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Delocalizing effect of the Hubbard repulsion for electrons on a two-dimensional disordered lattice
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We study numerically the ground-state properties of the repulsive Hubbard model for spin-1/2 electrons on
two-dimensional lattices with disordered on-site energies. The projector quantum Monte Carlo method is used
to obtain very accurate values of the ground-state charge density distributionslywithd N,+ 1 particles.

The difference in these charge densities allows us to study the localization properties of an added particle. The
results obtained at quarter filling on finite clusters show that the Hubbard repulsion has a strong delocalizing
effect on the electrons in disordered two-dimensional lattices. However, numerical restrictions do not allow us
to reach a definite conclusion about the existence of a metal-insulator transition in the thermodynamic limit in
two dimensions.
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[. INTRODUCTION interaction approaches of quantum chemistry have been ap-
plied to systems with spinless fermions and electrons with
The interplay between disorder and electron-electron inspin®®!4Exact diagonalization approaches have been useful
teractions has been a subject of intense activity in the lagbut suffer from severe limitations in the accessible system
few years. Recent experiments have shown the existence gfze and number of particlés®'t*3From these studies, it
an apparent metal-insulator transitiofMIT) in two-  has been observed that repulsive electron-electron interac-
dimensional(2D) semiconductor devicesThis observation tions can have a delocalizing effect in small systems. In ad-
came as a surprise to the community, since the scaling theogjtion, it has been shown experimentalihat the spin de-
of localization, developed for disordered, noninteracting sysgrees of freedom play a crucial role in the physics of these
tems predicts insulating states even for infinitesimal diSOI’degtrongw interacting Systen}é_The inclusion of the Spin de-
strengths. Therefore, these experiments have promoted ingrees of freedom renders the numerical calculations even
tense theoretical activity. There is at present no consensyfiore difficult and strongly reduces the number of fermions
and considerable controversy surrounds this protiérfea- accessibldsee, e.g.(Refs. 6, and 10-13
ture of the experimental high-mobility samples investigated Quantum Monte CarléQMC) approaches provide a pow-
is their exceptionally low electronic density. This leadsto  erful alternative to the treatment of quantum many-body sys-
an unusually high value of the dimensionless paramefer tems. These methods are in principle exact, apart from sta-
«n Y2 of up to 80. The parameter, sets the scale of tistical errors, and allow the treatment of much larger system
electron-electron interactiol. . as compared to the Fermi sizes with many particles. Several QMC approaches have
energy Er through r¢=~E../Er. Thus the question of been applied to the treatment of the disordered Hubbard
electron-electron interaction effects becomes important imodel'®!” The finite-temperature determinantal QMC ap-
these disordered systems. proach has been applied to the two-dimensional disordered
The analytical treatment of the problem of disordered,Hubbard model and signatures of a metal-insulator transition
interacting electrons is possible only in some limiting caseswere obtained’ However, these calculations were carried
The effects of weak interactions in disordered systems haveut at finite temperature and could not access the ground
been studied in great detail in the metallidelocalizedd  state of the system. In previous work, we studied the ground-
regime® The other extreme, corresponding to the stronglystate properties of the disordered 2D Hubbard model by the
localized system, can be treated by mean-field metfiédds.  projector quantum Monte Carl®QMC) method® We stud-
though these analytical approaches have provided many usieed the properties of the Green’s function, charge density,
ful physical results, the general treatment of disordered quarand inverse participation ratio against model parameters and
tum many-body systems remains an unsolved problensystem size. While we observed some local charge reorgani-
Indeed, one of the most powerful methods developed for theation, we could not detect any significant delocalizing influ-
analytical treatment of disordered systems, namely, the swence of the Hubbard repulsids on the many-body ground
persymmetry approach,cannot handle the effects of state. However, it should be noted that all the physical quan-
electron-electron interactions. Given this context, numericatities studied in Ref. 18 were obtained by integrating over all
approaches play a crucial role in the treatment of disorderegyarticles and, effectively, the entire energy spectrum. Here
interacting systems. we introduce a approach which allows us to study the prop-
Several numerical approaches have been applied to therties of a single added particle and therefore emphasizes the
study of 2D disordered, strongly correlated syst8ms. physical effects of interactions in the proximity of the Fermi
Among the approximate approaches, Hartree-Fock calculaedge.
tions with residual interactions similar to the configuration This approach uses the inverse participation rérR)
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extracted from the charge density differences of two manynumber operatotd 5 is given by the two first terms, and,
body ground states, as described below. The IPRfor a is given by the last term. The hopping termbetween
normalized single-particle wave functiaf(i) is given by  nearest-neighbor lattice sites characterizes the kinetic energy
E=[Zy(i)|*1L, wherei is the site index of the system. and the random site energiesare taken from a box distri-
Clearly, |(i)|? can be identified as the one-particle chargebution over[ —W/2,W/2]. The parametet) measures the
density at the sité. This definition is usually carried over to strength of the screened, repulsive Hubbard interactidn (
many-body systems by renormalizing the total charge den>0). We have considered both the one and two dimensional
sity at sitei, p(i,Np), which is obtained in the standard way cases, with periodic boundary conditions in all directions. In
from the ground-state many-body wave function iy par-  the 2D case, the sitdslie on a rectangular lattice of linear
ticles. The IPR¢ is then calculated with the effective charge dimensionN, ,N, . The system siz8l=N, XN, then follows
density p(i,Np)/N,. We found that the IPR obtained from accordingly in one- and two-dimensions. In the lirbit=0,
such a definition showed slight variations with model param-this Hamiltonian reduces to the Anderson moftglen by
eters and practically no variation with system siZ&V/e be-  H,), which is a standard model for the study of disordered
lieve that the physical reason for this weak variation is thesystems? In the absence of disordew=0, this Hamil-
fact that this procedure effectively integrates over all enertonian reduces to the usual Hubbard model, which is one of
gies and therefore the dominant contribution comes from théhe best-studied models for correlated electronic systéms.
states deeply below the Fermi energy, which remain strongly We have studied this Hamiltonian by the PQMC metifod
localized even in the presence of interactions. Therefore, it iand exact diagonalization calculations. The PQMC method
necessary to find a method that is more sensitive to the corwas initially developed to study the ground state of the Hub-
tribution of states in the vicinity of the Fermi energy. Re- bard modelclean limit of Eq.(1)]. The method can be gen-
cently, we studied the localization properties of the disor-eralized, in principle quite simply, to incorporate disorder via
dered, attractive Hubbard model in two and three the random site energies. However, the actual implementa-
dimensiong? In Ref. 19, we showed that an IPR calculatedtion and convergence of the algoritffhis highly nontrivial

