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Delocalizing effect of the Hubbard repulsion for electrons on a two-dimensional disordered lattice
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We study numerically the ground-state properties of the repulsive Hubbard model for spin-1/2 electrons on
two-dimensional lattices with disordered on-site energies. The projector quantum Monte Carlo method is used
to obtain very accurate values of the ground-state charge density distributions withNp and Np11 particles.
The difference in these charge densities allows us to study the localization properties of an added particle. The
results obtained at quarter filling on finite clusters show that the Hubbard repulsion has a strong delocalizing
effect on the electrons in disordered two-dimensional lattices. However, numerical restrictions do not allow us
to reach a definite conclusion about the existence of a metal-insulator transition in the thermodynamic limit in
two dimensions.
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I. INTRODUCTION

The interplay between disorder and electron-electron
teractions has been a subject of intense activity in the
few years. Recent experiments have shown the existenc
an apparent metal-insulator transition~MIT ! in two-
dimensional~2D! semiconductor devices.1 This observation
came as a surprise to the community, since the scaling th
of localization, developed for disordered, noninteracting s
tems predicts insulating states even for infinitesimal disor
strengths.2 Therefore, these experiments have promoted
tense theoretical activity. There is at present no consen
and considerable controversy surrounds this problem.1 A fea-
ture of the experimental high-mobility samples investiga
is their exceptionally low electronic densityns . This leads to
an unusually high value of the dimensionless parameter s

}ns
21/2 of up to 80. The parameterr s sets the scale o

electron-electron interactionEe-e as compared to the Ferm
energy EF through r s'Ee-e /EF . Thus the question o
electron-electron interaction effects becomes importan
these disordered systems.

The analytical treatment of the problem of disordere
interacting electrons is possible only in some limiting cas
The effects of weak interactions in disordered systems h
been studied in great detail in the metallic~delocalized!
regime.3 The other extreme, corresponding to the stron
localized system, can be treated by mean-field methods.4 Al-
though these analytical approaches have provided many
ful physical results, the general treatment of disordered qu
tum many-body systems remains an unsolved probl
Indeed, one of the most powerful methods developed for
analytical treatment of disordered systems, namely, the
persymmetry approach,5 cannot handle the effects o
electron-electron interactions. Given this context, numer
approaches play a crucial role in the treatment of disorde
interacting systems.

Several numerical approaches have been applied to
study of 2D disordered, strongly correlated systems.6–13

Among the approximate approaches, Hartree-Fock calc
tions with residual interactions similar to the configurati
0163-1829/2003/67~20!/205112~7!/$20.00 67 2051
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interaction approaches of quantum chemistry have been
plied to systems with spinless fermions and electrons w
spin.6,8,14Exact diagonalization approaches have been us
but suffer from severe limitations in the accessible syst
size and number of particles.7,10,11,13From these studies, i
has been observed that repulsive electron-electron inte
tions can have a delocalizing effect in small systems. In
dition, it has been shown experimentally1 that the spin de-
grees of freedom play a crucial role in the physics of the
strongly interacting systems.15 The inclusion of the spin de
grees of freedom renders the numerical calculations e
more difficult and strongly reduces the number of fermio
accessible~see, e.g.,~Refs. 6, and 10–13!.

Quantum Monte Carlo~QMC! approaches provide a pow
erful alternative to the treatment of quantum many-body s
tems. These methods are in principle exact, apart from
tistical errors, and allow the treatment of much larger syst
sizes with many particles. Several QMC approaches h
been applied to the treatment of the disordered Hubb
model.16,17 The finite-temperature determinantal QMC a
proach has been applied to the two-dimensional disorde
Hubbard model and signatures of a metal-insulator transi
were obtained.17 However, these calculations were carrie
out at finite temperature and could not access the gro
state of the system. In previous work, we studied the grou
state properties of the disordered 2D Hubbard model by
projector quantum Monte Carlo~PQMC! method.18 We stud-
ied the properties of the Green’s function, charge dens
and inverse participation ratio against model parameters
system size. While we observed some local charge reorg
zation, we could not detect any significant delocalizing infl
ence of the Hubbard repulsionU on the many-body ground
state. However, it should be noted that all the physical qu
tities studied in Ref. 18 were obtained by integrating over
particles and, effectively, the entire energy spectrum. H
we introduce a approach which allows us to study the pr
erties of a single added particle and therefore emphasize
physical effects of interactions in the proximity of the Ferm
edge.

