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Quantum computation of the Anderson transition in the presence of imperfections

A. A. Pomeransky and D. L. Shepelyansky*
Laboratoire de Physique The´orique, UMR 5152 du CNRS, Universite´ Paul Sabatier, 31062 Toulouse Cedex 4, France

~Received 30 June 2003; published 12 January 2004!

We propose a quantum algorithm for simulation of the Anderson transition in disordered lattices and study
numerically its sensitivity to static imperfections in a quantum computer. In the vicinity of the critical point the
algorithm gives a quadratic speedup in computation of diffusion rate and localization length, comparing to the
known classical algorithms. We show that the Anderson transition can be detected on quantum computers with
7–10 qubits.
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The problem of metal-insulator transition of nonintera
ing electrons in a disordered potential was pioneered
Anderson in 1958@1#. Since then it continues to attract a
active interest of researchers all over the world~see, e.g.,
Refs.@2–4#, and references therein!. In addition to analytical
and experimental studies of the problem an important con
bution to the understanding of its properties was made w
the help of numerical simulations based on various com
tational methods adapted to the physics of this phenome
Indeed, the numerical studies allowed one to obtain so
values of critical exponents in the vicinity of the transitio
and to study certain system characteristics at the crit
point including level spacing statistics and conductance fl
tuations for the cases of different symmetries and sys
dimensions~see, e.g., Refs.@3–7#!. These numerical simula
tions are performed with the help of modern supercompu
and are at the border of their computational capacity.

The recent progress in quantum computation dem
strated that due to quantum parallelism certain tasks ca
performed much faster on a quantum computer~see Ref.@8#,
and references therein!. The most known example is the Sh
algorithm for factorization of large integers@9#, which is
exponentially faster than any known classical algorithm
number of efficient quantum algorithms was also propo
for simulation of quantum evolution of certain Hamiltonia
including many-body quantum systems@10,11# and problems
of quantum chaos@12–14#. In Ref.@13# it was shown that the
evolution propagator in a regime of dynamical or Anders
localization can be simulated efficiently on a quantum co
puter. However, the algorithm proposed there requires a
nificant number of redundant qubits and is not accessible
an experimental implementation with a first generation
quantum computers composed of 5–10 qubits.

In this paper we propose a quantum algorithm for a qu
tum dynamics in the regime of Anderson localization. Th
algorithm requires no redundant qubits thus using the av
ablenq qubits in an optimal way. The propagation on a u
time step is performed inO(nq

2) quantum elementary gate
while any known classical algorithm requiresO(2nq) opera-
tions for a vector of sizeN52nq. Due to these properties th
Anderson transition can be already detected on a quan
computer with 7–10 qubits. The basic elements of the al
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rithm involve one qubit rotations, controlled phase sh
C(f) and controlled-NOT gateCN . The important compo-
nent of the algorithm is the well-known quantum Fouri
transform ~QFT! described in Ref.@8#. All these quantum
operations have been already realized for 3–7 qubits in
NMR-based quantum computations reported in Re
@15,16#. Thus the main obstacle for experimental detection
the Anderson transition in quantum computations is rela
to the effects of external decoherence@17# and residual static
imperfections@18# which restrict the number of availabl
quantum gates. The results obtained for operating quan
algorithms@14,19# show that the effects of static imperfec
tions affect the accuracy of quantum computation in a str
ger way comparing to the case of random noisy gate err
Due to that in this paper we concentrate our studies on
case of static imperfections investigating their impact on
system properties in the vicinity of the Anderson transitio

To study the effects of static imperfections in quantu
computations of the Anderson transition we choose the g
eralized kicked rotator model described by the unitary e
lution of the wave functionc:

c̄5Ûc5exp@2 iV~u,t !#exp@2 iH 0~ n̂!#c. ~1!

