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An ensemble of particles in thermal equilibrium at temperatureT, modeled by Nosè-Hoover dynamics,
moves on a triangular lattice of oriented semidisk elastic scatterers. Despite the scatterer asymmetry, a directed
transport is clearly ruled out by the second law of thermodynamics. Introduction of a polarized zero mean
monochromatic field creates a directed stationary flow with nontrivial dependence on temperature and field
parameters. We give a theoretical estimate of directed current induced by a microwave field in an antidot
superlattice in semiconductor heterostructures.
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According to the second law of thermodynamics there is
no stationary directed transport in spatially periodic asym-
metric systems in thermal equilibriumf1,2g. However, a time
periodic parameter variation may drive such a system out of
equilibrium leading to the emergence of stationary transport
whose direction depends nontrivially on parameters. Such
directed transport appears in systems with noise, fluctuations,
and dissipation and is now called Brownian motor or ratchet
ssee, e.g., reviewsf3–5gd. The ratchet effect has a generic
nature and it has been observed in various physical systems
including semiconductor heterostructuresf6g, cold atoms in a
laser field f7g, vortices in superconductorsf8–10g, and
macroporous silicon membranes under pressure oscillations
f11g. It also has important applications in biological systems
as discussed in Refs.f4,12g.

In spite of a great recent interest to ratchets the theoretical
research is mainly concentrated on one-dimensional models
ssee, e.g., Ref.f5gd. Also, since the ratchet behavior is usu-
ally rather complex, an overdamped limit is used very often
to obtain analytical parameter dependence even if in this re-
gime a directed transport is absent for ac zero mean forcef5g.
To understand in a better way the global properties of ratch-
ets and their dependence on such important physical param-
eters as temperatureT and driving strengthf, we analyze
here a generic case when ac driving affects a Maxwell ther-
mostat ensemble of noninteracting particles moving in an
asymmetric two-dimensionals2Dd periodic structure. This
structure is composed of triangular 2D lattice of rigid semi-
disks of radiusrd as shown in Fig. 1sinsetd. The distanceR
between disk centers is fixed to beR=2rd and we assume
that collisions with semidisks are elastic. Free particle mo-
tion between semidisks is affected by a polarized monochro-
matic force f = fscosu ,sinudcosvt with frequency v,
strengthf, and polarization angleu to the x axis. It is also
assumed that particles are in thermal equilibrium and at
f =0 their velocities are given by the Maxwell distribution at
temperatureT. Figure 1 shows that in this system ac force
generates stationary directed transport. In numerical compu-

tations we putrd, particle massm, unit of time, and Boltz-
mann’s constantk to be equal to unity.

In order to put particles in thermal equilibrium we choose
the elegant method of the Nosè-Hoover thermostatssee, e.g.,
Refs. f13–15g and references thereind. In this method the
motion of a particle is affected by an effective frictiong
which keeps the average kinetic energykp2/2l equal to a
given thermostat temperatureT. In this way the dynamics of
particle is described by the equations

q̇ = p/m, ṗ = F − gp, ġ = fp2/s2mTd − 1g/t 2, s1d

where q , p are particle coordinate and momentum,F is a
sum of ac force and the force of elastic collisions with

*http://www.lpt.irsamc.ups-tlse.fr/̃dima

FIG. 1. sColor onlined Density distribution averaged over the
time interval 0ø tø53105 and obtained from dynamics of 200
particles given by the Nosè-Hoover equations at thermostat tem-
perature T=24. The region of distribution isx=f−2050,150g ,
y=f−300,1900g. Initially particles are placed atx=y=0 scrossd with
random velocities. Density is proportional to color changing from
zero sred/blackd to maximum syellow/whited. The parameters of
driving force aref =16, v=1.5, andu=p /8. The relaxation time
scale of the thermostat ist=Î50. The inset shows one trajectory on
small scale moving between semidisks.
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semidisks, andt is the time scale of relaxation to equilib-
rium.

It is known that the Nosè-Hoover thermostat works well
only if the dynamics is sufficiently chaoticf13–15g. In some
cases, e.g., for the Galton board, the Nosè-Hoover thermostat
gives noticeable deviations from the Maxwell distribution
f15g. To check that in our case this method really gives a
thermal equilibrium, we analyze the steady state distribution
in the momentum space obtained by numerical Runge-Kutta
integration of Eqs.s1d. Our results show that a small ac force
is needed to make chaotic dynamics between semidisks more
homogeneous and to produce a stable Maxwell thermal equi-
librium which is not sensitive to variation of relaxation rate
1/t sFig. 3, insetd. At large force the numerical data show
that the 2D steady state in the momentum space is still close
to the Maxwell distributionsFig. 2d even if the ac driving
produces a clear ratchet effect shown in Fig. 1. The depen-
dence of steady state on temperature closely follows the
Maxwell distribution in momentum spacep= upu as shown in
Fig. 3. Thus we may conclude that the dynamics given by the
Nosè-Hoover equations allows us to efficiently investigate
the effects of ac driving on particles in thermal equilibrium.
The numerical data show that this driving generates a strong
ratchet effectsFig. 1d with directed transport wich depends
on temperature and parameters of the driving force.