This approach uses the inverse participation ratio~IPR!
©2003 The American Physical Society12-1
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SRINIVASAN, BENENTI, AND SHEPELYANSKY PHYSICAL REVIEW B67, 205112 ~2003!
extracted from the charge density differences of two ma
body ground states, as described below. The IPR,j, for a
normalized single-particle wave functionc( i ) is given by
j5@( i uc( i )u4#21, where i is the site index of the system
Clearly, uc( i )u2 can be identified as the one-particle char
density at the sitei. This definition is usually carried over t
many-body systems by renormalizing the total charge d
sity at sitei, r( i ,Np), which is obtained in the standard wa
from the ground-state many-body wave function forNp par-
ticles. The IPRj is then calculated with the effective charg
densityr( i ,Np)/Np . We found that the IPR obtained from
such a definition showed slight variations with model para
eters and practically no variation with system size.18 We be-
lieve that the physical reason for this weak variation is
fact that this procedure effectively integrates over all en
gies and therefore the dominant contribution comes from
states deeply below the Fermi energy, which remain stron
localized even in the presence of interactions. Therefore,
necessary to find a method that is more sensitive to the
tribution of states in the vicinity of the Fermi energy. R
cently, we studied the localization properties of the dis
dered, attractive Hubbard model in two and thre
dimensions.19 In Ref. 19, we showed that an IPR calculat
for an added pair of particles is a very sensitive and relev
quantity to study the localization properties of the wa
function. Based on our results for the attractive Hubb
model, we have introduced a related quantity in the repuls
case, the IPR for a single added particle, which turns ou
be much more sensitive to the effects of interaction. T
quantity has certain similarities to the single-particle tunn
ing amplitude. The latter has recently been studied by ex
diagonalization methods for small clusters with spin-1
fermions.13 This work provided indications for a delocalizin
effect induced by repulsive interactions in disordered s
tems. However, the number of particles studied was ra
restricted due to the limitations of the exact diagonalizat
methods. With our method and extensive, highly accur
PQMC simulations, we study considerably larger numbers
particles in the presence of strong electron-electron inte
tions. In this study we report a significant delocalizing infl
ence of the Hubbard repulsion on 2D disordered electro
systems. This paper is organized as follows: after this In
duction, we describe the method used and the tests
formed in Sec. II. Our results and discussion are presente
detail in Sec. III.

II. MODEL AND METHOD

The Hamiltonian studied in this paper is the disorder
repulsive Hubbard model given by

H5HA1HI52t (
^ i j &,s

ci ,s
† cj ,s1(

i ,s
e ici ,s

† ci ,s

1U(
i

ni↑ni↓ , ~1!

wherecis
† (cis) creates~destroys! an electron at sitei with

spin s and nis5cis
† cis is the corresponding occupatio
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number operator,HA is given by the two first terms, andHI
is given by the last term. The hopping termt between
nearest-neighbor lattice sites characterizes the kinetic en
and the random site energiese i are taken from a box distri-
bution over @2W/2,W/2#. The parameterU measures the
strength of the screened, repulsive Hubbard interactionU
.0). We have considered both the one and two dimensio
cases, with periodic boundary conditions in all directions.
the 2D case, the sitesi lie on a rectangular lattice of linea
dimensionNx ,Ny . The system sizeN5Nx3Ny then follows
accordingly in one- and two-dimensions. In the limitU50,
this Hamiltonian reduces to the Anderson model~given by
HA), which is a standard model for the study of disorder
systems.20 In the absence of disorder,W50, this Hamil-
tonian reduces to the usual Hubbard model, which is one
the best-studied models for correlated electronic systems21

We have studied this Hamiltonian by the PQMC metho22

and exact diagonalization calculations. The PQMC meth
was initially developed to study the ground state of the Hu
bard model@clean limit of Eq.~1!#. The method can be gen
eralized, in principle quite simply, to incorporate disorder v
the random site energies. However, the actual impleme
tion and convergence of the algorithm18 is highly nontrivial
compared to the pure case, as will be discussed in de
below.

The PQMC method consists in filtering out the tru
ground stateuc0& of the many-body system from an appr
priately chosen trial functionuf&:

uc0&5 lim
Q→`

e2QHuf&

A^fue22QHuf&
. ~2!

