly selected from a uniform distribution
erased by running backward the sequence of gates thatich thaiB|<me or|y|<me [23]. As explained in Sec. Il
constructed them, and one ends up with the stateve made the approximation of taking the action of
>N Ib;exp(—ik cosé)|#)|0), which is the result of the action exp(—ik cosf) as exact, all other operations being made with

We first study the effects of imperfections and errors for
the global quantities of the system.

046220-3



LéVI, GEORGEOT, AND SHEPELYANSKY PHYSICAL REVIEW B57, 046220 (2003

5
4x10 | 4t
,,'/ 2 )
3x105 | 7
¢,’
/.’lﬂ or
A /',: /\u_
5 Wal = L
No 2x10° | e oS -2
\" e a4
AT D 4}
e - i Le)
1x10% ¢ RS 3 ol
'/ "/ﬂ Z
L/
P 8|
0 1 1 1 1
0 200 400 600 800 1000 ~10 .
t 0 5 10 15 20
n
FIG. 2. Dependence of the second mom@rth =((n—ng)?) of d

the probability distribution on time for T=0.5 andK=15. Data FIG. 3. Dependence of the rescaled time stglen the number
are shown from top to bottom fam,=16,15,14,13 and=10"* of qubits n, for 10°<e<0.03, T=0.5, K=5 (x), andK=15

(four curves. The lowest fifth full curve is fore=0, n;=14. The (). The initial state i§W¥)=|ny) with ny=N/2. Data are aver-
initial state is|Wo)=[no), with no=N/2. aged over 10 to 1000 realizations of noise. Full and dashed lines
correspond to the theoretical formul) with C;=0.23. The loga-
errors. The use o, qubits gives a Hilbert space for wave rithm is decimal.
functions of the kicked rotator oN levels, withN=2"q, i.e.,
values of momentum range from=1 ton=N. In all nu-  was proposed and checked numerically with up to 13 qubits.
merical computations, initial stat&? o) was chosen as local- It stems from the fact that each imperfect gate operation
ized on a precise value of the momentury, i.e., |¥,)  transfers on average a probability ef equally divided
=|ny), with ny=1 (lowest value of momentumor n, amongn qurious peqks located at integer powers of 2.
=N/2. The rotation is computed as dxgT(n—n)¥2] with ~ Thus, due t9 imperfection?) ~nqe*2*"at (each time step
n=N/2. mvones ~r;q gattze opezratlc‘:r)s whereas for thg exact wave
Depending on the choice of parameters in E2), in- function (n*)~D<“~4l°~k"*/4. Both expressions become

creasing the rumber of qubsg wil ncrease the number ot TR 0 e e DY S4.9, FE S ol
values of momentum in each phase-space cell of Aine . y ; putat ’ P
o . 20 qubits, and for two different values &f This enables to
=27/T, or increase the number of cells, or both. In Ref.

[16], it was shown that ifT is constant whilen, increases, get the nume:rlcal constaly=~0.23. . .
errors in the QFT may lead to aexponentialgrowth of Although time scal, drops exponentially W't"."q' therg_ .
errors withn,, for the second momei(h?) of the probability are other observables that show only polynomial sensitivity

distribution. In this case, the size of phase space grows e)‘([p errors. A standard quantity used to characterize the global

ponentially withn,, but K and effectivefi are kept fixed. Influence of errors is the fidelity defined by the prOJectlgn of
o . he wave function with errorg (t) on the perfect oné(t):
Due to quantum localization, exact wave functions canno

spread beyond a region of size given by the Iocalization[i(t)_|<‘/’6(t)|‘/’°(t)>| - The dependence of this fidelity on