Here c̄ is the new value ofc after one map iteration given
by the unitary operatorÛ, H0(n) gives the rotational phase
in the basis of momentumn̂52 i ]/]u, the kick potential
V(u,t) depends on the rotator phaseu and timet measured
in number of kicks,c(u12p)5c(u). For V(u,t)5k cosu
andH05Tn2/2, one has the kicked rotator model describ
in detail in Ref.@20#. The evolution given by Eq.~1! results
from the HamiltonianH5H0(n)1V(u,t)d1(t), whered1(t)
is a periodicd function with period 1, and (n,u) are conju-
gated variables. In the case when the potentialV(u,t)
522tan21@2k(cosu1cosv1t1cosv1t)# depends quasiperi
odically on timet the model can be exactly reduced to t
three-dimensional~3D! Lloyd model @21#. Indeed, the time
dependence ofV(u,t) can be eliminated by introduction o
extended phase space with a replacementH0→H0(n)
1v1n11v2n2. Then the linear dependence on quantu
numbersn1,2 gives fixed frequency rotations of the conju
gated phasesu1,25v1,2t. The extensive studies performed
Ref. @21# showed that this model displays the Anders
metal-insulator transition atk5kc'0.5 with the critical ex-
©2004 The American Physical Society02-1
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ponents being close to the values found in other 3D s
state models. In this paper following Ref.@22# we choose in
Eq. ~1! the potential

V~u,t !5k~110.75 cosv1t cosv2t !cosu

with v152pl21, v252pl22,

andl51.3247 . . . being the real root of the cubic equatio
x32x2150. The rotation phasesH0(n) are randomly dis-
tributed in the interval (0,2p). This model shows the Ander
son transition atkc'1.8 @22# with the characteristics simila
to those of the Lloyd model studied in Ref.@21#.

The quantum algorithm simulating the time evolutio
of this model is constructed in the following wa
The quantum statesn50, . . . ,N21 are represented b
one quantum register withnq qubits so that N52nq.
The initial state with all probability atn050 corresponds to
the state u00 . . . 0. ~momentum n changes on a circle
with N levels!. The phase rotationUT5exp@2iH0(n)# in
the momentum basisn is performed with the help o
quantum random phase generator built from two unitary

eratorsUT
(1) andUT

(2) . The operatorUT
(1)5) j 51

nq eif js j
z

gives
rotation of qubitj by a random phasef j . Here and below
sx,sy,sz are Pauli matrices. To improve the indepen
ence of quantum phases we then apply the operatorUT

(2)

5)k51
M CN( i M2k , j M2k))k51

M eif j k
8 s j k

z
CN( i k , j k). This trans-

formation represents a random sequence withM one-qubit

phase shiftseif j k
8 s j k

z
and controlled-NOT gatesCN( i k , j k) fol-

lowed by the inversed sequence of controlled-NOT gates
CN( i M2k , j M2k). HereCN( i k , j k) inverts the qubitj k if the
qubit i k is 1; i k , j k , and phasesf j k

8 are chosen randomly. Th

resulting random quantum phase generatorUT5UT
(2)UT

(1)

gives more and more independent random phases with
increase ofM. We useM'2nq ~atnq'10), which according
to our tests generates good random phase values. This
involves 3M1nq quantum gates. After that the kick operat
Uk5exp@2ik(t)cosu# is performed as follows. First, with th
help of the QFT the wave function is transformed from m
mentumn to phaseu representation inO(nq

2/2) gates. Then
u can be written in the binary representation asu/2p
50.a1a2 . . . anq

with ai50 or 1. It is convenient to use th

notationu5pa11 ū to single out the most significant qubi
Then due to the relation cosu5(21)a1cosū5s1

zcosū the kick

operator takes the formUk5e2 ik(t)cosu5e2is1
zk(t)cosū, where

s1
(z,x) act on the first qubit. This operator can be appro

mated to an arbitrary precision by a sequence of one-q
gates applied to the first qubit and the diagonal opera
Sm5eima1ū. The S operators are given by the product ofnq

21 two-qubit gates asSm5) j 52
nq C1,j (pm22 j 11) where

controlled phase shift gateCj 1 , j 2
(f) makes a phase shifteif

if both qubits j 1,2 are 1. Then we introduce the unitary o

erator Rg( ū)5HS1He2 i (g/2)s1
z

HS22He2 i (g/2)s1
z

HS1H
whereH5(s1

z1s1
x)/A2 is the Hadamard gate. It can be e

actly reduced to the form Rg( ū)5cos2(g/2)
2sin2(g/2)cos(2ū)2is1

zsing cos(ū)1is1
xsin2(g/2)sin(2ū) and

hence for small g we have Rg( ū)5e2 is1
zg cosū

1is1
x(g2/4)sin(2ū)1O(g3). The term withg2 can be elimi-
01430
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nated using the symmetric representationRg/2( ū)Rg/2(2 ū)