This method is exact in principle, apart from statistical erro
and the sign problem that appears for fermions atU.0. The
Hamiltonian plays the role of the projection operator throu
the terme2QH, where Q plays the role of the projection
parameter. The trial wave function is usually formed as
product of up and down spin states from the eigenstate
the noninteracting Hamiltonian. In our case, we chose
Fermi sea ofHA as the trial wave function. In the PQMC
procedure, the projection operator exp(2QH) is first decom-
posed in Trotter form as decomposed as@exp(2DtHA)
3exp(2DtHI)#

L, with Q5DtL. This introduces a system
atic error of order (Dt)2 due to noncommutation ofHA and
HI . We have used the symmetric Trotter decompositi
which introduces a systematic error of (Dt)3. The interac-
tion is then decoupled in a discrete Hubbard-Stratonov
transformation by the introduction ofN3L Ising-like fields.
This Ising model with complicated effective interactions
then treated by a Monte Carlo~MC! procedure to obtain the
ground-state properties of the system. The quantity ca
lated during the simulation is the zero-temperature, equ
time Green’s functionGi j 5(s^c0uci ,s

† cj ,suc0&, which can
be used to obtain all the other static correlation functions
addition, it is well known that quantum simulations of fe
mionic systems suffer from the sign problem except in so
special cases. However, it has been observed that disord
fact diminishes the magnitude of the sign problem. In o
2-2
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DELOCALIZING EFFECT OF THE HUBBARD . . . PHYSICAL REVIEW B67, 205112 ~2003!
simulations, the sign problem is well under control, with t
number of negative signs being less than 1% of the t
number of steps considered.

We have studied systems with particle number (Np) up to
25 fermions on lattice sizes of up to 638 sites, with particle
density always around quarter filling. The simulations we
carried out in theSz50 sector for even numbers of particle
and theSz51/2 sector for an odd number of particles. T
specific quantity studied in this paper is the difference
charge densitiesdr( i ) between systems withNp and Np
11 particles~see the next section for more details!. The
charge densities involved in the calculationdr( i ) are ob-
tained from two independent simulations of the same dis
der realization with different particle numbers,Np and Np
11. Therefore, it becomes necessary to measure very a
rately the distribution of this added particle over the lattic
Clearly, it is harder to measuredr( i ) accurately than to mea
sure the total charge densitiesr( i ,Np) in the ground state
with Np particles. Therefore, we carried out extensive test
verify the quality of ourdr( i ) data by varying the PQMC
parameters until convergence was obtained. We have g
up to Q515 and Dt50.05. For the physical paramete
used in this paper, we find thatQ510 with Dt50.1 are
sufficient. This corresponds to a systematic error of 1023.
The Green’s function needs to be recalculated from scra
every LC55 steps and the reorthogonalization of the co
ponents of the wave function carried out everyLR55 time
steps. We find that 3000 MC sweeps are adequate for
vergence, with 1000 sweeps for equilibration.

The disorder average was carried out overNR different
disorder realizations withNR516 in the PQMC simulations
and NR5100 for most exact calculations. The site energ
are randomly chosen forNR disorder realizations atW/t
51 and then scaled proportionally toW/t for stronger values
of disorder.

While our main motivation is the study of the 2D cas
there are many useful reasons to study 1D systems. The
case can be studied conveniently by exact diagonaliza
methods, while changing the system size. Thus, we can s
the variation of various properties such as the IPRj with
system size exactly. These calculations provide a strong
dependent check on the PQMC data at small sizes. Fur
the localization effect is much stronger in one dimension a
dr is usually strongly peaked in one dimension as compa
to two dimensions. Therefore, if the algorithm is capable
reproducing a localized peak, this provides a strong chec
the method at the given range of physical parameters~ex-
amples provided in the next section!.

III. RESULTS AND DISCUSSION

In order to study the localization properties of the syste
we use the charge density distribution for an added particl
the Fermi level, given bydr( i )5r( i ,Np11)2r( i ,Np),
wherer( i ) is the ground-state charge density at sitei. The
values ofr( i ,Np) and r( i ,Np11) are obtained from two
independent PQMC simulations for the same disorder r
ization. At U50, this dr( i ) is identically equal to the one
particle probability distribution~added particle! at the Fermi
20511
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edge. In the interacting case, this charge density distribu
@dr( i )# is not generally equal to a probability distribution
For example, it is not necessarily positive definite. Howev
in all the cases studied we find that this quantity is alwa
positive. Therefore,dr( i ) can be considered to be similar t
a one-particle probability distribution. Thus, we can asso
ate a IPR for an added particle for a given disorder reali
tion asj5@( idr( i )2#21. We also note that the IPR obtaine
in this approximation does not exceed the system size in
cases studied, which gives the correct physical picture.
disorder averaged IPR is given by^j&. At U50, the IPR is
a standard tool used to obtain the number of sites over wh
the particle is localized.5 We have successfully used this a
proach in previous work on the disordered, attractive Hu
bard model for a quantitative description of the localizati
properties of the ground state.19