; L9 . me in presence of errors is shown in Fig. 4, showing that it
length, which remains fixed whem, increases. Therefore for . : .
.~ .~ slowly decreases with and amplitude of noise. One can
all values ofn,, the second moment of a distribution ini-

tially located atng=N/2 will saturate with time at a value ?he;”\]/ear?attlirgr? sfctal?vif# (;h ;?:rgl(tf;r:a?ﬁgt.ef;g%retv?op(rﬁf?sgﬁt
independent ofy (full line in Fig. 2) if Eq. (2) is exactly f y P

simulated. On the contrary, errors in the QFT lead to small®9'Mmes: It shows that the relation
transfer of probabilities to the regions of phase space that are t,~C(/(€n?) @)
exponentially far away from where the exact wave function ot q

is localized. This induces the exponential increase of the seg;g|ds with the numerical constaBt~0.35. Figures 4 and 5

ond moment withng . We cqnfirm here this effect in Fig. 2 516 consistent with a fidelity decafy(t)~exp(—Tt) where
for different parameters with more complete set of errorsp _ 2.2

used in this paper, and with simulations up to larger number
of qubits.

To be more quantitative, Fig. 3 shows the time s¢glen
which the presence of errors leads to a doubling of the valu
of the second momentn?) as a function ofn, and error
strengthe. In Ref.[16] the formula

Relaq[ion(él) can be understood from the following physi-
cal considerations. Each imperfect unitary gate is rotated by
a random angle of order from the exact one. Therefore, a
ﬁrobability of ordere? is transferred from the exact state at
each gate operation. Each time step of rf@)ptakesO(ng)
operations, in the approximation that we have taken where
the building of the cosines is supposed exact. This implies
tq~Cak* (€’ng22"a) (3) thatt;, which is in units of time steps of E€R), should vary
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0 - - - - of errors. The fidelity shows only a polynomial decrease with
) respect to botlx andn,, whereas the second moment of the
| T . wave function grows exponentially with,, but polynomi-
""" _ ally with €. The resolution of this apparent paradox is related
to the fact that the second moment is sensitive tosiheof

=2 . i the Hilbert space, which grows exponentially with. Small
y— '1 y spurious peaks due to imperfections do not spoil the fidelity,
8’ W {e’"\‘ but strongly modify the variancg?) if they appear very far

Py M i v‘w away from the exact location of the wave functid].

IV. WIGNER AND HUSIMI DISTRIBUTIONS

:'. In the preceding section we focused mainly on the case
: p whereT (effectiver) is fixed but the phase-space size grows

: : - : exponentially withn,. In contrast, atT=2#/N and N

0 200 400 600 800 1000 =2"4 the system sige in classical momentymumber of
t 27T cells inn) remains fixed whem, increases. In this

FIG. 4. Evolution of fidelityf with time t. Full curves are for Way the effectivéi drops exponentially witimg and going to
K=1.3, T=2a/N (N=2"), n,=14, and from top to bottone larger number of qubits means approaching the classical
=3x1073, e=10"2, €=0.03. The initial state i§¥ o) =|n) with limit (exponentially fagt Smaller and smaller details of the
no=1. Dashed curves are fdr=0.5, K=5, andn,= 14, and from classical structure will be visible in the quantum wave func-
top to bottome=3x10"3, e=10"2. The initial state is|¥,) tions. In this rgime, data presented in Figs. 4 and 5 have
=|ng) with ng=N/2. The logarithm is decimal. already shown that the fidelity follows la@) as in the case

T=constant. However, the fidelity characterizes in one num-

as 1/(62n§). We expect that if the full algorithm was imple- ber the accuracy of the whole wave function, and does not
mented, with the cosines computed following the procedurdell how well the local properties are reproduced. To study
explained in Sec. Il, a time step of E@) should takeO(n3) the local properti_es of wave functions, one can expressét in
operations, and accordingty should vary as 1K2ng). or n representation. However, a very useful representation

The data shown in this section exemplify the sharp concorresponds to phase-space distributions, such as the Wigner

trast in the behavior of the different observables in presenc@ Husimi distributions. They are especially used in the field
of quantum chaos, since such representations permit a direct