5 HS1He2 i (g/4)s1
z
HS2 2He2 i (g/2)s1

z
HS2He2 i (g/4)s1

z
HS2 1H

5 e2 is1
zg cos(ū)1O(g3). Thus the kick operator is given b

Uk5@Rg/2( ū)Rg/2(2 ū)# l1O( lg3), where the number of
stepsl 5k/g, and we used in our numerical simulations t
small parameterg5k/ l'0.2 that gives l'5 –10 for k
;1 –2. After that the state is transferred to the moment
representation by the QFT. Thus an iteration~1! is performed
for 2nq states inng elementary gates whereng52@k/g#(nq

12)1nq
216nq13M19 with the square brackets denotin

the integer part. This algorithm is optimal for the kicke
rotator model with moderate values ofk where ng value
remains reasonable. It can be easily generalized tod
dimensions.

In our numerical simulations we study the effects of sta
quantum computer imperfections considered in Re
@14,18,19#. In this case all gates are perfect but betwe
gatesc accumulates a phase factorei ŵ with ŵ5( j (h js j

z

1m js j
xs j 11

x ). Here h j ,m j vary randomly with j
51, . . . ,nq , h j represents static one-qubit energy shif
2e/2<h j<e/2, andm j represents static interqubit coupling
on a circular chain,2m/2<m j<m/2.

An example of time evolution of probability distributio
in the momentum representationn is shown in Fig. 1. Below
the Anderson transition (k,kc) the probability remains
bounded near initial valuen0, while above it (k.kc) a dif-
fusive spreading inn takes place. Comparing to the ide

FIG. 1. ~Color online! The time evolution of the probability
distribution ucnu2 in the localized~left column,k51.2) and delo-
calized~right column,k52.4) phases fornq57 qubits (N52nq),
with 0<t<400 ~vertical axis! and 2N/2,n<N/2 ~horizontal
axis!; kc51.8. The color is proportional to probability: blue/blac
for zero and red/white for maximal values. The strength of sta
imperfections ise5m50 for top row ande5m51024 for bottom
row.
2-2
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quantum computation the static imperfections lead to pr
ability transfer on levels located far away from the center
the wave packet. This effect is related to the structure of
QFT where a mismatch in the quantum gates generates
harmonics. As a result, static imperfections create a pla
in the probability distribution which level grows with th
increase ofe and m ~see Fig. 1!. This leads to an artificia
diffusion of the second moment of the distribution^n2&
5^cnu(n2n0)2uc&. Since the plateau in probability extend
over all N levels the rate of this diffusion grows expone
tially with nq at fixede,m ~data not shown!. A similar effect
was discussed in Ref.@23# for the quantum computation o
the kicked rotator with noisy gates. Due to that the m
appropriate characteristic to study is the inverse participa
ratio ~IPR! j, which is extensively used in systems wi
localization@3,4# and which determines the number of leve
on which the wave function is concentrated ((nucnu4

51/j). In contrast to^n2&, the IPRj remains stable with
respect to noise in the gates during polynomially large tim
@23#.

The variation ofj with time ande,m is shown in Fig. 2.
For moderate imperfections, during a rather long time in
val j remains close to its value in the exact algorithm. Ho
ever, at very large timest>105 it saturates at some valu
which depends onk and e,m. A typical example of such a
dependence is presented in Fig. 3. Here,j shows a sharp
jump from small (j;1) to large (j;N) values which takes
place in a narrow interval ofk values. This is a manifestatio
of the Anderson transition from localized to delocaliz
states. The critical pointkc can be numerically defined a
such a value ofk at whichj is at the middle between its tw
limiting values. The data of Fig. 3 show that the critical po
kc(e) decreases with the increase of the strength of imp
fections. The physical origin of this effect is related to t