In Figs. 1 and 2, we study the behavior of the IPR a
function of U/t andW/t to try and establish the interestin
range of physical parameters in this system. In Fig. 1,
compare the IPR̂j& for a 1D ring of 12 sites and a 433
lattice in two dimensions as a function of interaction stren
U/t. From the figure we see that increasingU/t from 0 tends
to increase the IPR up to intermediate strengths of the in
action. Thus, the optimal value appears to be aroundU/t
54 in both one and two dimensions. Indeed, forU/t.4, the
value of IPR starts to decrease. In Fig. 2, we see the varia
of ^j& for small system sizes for 5<W/t<12. Since the ratio
^j(U/t54)&/^j(U/t50)& is practically constant, this justi
fies our choice of parameter range forW/t. Disorder strength
W/t,5 would lead to states with localization length larg
than the accessible system size even atU/t50. At high dis-
order strengths (W/t'10 and above!, it would be necessary
to increase the value ofU/t to observe interesting effects
Convergence of PQMC data becomes progressively m
difficult as interaction and disorder strengths are increas
With our choice of parameter values we are able to obt
results for interaction strengths ofU/t<2, W/t<7. There-

FIG. 1. IPR^j& versus interaction strengthU/t, at W/t57, for
Np56 particles on a one-dimensional lattice withN512 sites~tri-
angles, average over 100 disorder realizations!, and on a 433 lat-
tice ~circles, average over 16 disorder realizations!. Data come from
exact diagonalization. Here and in the following figures error b
denote statistical errors.
2-3
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fore, we studied the variation of the IPR forW/t55,7 in the
2D case.

Thus, it would seem ideal to study the IPR of 1D and 2
systems for 5<W/t<7 andU/t'4. In one dimension we
could access these parameter values conveniently for the
tem sizes studied by exact calculations. However, this
comes much more difficult in two dimensions. This is b
cause we study a small difference of large total cha
densities in the PQMC simulations. We found that the ac
racy of our method fordr( i ) is good for values of the inter
actionU/t<2. While we are not exactly at the optimal valu
of U/t, we are nevertheless in a region with sufficien
strong interactions. Indeed, it can be seen from Fig. 1
U/t52 already has a substantial delocalizing influence
the system. In Fig. 3, we present the PQMC calculation
dr( i ) in one dimension atU/t52 as compared to exac
calculations. We note that thedr(U50) is strongly peaked
IncreasingU/t to 2 radically changes the picture and shi
the peak completely. We note that the spatial location
peaks indr do not correspond to the site with the lowe
energy. At our filling strengths, it is to be expected that
low-energy sites are already occupied. The PQMC cu
shown reproduces the quantitative picture of charge den
difference. It should be noted that the calculation begins w
a trial wave function corresponding to theU/t50 data and
changes completely to give the correct physical pictu
Quantitatively, the usual errors seen at these values of
physical parameters were around 3–5 %. This error is ge
ated by the combined effects of statistical errors and the
tematic error from the Trotter decomposition but also
sign problem. The relative number of negative signs is e
mated to be of order 1%. All these factors are enhanced w
we compute the differences of charge density per site
seen in Fig. 3. The 2D case is more delocalized compare

FIG. 2. IPR ^j& versus disorder strengthW/t. Continuous
curves are for the 1D system of 12 sites andNp56 particles, at
U/t50 ~open circles! and U/t54 ~filled squares!. Curves with
dashed lines are for the 433 lattice andNp56 particles, atU/t
50 ~open circles! and U/t54 ~filled squares!. Data come from
exact diagonalization and are averaged over 100 disorder rea
tions ~except the point for the 433 lattice atU/t54, W/t512,
with NR516). The continuous curve with inverted triangles is t
ratio ^j(U/t)&/^j(U/t50)&, at U/t54 for 1D and the dashed
curve with triangles the same ratio for 2D.
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the 1D case and we have observed that convergence is b
in two dimensions. For example, we have^j&57.19 ~exact!
and 7.43~QMC! for a 433 lattice atU/t52 andW/t57,
averaged over 16 disorder realizations. This correspond
an error of about 3% for the most extreme parameter va
studied. However, forU/t54, the error increases to 8–10 %
and therefore we restrict our studies toU/t<2 in 2D.