8 . . . comparison with classical Hamiltonian mechanics, which
takes place in phase space. They also enable to probe the
classical/quantum border wheh is decreased compare to
6 b G i other parameters of the system. Plotting such quantities in
’%@ presence of errors allows to probe how local properties of the
By wave functions are sensitive to imperfections in the quantum
4t %i - algorithm.
An additional motivation to study such phase-space rep-
resentations stems from the fact that recently an algorithm
“"i‘ - was proposefi17] that enables to compute the Wigner func-
A‘i tion on a chosen point in phase space by the use of an ancilla
* qubit.
0 o For a continuous system with two conjugate varialges
and g the Wigner transforni25] of a wave functiony is
defined by

logt,
L

_2 1 1
-8 -6 -4 -2 0

> 5 e—(i/h)pq’ qr * q/ ’
Iog(nq ) W(p.q)= Wlﬁ((ﬁ 7) ¢(q—7)dQ- 5

FIG. 5. Dependence of the time scaleon system parameters
for ng=4 (0), 6 (0), 8 (), 10 (A), 12 (<), 14 (V), 16 (>), In a discrete system witftN-dimensional Hilbert space,
18 (+). HereK=1.3, T=2x/N (N=2") (open symbolsor K  one is led to define the Wigner function on a lattice &f 2
=5, T=0.5 (full symbols. The dashed line is the theoretical for- X 2N points (see, e.g., Ref.26)). In the case of the kicked
mula (4) with C;=0.35. The initial state i$¥)=|ng), with ng rotator, the formula becomes
=1 (K=1.3) orng=N/2 (K=5). Data are averaged over 10 to

100 realizations of noise. Data f@r=0.5 andK=15 are nearly N=1 _—(2ix/N)n(m—0/2)
indistinguishable fromlr'=0.5,K=5 (not shown. Logarithms are W(6,n)= E e—w(G)—m)* (m), (6)
decimal. Mm=0 2N
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with @ =N6#/27w. The Wigner function is always real, but
contrary to classical Liouville phase-space distributions it
can take negative values. It verifi&W(#6;,n)=|4(n)|?
and=;W(6,n;)=|4(6)|>.

The Wigner transform has the drawback of being negative
or positive. Nevertheless, coarse graining this function over
cells of sizei gives non-negative values. Such a procedure
gives theHusimi distribution(see, e.g., Refl.27]) that cor-
responds to a Gaussian smoothing of the Wigner function. In
the case of the kicked rotator, the Husimi distribution can be
computed through

n+N/2 1/4
T\ ¢(m) 2
h 0,” — _ e—(T/2)(m—n) elm&y 7
(6.n) mnE—NIZ(ﬂ') JN @

where the Gaussian for simplicity is truncated for values
larger thanN/2, andy(m) is the wave function in momen-
tum representation. The Husimi distribution is always non-
negative, and allows a direct comparison between classical
Liouville density distributions and quantum wave functions.

The Wigner and Husimi distributions of wave functions of
the quantum kicked rotator simulated on a quantum com-
puter are shown in Fig. 6 for different level of errors. Both
functions have similar patterns, although as expected the
Wigner function displays interference structures absent in the
Husimi distribution. In the regime of parameters studied,
classical invariant curves are still present in phase space and
prevent the exact wave function to enter the large elliptical
island in the middle. In the presence of moderate level of FIG. 6. (Color on line Plot of Husimi(left) and Wigner(right)
noise, main structures are still present and distinguishable.distributions att=10* for K=1.3>K,, T=2a/N, N=2", and

Figure 7 confirms this result, showing the Husimi distri- nq=7. The initial state is|¥,)=|ny), with no=1. Top, e=0;
bution for larger number of qubits, together with the classicamiddle, e=0.002; bottom,e=0.004. Left: color(graynessrepre-
phase-space distribution. The Husimi distributions in phasesents the intensity level from blugvhite) (minimal) to red (black
space show features mimicking the classical phase space digaxima). Right: grayness represents the amplitude of the Wigner
tributions, in accordance with the correspondence principlefunction, from white(minimal negative valueto black (maximal
Figure 7(left) shows that when, is changed, finer and finer positive valug.