for an added pair of particles is a very sensitive and relevantompared to the pure case, as will be discussed in detail
quantity to study the localization properties of the wavebelow.

function. Based on our results for the attractive Hubbard The PQMC method consists in filtering out the true
model, we have introduced a related quantity in the repulsivground statd ) of the many-body system from an appro-
case, the IPR for a single added particle, which turns out teriately chosen trial functiohd):

be much more sensitive to the effects of interaction. This

quantity has certain similarities to the single-particle tunnel- e OH| 4)
ing amplitude. The latter has recently been studied by exact | o) = liM ——. 2
diagonalization methods for small clusters with spin-1/2 0=\ (p|le 21| )

fermions®® This work provided indications for a delocalizing
effect induced by repulsive interactions in disordered sysThis method is exact in principle, apart from statistical errors
tems. However, the number of particles studied was ratheand the sign problem that appears for fermions at0. The
restricted due to the limitations of the exact diagonalizatiorHamiltonian plays the role of the projection operator through
methods. With our method and extensive, highly accuratéhe terme™®", where ® plays the role of the projection
PQMC simulations, we study considerably larger numbers oparameter. The trial wave function is usually formed as a
particles in the presence of strong electron-electron interagroduct of up and down spin states from the eigenstates of
tions. In this study we report a significant delocalizing influ- the noninteracting Hamiltonian. In our case, we chose the
ence of the Hubbard repulsion on 2D disordered electroniéermi sea ofH, as the trial wave function. In the PQMC
systems. This paper is organized as follows: after this Introprocedure, the projection operator exj§H) is first decom-
duction, we describe the method used and the tests peposed in Trotter form as decomposed [Exp(—A7rH,)
formed in Sec. Il. Our results and discussion are presented iRexp(—A7H,)]-, with ®=A7L. This introduces a system-
detail in Sec. Il atic error of order A 7)? due to noncommutation df , and
H,. We have used the symmetric Trotter decomposition,
Il. MODEL AND METHOD which introduces a systematic error ak £)3. The interac-
tion is then decoupled in a discrete Hubbard-Stratonovich
The Hamiltonian studied in this paper is the disorderediransformation by the introduction &fx L Ising-like fields.
repulsive Hubbard model given by This Ising model with complicated effective interactions is
then treated by a Monte Carl®C) procedure to obtain the
ground-state properties of the system. The quantity calcu-
lated during the simulation is the zero-temperature, equal-
time Green’s functiorGij=Eg(¢o|cf‘gcjig| o), Which can
. be used to obtain all the other static correlation functions. In
+U niny,, (1) 1SEHHO £ : .
i addition, it is well known that quantum simulations of fer-
mionic systems suffer from the sign problem except in some
wherec! (c;,) creates(destroy$ an electron at sité with  special cases. However, it has been observed that disorder in
spin ¢ and ni,,zciTUci(, is the corresponding occupation fact diminishes the magnitude of the sign problem. In our