To understand the properties of this directed transport we
first analyze the dependence of averaged frictionkgl on driv-
ing strengthf and temperatureT. The value ofkgl is ob-
tained by averaging over a long time interval during numeri-
cal integration of Eqs.s1d for one trajectory. We also checked
that averaging over a few trajectories gives the same result.
The data are shown in Fig. 4. They are well described by a
global scaling given by

kgl = Crdm
−1/2f2/T3/2. s2d

Small deviations seen at lowT appear because of a strong
driving force which starts to modify significantly the particle
velocity distribution in this regime. The numerical constant
C is only weakly dependent onu andv changing by 50% to
30% whenu changes from 0 top /2 and v changes by a
factor 10, respectively. The dependences2d clearly tells us
that in the presence of a driving force the thermostat creates
an effective friction forcef f =−kglp acting on particle propa-

gation with an effective friction constantkgl. Surprisingly,
this friction coefficient varies withf andT according to Eq.
s2d but in a large range remains independent of the relaxation
time t sFig. 4, insetd. We note that the particle dynamics in
the absence of a thermostat, but in the presence of friction
force f f =−gp with constant friction coefficientg, has been
analyzed in Ref.f16g where it was shown that ac force gen-
erates a directed transport on semidisk lattice.

To understand the origin of the dependences2d we put
forward the following heuristic arguments. The driving force

FIG. 2. sColor onlined Steady state distribution in 2D momen-
tum planespx,pyd, density is proportional to color changing from
zerosblue/blackd to maximumsrose-violet/grayd. Left: the Maxwell
distribution at temperature of Fig. 1; right: distribution obtained
numerically from the Nosè-Hoover thermostat for the case of Fig. 1. FIG. 3. sColor onlined Thermal distributionr in momentum

p= upu for different values of temperatureT=8,16,40sfrom narrow
to broad distribution, respectively, shown by curves and symbolsd.
For each temperature value the curve gives the Maxwell distribu-
tion and the symbols show the numerical data for the Nosè-Hoover
thermostatst=Î50d in presence of ac driving with parameters of
Fig. 1. The inset shows the stability of the Nosè-Hoover thermostat
at small ac forcesf =0.5,v=1.5,u=p /8d with respect to variation
of relaxation timet 2=1 scirclesd, 50 ssquaresd, 100 sdiamondsd at
fixed temperatureT=24; the curve shows the Maxwell distribution.
All numerical data are obtained from one long trajectory with
tø53105.

FIG. 4. sColor onlined Dependence of rescaled average friction
coefficientkgl / f2 on temperatureT for f =4 scirclesd, 8 ssquaresd,
16 sdiamondsd, 32 strianglesd stop to bottomd at fixed v=1.5, u
=0, t2=50. The straight line shows dependences2d with C=0.02.
The inset shows thatkgl is robust against variation oft2 in the
interval f1,100g swith step 1d; data are shown forf =16, v=1.5, u
=0, T=8 stop curved, and 24sbottom curved.
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gives a diffusive energy growth during a dissipative time
scale 1/g so that

sDEd2 , DE/g, DE , f2vl , s3d

where the diffusion rate in energy isDE, Ė2tc, f2vl and the
mean-free pathl ,R, rd,1 determines the collision time
tc= l /v. In the Maxwell equilibrium the particle velocity is
v,sT/md1/2 and the fact that the driving force does not
modify the velocity distribution implies thatDE,T so that
the diffusive growth is stopped by effective frictiong
,DE/T2, rdm

−1/2f2/T3/2 in agreement with Eq.s2d. In fact
there is a close relation to resultsf16g where the thermostat is
absent but a friction forcef f =−gp with constantg affects
particle dynamics. In that case the ac driving force heats a
particle up to energyE,srdf2/m1/2gd2/3 while in the pres-
ence of a thermostat the energy is fixed by temperatureT
,E that imposes a convergence to the stationary state with
effective friction given by Eq.s2d f17g.

The dependence of average velocityv f of the ratchet flow
on kgl for various values of driving strengthf is shown in
Fig. 5. Globally, the flow velocityv f grows with increase of
g. Two regimes are clearly seen:v f < rdkgl for kgl,gc and
v f <srd

2fkgl /md1/3/10 for kgl.gc< f1/2/ f30srdmd1/2g. In fact
this dependence is very close to the one found in a model
with fixed g f16g. As a result, from Eq.s2d we obtain the
dependence of flow velocity on temperature,

v f/v < rdf/50T, sT , Tcd; s4d

v f/v < srdf/8Td2, sT . Tcd; s5d

where v=s2T/md1/2 is the thermal velocity andTc< rdf is
linked togc obtained from Fig. 5. The transition between two
regimes takes place when the energy given by ac force to
particle between two collisions becomes larger than thermal
energysT,Tcd. In that case the effect of driving is strong
and v f , ftc/m, rdf / smTd1/2 leading to Eq.s4d. For T.Tc

thermal fluctuations are strong and the ratchet effect appears
only in the second order of forcef giving Eq. s5d. The nu-
merical factors in Eqs.s4d and s5d are taken for the caseu
=0 from Figs. 4 and 5. We note that Eqs.s2d–s5d are derived
in the regime of relatively weak frictionkgl!v and relax-
ation rate 1/t!v. Another important point is that the depen-
dences4d ands5d is robust with respect to variation of scatter
geometry, e.g., the introduction of an additional disk scatterer
in the center of the unit cell eliminates all collisionless paths
but gives no significant modificationsssee Fig. 5d.