details of the classical structures are visible in the exacty acy. For larger errors in gate operations, significant prob-
quantum wave function, in accordance with the fact that in-pility is present at wrong phase-space locations, and phase-
creasingn, amounts to reducé and approach the classical space structures become blurred. The comparison with the
limit. The same figure shows that the wave function is spreagffect of classical noise visible in Fig. 7 shows that in this
over a larger domain of phase spacegincreases. This can case the quantum errors enable the wave function to enter
be explained by the following effect. In this mixedgime classically forbidden zones much faster, a fact that will be
between integrability and strong chaoat 1.3, the invari-  analyzed in more details in the following section.
ant classical curves that prevent any transport are no longer |t is interesting to evaluate the effects of noise and imper-
present since the last one is destroyetatK;=0.97.... fections not only on the broad features of the full Wigner
But cantori are present, which are remnants of the disapfunction, but also on individual values. In Figs. 8 and 9, the
peared invariant curves. They have a fractal structure, and sehavior of individual values of the Wigner function in pres-
wave packet can cross them only if the holes are largence of noise in the gates is investigated. Figure 8 shows that
enough. These holes scale #-K,)* and become compa- the relative error (i.e., the errol[W—W,|) divided by the
rable with the minimal area scale of the Husimi distribution average individual value of the exact Wigner functiow/))
determined by the effectivéd given by T. Hence, forK  increases slowly with the growth df and e even in the
—Kg<1, the wave function is prevented to cross the canchaotic zone. Similar results can be observed in the inte-
torus for (K—Kg)3<T. Due to that quantum interference grable zone and in the localizedgiee (data not shown In
prevents the transport via cant$ti4,18,2§. a more quantitative way, Fig. 9 shows the behavior of time
The quantum Husimi distributions shown in Figs. 6 and 7scalet,, when the error on the Wigner function become com-
display structures of increasing complexity with largey. parable to its mean value in thégime choser{(|W(ty)
Still, with moderate level of noise, the quantum computer is—W,(ty)|)=(|W|)/2]. In all three cases considered, one
able to reproduce the exact distributions with reasonable awbtains
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FIG. 8. Relative error on the Wigner functiodW,={|W
-W/)/(]W|) as a function of time forK=K,, T=2#/N, N
=2"1, andny=10. The initial state i$Wy)=|ng), with no=N/2.
From bottom to top quantum noise is=10%, =10 35 ¢
=10"3. The Wigner function is averaged oveN2values in the
chaotic zone. Data are averaged over ten realizations of noise.

However, we should note that evenlUf can be imple-
mented efficiently{c?*) can be evaluated only by iterating
the procedure a number of times to get a good estimate.
Therefore, the amplitude of the signal is crucial to make the
whole process efficient. Thus, it is interesting to study the

FIG. 7. (Color on ling First three rows: the Husimi distribution amplitude of peaks in the Wigner function, in order to know
att=10° for K=1.3>K, andT=2x/N, N=2"; from top to bot-  if strong peaks are present, which can be detected reliably
tom: ng=9, ny=12, ny=14; quantum noisee=0 (left), e  through this method. This can be investigated through a
=0.002(centey, e=0.004(right). Bottom row: the classical phase- quantity, which we call inverse participation ratio of the
space distribution at=10> with classical noisee=0 (left), ¢  Wigner function, in analogy with the inverse participation
=0.002(centey, e=0.004 (right). For clarity, the distributions are ratio for wave functions used in quantum chaos and systems
averaged over ten iterations arourd10°. The initial quantum or with Anderson localizatiofi30]. For a wave function wittN
classical state i:y=1. Color (grayness represents the intensity projectionsy; on some basis, the inverse participation ratio

level from blue(white) (minimal) to red (black (maximal. E| ¢i|2/(2| ¢i|4) measures the number of significant compo-
nents in this basis. For the Wigner function, one has the
tw~Cw/(nge), (8)  additional sum rule€W;=1 and=W?=1/N. To define an