H:HA—’_HIZ_t 2 CiT(er (r+2 e-iCiT(rCi o
ajy,o ' i,o ' '
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simulations, the sign problem is well under control, with the 9 . .
number of negative signs being less than 1% of the total I
number of steps considered.
We have studied systems with particle numklgg) up to
25 fermions on lattice sizes of up tox@ sites, with particle
density always around quatrter filling. The simulations were
carried out in theS,=0 sector for even numbers of particles
and theS,=1/2 sector for an odd number of particles. The
specific quantity studied in this paper is the difference of
charge densitiesp(i) between systems withN, and N,
+1 particles(see the next section for more detailThe
charge densities involved in the calculatiop(i) are ob-
tained from two independent simulations of the same disor- ; : 3 . 5
der realization with different particle numbem,, and N, U/t
+1. Therefore, it becomes necessary to measure very accu-
rately the distribution of this added particle over the lattice. FIG. 1. IPR(¢) versus interaction strength/t, atW/t=7, for
Clearly, it is harder to measu@(i) accurately than to mea- Np=6 particles on a one-dimensional lattice with=12 sites(tri-
sure the total charge densitiggi,N,) in the ground state angles, average over 100 disorder realizaioasd on a & 3 lat-
with N, particles. Therefore, we carried out extensive tests tdice (circles, average over 16 disorder realizatioiata come from
verify the quality of ourdp(i) data by varying the PQMC exact dlago_ngllzatlon. Here and in the following figures error bars
parameters until convergence was obtained. We have gorfi§note statistical errors.
up to ®=15 and A7=0.05. For the physical parameters
used in this paper, we find th& =10 with A7=0.1 are €dge. In the interacting case, this charge density distribution
sufficient. This corresponds to a systematic error of 310 [ Jp(i)] is not generally equal to a probability distribution.
The Green’s function needs to be recalculated from scratchor example, it is not necessarily positive definite. However,
everyL.=5 steps and the reorthogonalization of the com-in all the cases studied we find that this quantity is always
ponents of the wave function carried out evéry=>5 time  positive. Thereforegp(i) can be considered to be similar to
steps. We find that 3000 MC sweeps are adequate for cor@ one-particle probability distribution. Thus, we can associ-
vergence, with 1000 sweeps for equilibration. ate a IPR for an added particle for a given disorder realiza-
The disorder average was carried out odgy different  tion asé=[=;8p(i)?]*. We also note that the IPR obtained
disorder realizations witthNg=16 in the PQMC simulations in this approximation does not exceed the system size in all
and Ng= 100 for most exact calculations. The site energiestases studied, which gives the correct physical picture. The
are randomly chosen foNg disorder realizations aw/t  disorder averaged IPR is given ky). At U=0, the IPR is
=1 and then scaled proportiona”yW/t for stronger values a standard tool used to obtain the number of sites over which
of disorder. the particle is localized We have successfully used this ap-
While our main motivation is the study of the 2D case, Proach in previous work on the disordered, attractive Hub-
there are many useful reasons to study 1D systems. The 1@ard model for a quantitative description of the localization
case can be studied conveniently by exact diagonalizatioRroperties of the ground state.
methods, while changing the system size. Thus, we can study N Figs. 1 and 2, we study the behavior of the IPR as a
the variation of various properties such as the |E>R/|th function of U/t and W/t to try and establish the interesting
system size exactly. These calculations provide a strong ifange of physical parameters in this system. In Fig. 1, we
dependent check on the PQMC data at small sizes. Furthegompare the IPR&) for a 1D ring of 12 sites and a3
the localization effect is much stronger in one dimension and@ttice in two dimensions as a function of interaction strength
5p is usually strongly peaked in one dimension as compare&//t. From the figure we see that increasldgt from O tends
to two dimensions. Therefore, if the algorithm is capable ofto increase the IPR up to intermediate strengths of the inter-
reproducing a localized peak, this provides a strong check o@ction. Thus, the optimal value appears to be arourtl
the method at the given range of physical parametexs =4 in both one and two dimensions. Indeed, tbit>4, the
amples provided in the next sectjon value of IPR starts to decrease. In Fig. 2, we see the variation
of (¢) for small system sizes for§W/t<12. Since the ratio
(&(U/t=4))I{£(U/t=0)) is practically constant, this justi-
fies our choice of parameter range YWft. Disorder strength
In order to study the localization properties of the systemW/t<5 would lead to states with localization length larger
we use the charge density distribution for an added particle ahan the accessible system size eveb At=0. At high dis-
the Fermi level, given bydp(i)=p(i,Np+1)—p(i,Np), order strengthsW/t~10 and abovg it would be necessary
wherep(i) is the ground-state charge density at $itdhe to increase the value dfi/t to observe interesting effects.
values ofp(i,Np) and p(i,Ny+1) are obtained from two Convergence of PQMC data becomes progressively more
independent PQMC simulations for the same disorder realdifficult as interaction and disorder strengths are increased.
ization. AtU=0, this 8p(i) is identically equal to the one- With our choice of parameter values we are able to obtain
particle probability distributiofadded particleat the Fermi  results for interaction strengths of/t<2, W/t<7. There-