Since we study a model of electrons with spin, it is inte
esting to consider even-odd effects in the particle numberNp
and system sizeN. In Fig. 4, we consider the effect of pro
gressively adding one and two particles to a 12 site ring w
6 electrons. From Figs. 3 and 4, we see that the first ad
electron atU/t52 and 4 has an entirely different peak
compared to the noninteracting case. In Fig. 4, we see

a-

FIG. 3. Charge density differencedr( i ) for a 1D lattice with
N512, Np56, W/t57, U/t50 ~thin line, inverse participation
ratio j54.31), exact result forU/t52 ~thick solid line,j56.58),
and quantum Monte Carlo data forU/t52 ~dashed line,j
56.93). The site energies used aree i /t52.59, 3.26,20.17, 1.00,
1.48, 3.31, 0.70, 0.11, 0.42, 2.10,20.27, 21.40.

FIG. 4. Charge density differencedr for a 1D lattice withN
512, Np56, W/t57, andU/t54: r(Np11)2r(Np) ~continuous
curve with circles! and r(Np12)2r(Np11) ~dot-dashed curve
with squares!. Data are from exact diagonalizations, for the sa
disorder realization as in Fig. 3. For comparison, see data fordr at
U/t50 in Fig. 3 ~thin line!.
2-4
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DELOCALIZING EFFECT OF THE HUBBARD . . . PHYSICAL REVIEW B67, 205112 ~2003!
the second added electron also occupies a different regio
seen from the position of the peak. This leads to the follo
ing physical image for the 1D case: each added electron fi
its own location in space with optimal energy and it is w
localized by external disorder and random distribution
charges of other electrons. This is in contrast with the n
interacting case, where the noninteracting orbital remains
same for odd and next even electron.

The situation is qualitatively different in two dimension
Indeed, in Fig. 5, we show the charge density difference
one and two added particles on a 636 lattice with 18 elec-
trons. This quantity is obtained from PQMC simulations
the system for a particular disorder realization, taken
W/t57. The data show that the initialU/t50 configuration
is very clearly localized for the given disorder realization a
lattice size. It is seen from the figure that the introduction
a repulsive Hubbard interaction (U/t52) leads to a substan
tial delocalization of the added particle. This is also bor
out quantitatively, since the IPR increases practically b
factor of 3, as compared toU/t50. In the noninteracting
case, both added particles occupy the same orbital. Th
fore, the peak for the second added particle is trivially ide
tical to the first. It is remarkable that in the interacting ca
the peak is transformed to a much more extended distribu
over the lattice. Furthermore, the second added particle
practically the same distributiondr( i ) as the first. Thus,
there appears to be almost zero effective repulsion betw
the two added particles, despite the interaction strengthU/t
52. This is completely in contrast to the scenario in o
dimension with interactions, where we observe signific
repulsion between the two added particles. We note that
is the case for every disorder realization studied.

We now turn to a more quantitative picture of the on
and two-dimensional systems. For this, it is necessary to
erage the data over different disorder realizations and to v

FIG. 5. Charge density differencedr for a 636 lattice with
Np518 particles,W/t57, U/t50 ~left! andU/t52 ~right!: r(Np

11)2r(Np) ~top! and r(Np12)2r(Np11) ~bottom!. Inverse
participation ratios arej56.2 ~top left!, j518.3 ~top right!, j
56.2 ~bottom left!, andj516.7 ~bottom right!.
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the system size. We start the analysis from the data for
1D case. In Fig. 6, we present the IPR for interacting p
ticles on 1D rings of 4–12 sites at a constant density
particles~quarter filling! and compare this against the vari
tion of the IPR atU/t50. We find a delocalization effec
even for 1D rings. We note that the curve forU/t50 is well
saturated in one dimension even at 8–12 sites. TheU/t52
curve shows signs of saturation. The delocalization effec
most visible forU/t54, as expected from Fig. 1, where
unfortunately, we do not have access to PQMC data for co
parisons. The ratiôj(U/t)&/^j(U/t50)& goes to 1.64 for
U/t52 and 1.94 forU/t54.