inverse participation ratio for the Wigner function, we there-

with @=1 or a=1.5. Thus, individual values of the Wigner fore use the formulg=1/(N*SW). If N peaks of approxi-
function in the kicked rotator model are robust quantitiesmately equal weights I are present, theg=N, whereas
with respect to noise, even in the chaotigiree. These re- N? components of equal weighti absolute valug1/N¥2
sults are interesting also in view of the recent discussion ogive £€=NZ?. Quantity ¢ therefore permits to estimate the
the effects of decoherence on the Wigner functi@®. Our  number of main components of the Wigner function. Figures
results clearly show that in the framework of quantum com-10 and 11 show the scaling of this quantity with for dif-
putation, the errors on the Wigner function are polynomialferent values of parameters. In all the cases where
and not exponential. =27/N (N=2") the ratioé&/N? reaches a saturation value.
As noted previously, a recent algorithff7] enables to  This implies that asymptoticallyo,)=NW(p,q)~1/\N, a
measure the value of the Wigner function of a system ofvalue that requiresN iterations followed by the measure-
density matrixp on a selected point in phase space, with thements to be reliably estimated. In this case, the asymptotic
help of an ancilla qubit. First, H (Hadamard gabeis ap- gain in number of operations compared to the classical algo-
plied ona, followed by a controlledd operation U is ap-  rithm is only O(log(N)), although the resources needed are
plied to the system to be measured depending on the state ekponentially smallerr{y qubits instead of % classical reg-
a) and agairH is applied ora. Then the expectation value of isters. This should be contrasted with the case where the
ais (o?)=RgTr(Up)]. The use of a particular operator, number of cells increased (constant, where Fig. 11 shows
which can be implemented efficient[L7], enables to get that &~N. This gives(o,)=NW(p,q)~1, which means
W(p,q)=(c*/2N (whereN=2"q). that in this regime with localization, any of theN compo-
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FIG. 11. Dependence of the inverse participation rétiof the
FIG. 9. Dependence of time scalig on system parameters for Wigner function on the number of qubits, at t=10° for T

5=<ny=<11. HereK=K,, T=27/N (N=2"). The Wigner func- =2#/N, N=2", and K=2 (full line), and T=0.5 andK=5
tion is averaged over 2 values in the chaotic zon&)) or in the  (dashed ling Dotted lines showi=N? and&x=N. The initial state is
integrable zone4\). Straight lines are theoretical formul&) with |Wo) =|ng), with ng=1 ande=0. The logarithm is decimal.

a=1.5 andC,,=0.02 (full line) or C\y=0.03 (dashed ling The
initial state is|Wo) =[no), with no=N/2. Data are averaged over 10 that despite the different scaling laws @|), the relative

on system parameters forin,<14. HereT=0.5 andK=5. The  enapling such measurements of individual valuesvdb be
Wigner function is averaged oveN2values in the localized zone |qjiaple for moderate amounts of noise.

(O). The full line is theoretical formuld8) with a=1 andCy
=0.012. The initial state i$¥q)=|ny), with n,=N/2. Data are

averaged over 10 to 1000 realizations of noise. Logarithms are deci- V. QUANTUM TUNNELING THROUGH
mal. INVARIANT CURVES

) ) ) ) In the preceding section, it was shown that the classical
nents of the Wigner function which are important can beang quantum errors affect the dynamics in a rather different
estimated reliably and efficiently through this methido- 4y This difference is particularly striking in thé giene
vided one knows beforehand the approximate position of thg,nare classical invariant curves are preséntegrable or
localized state The results presented in Figs. 8 and 9 showyixed systems, which correspond to moderate values of