IIl. RESULTS AND DISCUSSION
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FIG. 2. IPR (¢) versus disorder strengtiV/t. Continuous
curves are for the 1D system of 12 sites adg=6 particles, at FIG. 3. Charge density differencép(i) for a 1D lattice with
U/t=0 (open circley and U/t=4 (filled squares Curves with N=12, Np,=6, W/t=7, U/t=0 (thin line, inverse participation
dashed lines are for thex43 lattice andN,=6 particles, atU/t ratio £=4.31), exact result fold/t=2 (thick solid line, £=6.58),
=0 (open circlep and U/t=4 (filled squares Data come from and quantum Monte Carlo data fdd/t=2 (dashed line,&
exact diagonalization and are averaged over 100 disorder realiza=6.93). The site energies used atét=2.59, 3.26,—0.17, 1.00,
tions (except the point for the 43 lattice atU/t=4, W/t=12, 1.48, 3.31, 0.70, 0.11, 0.42, 2.18,0.27, — 1.40.
with Ng=16). The continuous curve with inverted triangles is the
ratio (£(U/t))/{£(U/t=0)), at U/t=4 for 1D and the dashed

L ! the 1D case and we have observed that convergence is better
curve with triangles the same ratio for 2D.

in two dimensions. For example, we haf& =7.19 (exac}
and 7.43(QMC) for a 4X 3 lattice atU/t=2 andW/t=7,
averaged over 16 disorder realizations. This corresponds to

. . an error of about 3% for the most extreme parameter values
Thus, it would seem ideal to study the IPR of 1D and 2Dstudied. However, fotJ/t=4, the error increases to 8—10 %

systems for s=W/t<7 andU/t~4. In one dimension we and therefore we restrict our studiesWdt<2 in 2D.

could access these parameter values conveniently for the sys- Since we study a model of electrons with spin, it is inter-

tem sizes studied by exact calculations. However, this be-

comes much more difficult in two dimensions. This is be_estmg to consider even-odd effects in the particle nurher

. and system siz&l. In Fig. 4, we consider the effect of pro-
cause we study a small difference of large total charge vely addi d icl T ith
densities in the PQMC simulations. We found that the accu'©SSIVEly adding one an two particles to a 12 site ring wit

racy of our method fop(i) is good for values of the inter- 6 electrons. From Figs. 3 and 4, we see that the first added