In two dimensions previous exact diagonalization stud
have gone up to 6 electrons on a 434 lattice, or 4 electrons
on a 636 lattice.10,11,13Therefore, it is of great importanc
to access larger system sizes with more particles. In Fig
we present the IPR for different lattice sizes in two dime
sions, obtained from PQMC simulations. We have gone up
48 sites (638 lattice! and 24 or 25 particles, which goe
beyond any existing study of the ground state in the lite
ture. We observe a delocalizing effect of the Hubbard rep
sion manifested by an increase of the IPR with system s
and interaction strength. There is a remarkable differe
between the present result and the IPR for the full ma
body ground-state wave function obtained in Ref. 18. In
previous work, we could notice no size effects over a la
range ofW and lattice sizes. In fact, the curves for differe
lattice sizes againstU/t in Figs. 8 and 9 of Ref. 18. In con
trast, in the present work, we at a given value ofW/t tended
to collapse as seen see from Fig. 7 that effects of lattice
on the IPR for an added particle are considerable. Furt
more, we see that the Hubbard repulsion has a strong d
calizing influence, compared to the data for the nonintera
ing case. As explained in the previous sections, we attrib
the difference between the present results and those
sented in Ref. 18 to the fact that the IPR fromdr measures
directly the response in the vicinity of the Fermi level.

FIG. 6. Inverse participation ratiôj& versus system sizeN, for
1D chains with periodic boundary conditions, atW/t57, U/t50
~circles!, U/t52 ~diamonds!, andU/t54 ~squares!. Triangles and
inverted triangles give the ratiôj(U/t)&/^j(U/t50)&, at U/t52
and U/t54, respectively. Data come from exact diagonalizati
and are averaged over 100 disorder realizations.
2-5
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The ratio ^j(U/t)&/^j(U/t50)& can be considered as
quantitative measure of delocalization effect induced by
pulsive interaction. From the inset of Fig. 7, it can be se
that this ratio rises with system size for a given density a
we do not observe saturation at the system sizes studied.
data for this ratio for small clusters in two dimensions a
comparable to the enhancement ratio obtained in Ref.
although the quantity studied in Ref. 13 was slightly diffe
ent, i.e., the one-particle tunneling amplitude. From Figs
and 7 we can compare the values of the ra
^j(U/t)&/^j(U/t50)& in one and two dimensions. At th
system sizes studied these values are comparable forU/t

FIG. 7. Inverse participation ratiôj& as a function of the num-
ber of sitesN, for a 2D lattice, with quarter filling~i.e., Np

56,12,18, and 24 fermions on 433,634,636, and 836 lattices,
respectively!, with U/t50 ~empty symbols, average over 103 dis-
order realizations!, U/t52 ~filled symbols, average over 16 diso
der realizations!, andW/t55 ~circles! andW/t57 ~triangles!. The
inset shows the ratiôj(U/t)&/^j(U/t50)&, at U/t52, for W/t
55 ~circles! and W/t57 ~triangles!. PQMC parameters areQ
510, Dt50.1, except for 836 lattices whereQ512, Dt50.08.
od

s.

20511
-
n
d
ur
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52. However, it would necessary to analyze the behavio
this ratio for larger system sizes in order to get a clear ans
as to whether the localization properties are indeed differ
in one and two dimensions. At the same time, we note t
there seem to be qualitative differences based on even
effects for added particles in one and two dimensions~see
Figs. 4 and 5 and discussion therein!. This difference favors
the picture of stronger delocalization in two dimensions
compared to one dimension.

Even if our data clearly show a repulsion-induced de
calization effect, they do not permit us to draw a defin
answer about the existence of a metal-insulator transition
this system in the thermodynamic limit. Indeed, even thou
we have a significant number of fermions, we cannot go
larger system sizes because of the accuracy constraint of
culating charge differences. It should also be pointed out
our calculations done atU/t<2 are below the optimal value
of the interaction strength. Surely, increasingU/t to 4 will
increase the delocalization but its dependence on system
is still unclear, leaving open the question of a 2D MIT.

In conclusion, we have studied the ground-state proper
of the repulsive Hubbard model with disorder through t
powerful PQMC method. Highly accurate simulations perm
us to obtain the difference of charge density between
ground states withNp andNp11 fermions, respectively. The
analysis of this characteristic clearly shows that the Hubb
repulsion has a delocalizing effect in the system. We h
observed some qualitative differences between one and
dimensions for this characteristic. However, the restrictio
on system size and interaction strength do not permit u
draw a definite conclusion about the existence of a MIT
the thermodynamic limit in two dimensions.
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