here, as in Fig. )/ Such invariant curves cannot be crossed
0.8 T y " - classically, and only quantum tunneling can transfer prob-
ability inside integrable islands from chaotic regions.
Whereas small classical errors enable to cross only neighbor-
06 | ] ing invariant curves, small quantum errors may lead to long-
distance “jumps” of probability deep into integrable island
(see Fig. 7, last column
To study the effects of errors on quantum tunneling, we
show in Fig. 12 the dependence of probability of the Husimi
distributionh(8,n) inside the classically forbidden region on
time t. The quantityl (t)=fph(6,n)dédn, whereD is the
domain enclosed by the circle in Fig. 1ihse), shows a
linear growth witht. This can be understood by a physical
argument similar to the one justifying E@L). Indeed, imper-
fect gates transfer on average a probability of orefefrom
the exact wave function to wrong phase-space positions.
However, not all gates will transfer probability insi@ebut
FIG. 10. Dependence of inverse participation raicof the ~ ONly @ subset of them. This predicts thigt) ~nge’t. Data
Wigner function on the number of qubits, at t=10° for T  from Figs. 12 and 13 and additional dateot shown con-
=27/N, N=2", andK=0.5 (full curve), K=0.9 (dashed curve  firm this prediction, witha~1.3.
K =1.3(long-dashed curyeK = 2.0 (dot-dashed curyelnitial state To exemplify the effect of quantum errors, Fig. 13 shows
is |Wo)=|ng), with ng=1, ande=0. I(t) at fixed timet as a function of number of qubitg, for

E/4N?
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FIG. 12. Dependence of probabilityof the Husimi distribution I"Iq
inside the circle(see text and inspbn timet for e=10 % andn . o
—14 atk=1.3 andT=2a/N (N=2"). The initial state i§¥) _ FIG. 13. I_Dependence of prob_ablllt)of the Husimi distribution
=|ny), with ng=1. Inset: The position of 100 points initially at |L15|de the TrcLe(see_ text af‘g Fig. 22on ng for Kil-e’ andT
no=1 after 1d iterations of classical mafl) and location of cir-  —27/N, N=2", €=3x10 (solid curvg, and e=0 (dashed
cular domairD (see text curve. Data are averaged over 100 iterations arotid0°. The

initial state is|Wg)=|ng) with ng=1. The logarithm is decimal.

zero and nonzero noise in the gates. In the case of zero noisgs 4 antum error corrections. At the same time we found that
there is an exponentialecreasewith ng. Indeed, the only ,ere exist other characteristics, e.g., variance of probability
process that allows to enter the island for the wave packet ijsiribution and tunneling probability inside stability islands,
quantum tunneling. In general, the probability of such a tranyyhich are very sensitive to errors in quantum gates. In addi-
sition scales like exptS#), whereS is a classical action. o, the study of the Wigner function shows that individual
Increase oh, amounts to decrease the effectivand leads  \4yes of this function are robust with respect to quantum
to the exponential drop dfobtained numerically 2=0. In  grors and can be reliably estimated. However, the computa-
sharp contrast, the presence of imperfections in the gate®)n of the Wigner function at specific points meets certain

(e>0) leads to direct jumps inside the island that gives aneadout problems in deep quasiclassical regime where gen-
increaseof | with n, according to the estimate of the previ- erally a large number of measurements is required.

ous paragraph. Thus, for this specific process, the effect of op the basis of obtained results we believe that the quan-
noise in the gates results in a qualitative change of the d&ym algorithms simulating quantum chaotic maps will pro-
pendence of tunneling probabilityon ng . vide important grounds for testing the accuracy of the next

generation of experimental implementations of quantum
VI. CONCLUSION computers.

The results presented in this paper show that it is possible
to simulate efficiently the quantum kicked rotator on a quan-
tum computer. For the quantum algorithm simulating the dy- We thank the IDRIS in Orsay and CalMiP in Toulouse for
namics of kicked rotator, we investigated the effects of gateaccess to their supercomputers. This work was supported in
errors and showed that certain quantities such as fidelity angart by the NSA and ARDA under ARO Contract No.
the Wigner and Husimi distributions are sufficiently robustDAAD19-01-1-0553, by the EC RTN Contract No. HPRN-
against noise in the gates. Thus, for small amplitude of nois€T-2000-0156, and by the project EDIQIP of the IST-FET
these quantities can be computed reliably without applicatioprogram of the EC.
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