FIG. 2. Top row: logarithm of probability log10ucnu2 vs momen-
tum n after t510 000 iterations; dark gray curves are shifted do
by 5 ~left! and 2~right!. Bottom row: dependence of IPRj on time
t. The left/right column corresponds to localized/delocalized ph
at k51.2 andk52.4, respectively. The three curves represene
50,231025,631025 with color changing from light gray to black
with increase ofe; m5e, nq510.
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additional transitions induced by static imperfections wh
naturally lead to a delocalization at a lower value ofk com-
pared to the ideal computation. Another method to detect
position of the critical pointkc(e) in presence of imperfec
tions is to measure the two most significant qubits wh
code the value of momentumn. After a few tens of measure
ments of first 2 qubits one determines the probabilityW
5(n5(N/4,3N/4)ucnu2. At sufficiently larget this probability
shows a sharp jump from a valueW50 to W'0.5 whenk is
varied. This allows to determine the critical point and giv
the values ofkc(e) close to those obtained via IPRj ~see
Fig. 3!.

The shift of the critical pointDkc(e)5kc2kc(e) depends
on e,m, and nq . From the IPR data obtained for variou
e,m,nq , see Fig. 4, we find that the global parameter dep
dence can be described by the scaling relation

Dkc~e!5Aẽ a, ẽ5engAnq. ~2!

FIG. 4. Dependence of the shift of the critical pointDkc(e)

5kc2kc(e) on rescaled imperfection strengthẽ5engAnq for e
5231025 ~diamonds!, 431025 ~triangles!, and 831025

~squares!; open and full symbols are form50, 8<nq<13 andm
5e, 8<nq<11, respectively,kc51.8. The dashed lines show th
scaling relation~2!. The logarithms are decimal.

e

FIG. 3. Dependence of the IPRj and the excitation probability
W ~full and dashed curves for left and right scales, respectively! on
the kick strengthk for nq510 and t>105, e50,1025,231025,
431025,831025 ~corresponding to curves from right to left!,
m50.
2-3
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The data fit givesA53.0, a50.64 for m50 and A54.8,
a50.68 for m5e. This result can be understood from th
following arguments. According to Refs.@14,19# the time
scale t f , on which the fidelity of quantum computation
close to unity, is determined by the parameterẽ (t f;1/ẽ).
Thus, an effective matrix element induced by static imp
fections between ideal localized eigenstates can be estim
asUe f;ẽQ;ẽ/ l b, whereQ is a typical overlap of localized
eigenstates which for the Anderson localization ind dimen-
sions can be estimated asQ; l 2b with b5d/2 and l being
the localization length for the exact algorithm~see a discus-
sion in Ref.@24# for d51). The imperfections induced de
localization should take place whenUe f exceeds the leve
spacing in a block of sizel (Ue f.D l;1/l d). Taking into
account that near the critical point the localization leng
scales asl;Dk2n with n;1.5 ~see Refs.@3,21,22#! we ob-
tain that a51/@n(d2b)#52/nd. The obtained value ofa
would give a reasonable value ofn'1.0 but in our model~1!
the situation is more complicated. Indeed, the dynamics
Eq. ~1! takes place in one dimension and hence one exp
b51/2 andn'0.6. The later value has a noticeable diffe
ence from a usually expected value@3,21,22#. A possible
reason for this discrepancy can be related to the fact tha
the algorithm the perturbations give far away transitions~see
Fig. 1! which effectively decrease the value ofb, also near
the critical point the correlations in the matrix elements c
-

n

ys
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play an important role. Further studies are required to cla
this point.

Finally, we compare the number of operations required
classical and quantum computation of the Anderson tra
tion in the d-dimensional case. For that we note that in t
vicinity of critical point in reald-dimensions the number o
states grows with time asnd;t @3,4,7#. Hence, up to timet
the classical computation may use onlyN levels in each di-
rection so that the total number of levels isNd;t. Other
levels are only very weakly populated on this time scale a
therefore they can be eliminated with a good accuracy.Th
the number of classical operations fort kicks can be esti-
mated asngcl;tNdlogdN;t2logdt. At the same time the
quantum algorithm will needng;dnq

2t;t log2t gates assum-
ing d quantum registers withNd52dnq;t states. The coarse
grained characteristics of the probability distribution can
determined from few measurements of most significant
bits, e.g.,W as in Fig. 3. Thus, even if each step in Eq.~1! is
efficient, the speedup is only quadratic near the critical po
Above the critical point we have diffusive growth withnd

;td/2 and the speedup is stronger:ngcl;ng
(11d/2) for d.2.
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