; ) . electron atU/t=2 and 4 has an entirely different peak as
actionU/t=2. While we are not_ exactly _at the_opuma_l yalue compared to the noninteracting case. In Fig. 4, we see that
of U/t, we are nevertheless in a region with sufficiently
strong interactions. Indeed, it can be seen from Fig. 1 that
U/t=2 already has a substantial delocalizing influence on n
the system. In Fig. 3, we present the PQMC calculation of 03 )
Sp(i) in one dimension atJ/t=2 as compared to exact
calculations. We note that thgp(U=0) is strongly peaked.
IncreasingU/t to 2 radically changes the picture and shifts
the peak completely. We note that the spatial location of 0.2
peaks indp do not correspond to the site with the lowest 23
energy. At our filling strengths, it is to be expected that the
low-energy sites are already occupied. The PQMC curve
shown reproduces the quantitative picture of charge density
difference. It should be noted that the calculation begins with
a trial wave function corresponding to th&'t=0 data and .
changes completely to give the correct physical picture. o.oE L .
Quantitatively, the usual errors seen at these values of the 12 3 4 5 6.7 8 9 10 11 12
physical parameters were around 3—-5 %. This error is gener-
ated by the combined effects of statistical errors and the sys- G, 4. Charge density differencép for a 1D lattice withN
tematic error from the Trotter decomposition but also the=1p Np=6, W/t=7, andU/t=4: p(N,+1)— p(N,) (continuous
sign problem. The relative number of negative signs is esticurve with circles and p(N,+2)—p(N,+1) (dot-dashed curve
mated to be of order 1%. All these factors are enhanced whegith squares Data are from exact diagonalizations, for the same
we compute the differences of charge density per site, adisorder realization as in Fig. 3. For comparison, see datagait
seen in Fig. 3. The 2D case is more delocalized compared t0/t=0 in Fig. 3 (thin line).

fore, we studied the variation of the IPR fdf/t=5,7 in the
2D case.

0.1
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FIG. 6. Inverse participation ratic¢) versus system sizd, for
1D chains with periodic boundary conditions, \W{t=7, U/t=0
(circles, U/t=2 (diamond$, andU/t=4 (squares Triangles and
FIG. 5. Charge density differencép for a 6x6 lattice with ~ Inverted triangles give the ratigt(U/t))/(£(U/t=0)), atU/t=2
N,=18 particlesW/t=7, U/t=0 (left) andU/t=2 (right): p(N, and U/t=4, respectively. Dat_a come frqm gxact diagonalization
+1)=p(N,) (top) and p(N,+2)—p(N,+1) (bottom. Inverse and are averaged over 100 disorder realizations.
participation ratios are=6.2 (top left), £=18.3 (top righy, &
=6.2 (bottom left, and§=16.7 (bottom righy. the system size. We start the analysis from the data for the
1D case. In Fig. 6, we present the IPR for interacting par-
the second added electron also occupies a different region, &isles on 1D rings of 4-12 sites at a constant density of
seen from the position of the peak. This leads to the follow-particles(quarter filling and compare this against the varia-
ing physical image for the 1D case: each added electron findson of the IPR atU/t=0. We find a delocalization effect
its own location in space with optimal energy and it is well even for 1D rings. We note that the curve foft=0 is well
localized by external disorder and random distribution ofsaturated in one dimension even at 8—12 sites. Uhe=2
charges of other electrons. This is in contrast with the noneurve shows signs of saturation. The delocalization effect is
interacting case, where the noninteracting orbital remains thmost visible forU/t=4, as expected from Fig. 1, where,
same for odd and next even electron. unfortunately, we do not have access to PQMC data for com-
The situation is qualitatively different in two dimensions. parisons. The ratid&(U/t))/(£(U/t=0)) goes to 1.64 for
Indeed, in Fig. 5, we show the charge density difference fotJ/t=2 and 1.94 folU/t=4.
one and two added particles on &6 lattice with 18 elec- In two dimensions previous exact diagonalization studies
trons. This quantity is obtained from PQMC simulations of have gone up to 6 electrons on x4 lattice, or 4 electrons
the system for a particular disorder realization, taken abn a 6x6 latticel®'t*3Therefore, it is of great importance
WI/t=7. The data show that the initial/t=0 configuration to access larger system sizes with more patrticles. In Fig. 7,
is very clearly localized for the given disorder realization andwe present the IPR for different lattice sizes in two dimen-
lattice size. It is seen from the figure that the introduction ofsions, obtained from PQMC simulations. We have gone up to
a repulsive Hubbard interactiot(t=2) leads to a substan- 48 sites (6<8 lattice and 24 or 25 particles, which goes
tial delocalization of the added particle. This is also bornebeyond any existing study of the ground state in the litera-
out quantitatively, since the IPR increases practically by aure. We observe a delocalizing effect of the Hubbard repul-
factor of 3, as compared td/t=0. In the noninteracting sion manifested by an increase of the IPR with system size
case, both added particles occupy the same orbital. Therend interaction strength. There is a remarkable difference
fore, the peak for the second added particle is trivially idenbetween the present result and the IPR for the full many-
tical to the first. It is remarkable that in the interacting casebody ground-state wave function obtained in Ref. 18. In the
the peak is transformed to a much more extended distributioprevious work, we could notice no size effects over a large
over the lattice. Furthermore, the second added particle haange ofW and lattice sizes. In fact, the curves for different
practically the same distributiodp(i) as the first. Thus, lattice sizes againdti/t in Figs. 8 and 9 of Ref. 18. In con-
there appears to be almost zero effective repulsion betweearast, in the present work, we at a given valueMft tended
the two added particles, despite the interaction streligth  to collapse as seen see from Fig. 7 that effects of lattice size
=2. This is completely in contrast to the scenario in oneon the IPR for an added particle are considerable. Further-
dimension with interactions, where we observe significaninore, we see that the Hubbard repulsion has a strong delo-
repulsion between the two added particles. We note that thisalizing influence, compared to the data for the noninteract-
is the case for every disorder realization studied. ing case. As explained in the previous sections, we attribute
We now turn to a more quantitative picture of the one-the difference between the present results and those pre-
and two-dimensional systems. For this, it is necessary to awsented in Ref. 18 to the fact that the IPR fr@ip measures
erage the data over different disorder realizations and to varglirectly the response in the vicinity of the Fermi level.
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30 L — ' ] =2. However, it would necessary to analyze the behavior of
' this ratio for larger system sizes in order to get a clear answer
as to whether the localization properties are indeed different
in one and two dimensions. At the same time, we note that
there seem to be qualitative differences based on even-odd
effects for added particles in one and two dimensi(see
Figs. 4 and 5 and discussion theneifihis difference favors