The dependence of flow directionality, determined
through the anglewfvf =v fscosw ,sinwdg, on the polarization
of ac force is shown in Fig. 5sinsetd. On average, it is sat-
isfactorily described by the relationw=p−2u sa similar de-
pendence was seen in Ref.f16gd. On a qualitative ground, we
may say that atu=0 due to friction a particle becomes
trapped between semidisks of a unit cell that gives a directed
transport to the left while foru=p /2 vertical oscillations
push particle to the right in the presence of friction. The
linear dependencew=p−2u interpolates between these two
limits. However, a more quantitative derivation is needed.

It is interesting to apply the approach developed above to
other types of thermostats. It is possible to realize the semi-
disk Galton board with antidot superlattices for 2D electron
gas in semiconductor heterostructures. With such structures
the Galton board of disks has already been implemented
ssee, e.g., Ref.f18gd and effects of microwave radiation has
been studiedf19g. For disk antidots like those in Refs.
f18,19g the ratchet effect is absent due to the symmetry of the
antidot. However, for semidisk antidot lattice a strong ratchet
effect should appear. To find its properties we should take
into account that in this case we have the Fermi-Dirac ther-
mostat with the Fermi energyEF@T. Due to that in Eq.s3d
the particle velocityv is equal to the Fermi velocityvF
=s2EF /md1/2 independent ofT. This modification gives the
average frictiongF for the Fermi gas,

gF = Cf2vFrd/T
2 < v f/rd, s6d

where we kept the same numerical constantC,1/50. In fact
Eq. s6d follows from DE, f2vFrd fsee Eq. s3dg and gF
,DE/T2. The second equality in Eq.s6d appears due to the
fact thatEF@Tc implying the regimes5d with v f ,gFrd. Of
course, only a small fractionT/EF of electrons nearEF con-
tributes to this ratchet flow. Hence the currentI per one
semidisk row is

I , erdnev fT/EF , Cerd
3Înef 2/sT"d, s7d

where we used that for the 2D electron Fermi gasEF
=pne"

2/m. We note that in semiconductor antidot lattices
like in Refs.f18,19g the effective massm is about 15 times
smaller compared to the electron mass. For typical param-

FIG. 5. sColor onlined Dependence of the absolute value of av-
erage velocity of particle flowv f on average frictionkgl for the
parameters of Fig. 4 withf =4, 8, 16, 32ssame symbols, from
bottom to topd. Dashed lines show the scaling dependencev f

,sfkgld1/3 at largekgl for different f values; the full line shows
scalingv f =kgl at smallkgl. Crosses show data for the same param-
eters as for squaressf =8d but with additional circular scatterer
added in the center of unit cell to eliminate orbits with a straight
flight through the whole systemssee textd. The inset shows the
dependence of flow direction anglew on polarization angleu; data
are given forf =8, v=1.5, t2=50, and 4øTø11; full line shows
average dependencew=p−2u.
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eters of semidisk antidot lattice with electron densityne
,1012 cm−2, rd,1 mm, field strength per electron charge
f /e,1 V/cm andT,10 K we obtainv f /vF,10−4. At these
parametersEF,150 K, vF,33107 cm/sec and the current
I ,10−9 A is sufficiently large to be observed experimen-
tally. The results7d is based on the semiclassical estimate for
the diffusion rateDE which assumes that the energy of mi-
crowave photon is larger than the level spacingD inside one
unit cell: "v.D<2p"2/ smrd

2d. In the opposite limit"v
!D, ac driving is in the quantum adiabatic regime when the
excitation in energy is very weak. Thus forrd,1 mm we
haveD<5310−6 eV<0.05 K and the directed transport ap-
pears only forv /2p.1 GHz. In experimentsf6g the fre-
quency was deeply in the adiabatic regime withv /2p
,100 Hz and the directed transport was absent at zero mean
force. We also note that in the quantum case the ratchet

transport should disappear as soon as the amplitude of oscil-
lations f /mv2 induced by ac force becomes smaller than the
wavelength" /mvF at the Fermi level. Thus the ratchet sur-
vives only forv,ÎfvF /". For field strength of 1 V/cm this
gives an approximate bound at 30 GHz.

In summary, we showed that zero mean ac force applied
to particles being in thermal equilibrium in asymmetric peri-
odic potential creates a directed transport flow. Its direction
is efficiently changed by polarization of the force. We also
established the dependence of the flow velocityv f on tem-
perature and driving field strength for the MaxwellfEqs.
s4d–s6dg and the Fermi-DiracfEqs.s6d and s7dg thermostats.

We thank Alexei Chepelianskii, Kvon Ze Don, and Sergey
Vitkalov for useful discussions.
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