the picture of stronger delocalization in two dimensions as
compared to one dimension.

Even if our data clearly show a repulsion-induced delo-
calization effect, they do not permit us to draw a definite
answer about the existence of a metal-insulator transition for
2.0 20 30 2 50 this system in the thermodynamic limit. Indeed, even though

we have a significant number of fermions, we cannot go to
larger system sizes because of the accuracy constraint of cal-

FIG. 7. Inverse participation rati¢f) as a function of the num-  cylating charge differences. It should also be pointed out that
ber of sitesN, for a 2D lattice, with quarter filling(i.e., N, oyr calculations done a1/t<2 are below the optimal value
=6,12,18, and 24 fermions ord3,6x4,6x6, and 8<6 lattices, ¢ tha jnteraction strength. Surely, increasidgt to 4 will
respectively, with U/ t=0 (empty symbols, average over’0is- j,rease the delocalization but its dependence on system size
order rzle_allz_anon)s U/t—2_(f|||e_d lsymbols, avSrage_ovelr 16 dr:sor- is still unclear, leaving open the question of a 2D MIT.
der realizations andW/t=S5 (circles andW/t=7 (triangles. The In conclusion, we have studied the ground-state properties

inset shows the ratidé(U/t))/(£(U/t=0)), at U/t=2, for W/t . : X
—5 (circles and W/t=7 (triangles. POMC parameters aré of the repulsive Hubbard model with disorder through the

—10, A7=0.1, except for &6 lattices wherdd = 12, A 7= 0.08. powerful PQMC method. Highly accurate simulations permit
us to obtain the difference of charge density between two
The ratio( £(U/t))/(£(U/t=0)) can be considered as a ground_ states Wit andl}lp_+1 fermions, respectively. The
guantitative measure of delocalization effect induced by regnalys_ls of this CharaCte.”.St'C clearly.shows that the Hubbard
pulsive interaction. From the inset of Fig. 7, it can be seer{epUISIon has a delo.call|zmg' effect in the system. We have
that this ratio rises with system size for a given density anoo_bserve_d Some q_ualltanve dlf_ferences between one a_lnql two
we do not observe saturation at the system sizes studied. OE“mensmns f_or this c_haracte_rlsnc. However, the restr_|ct|ons
data for this ratio for small clusters in two dimensions are®? SYStem sSize and |nt¢ract|on strength_do not permit us to
comparable to the enhancement ratio obtained in Ref. 1 raw a definite co_nc_lus_pn abou§ the existence of a MIT in
although the quantity studied in Ref. 13 was slightly differ- "€ thermodynamic limit in two dimensions.
ent, i.e., the one-particle tunneling amplitude. From Figs. 6
and 7 we can compare the values of the ratio
(é(U/t))/{(£(U/t=0)) in one and two dimensions. At the  We thank the IDRIS at Orsay for access to their super-
system sizes studied these values are comparablé& for computers.
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