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Abstract. On a basis of extensive analytical and numerical studies we show that a linear-polarized mi-
crowave field creates a stationary magnetization in mesoscopic ballistic quantum dots with two-dimensional
electron gas being at a thermal equilibrium. The magnetization is proportional to a number of electrons
in a dot and to a microwave power. Microwave fields of moderate strength create in a one dot of few
micron size a magnetization which is by few orders of magnitude larger than a magnetization produced
by persistent currents. The effect is weakly dependent on temperature and can be observed with existing
experimental techniques. The parallels between this effect and ratchets in asymmetric nanostructures are
also discussed.

PACS. 75.75.+a Magnetic properties of nanostructures – 73.63.Kv Quantum dots – 78.70.Gq Microwave
and radio-frequency interactions

1 Introduction

Since 1990, when the magnetization of an ensemble of
107 mesoscopic rings was detected experimentally [1],
the problem of magnetization of quantum dots of two-
dimensional electron gas (2DEG) or persistent currents
has attracted a great deal of attention (see e.g. [2,3] and
Refs. therein). It is well-known that a magnetic field gives
no magnetization in a classical system at thermal equi-
librium (see e.g. [4]). Thus, the persistent currents have
a quantum origin and are relatively weak, correspond-
ing to values of one electron current of typical strength
3×10−3evF /Lp [1] where vF is the Fermi velocity and Lp

is a perimeter of quantum dot. Subsequently skillful ex-
perimental efforts have been required to detect persistent
currents of strength I0 = evF /Lp in a single, isolated ring,
where the experiments have been done for diffusive [5] and
ballistic [6] electron dynamics inside a ring. A detailed de-
scription of these experimental and theoretical studies is
given in references [2,3].

The effects of ac-field on magnetization of mesoscopic
dots have been discussed in [7,8]. It was shown that
ac-driving induces persistent currents which strength os-
cillates with magnetic flux. The amplitude of the current
is proportional to the intensity of microwave field but still
its amplitude is small compared to a one electron current
evF /Lp. Such currents have purely quantum origin and are
essentially given only by one electron on a quantum level

a http://www.quantware.ups-tlse.fr/dima

near the Fermi level. Experimental investigations of mag-
netization induced by ac-driving have been reported in [9,
10]. The amplitude of induced currents was in a qualitative
agreement with the theoretical predictions [7,8]. However,
the strength of currents in one ring was rather weak (less
than nA) and it was necessary to use an ensemble of 105

rings to detect the induced magnetization.

In this work we show that a liner-polarized microwave
field generates strong orbital currents and magnetization
in ballistic quantum dots. The magnetization (average
non-zero momentum) of a dot is proportional to the num-
ber of electrons inside the dot and to the intensity of the
microwave field. The sign of the magnetization depends on
orientation of the polarization with respect to the symme-
try axis of the dot. It is assumed that in the absence of the
microwave field the dot is in a thermal equilibrium charac-
terized by the Fermi-Dirac distribution with temperature
T . The microwave field drives the system to a new sta-
tionary state with a non-zero stationary magnetization to
which all electrons inside the dot contribute. The steady
state appears as a result of an equilibrium between the
energy growth induced by the microwave field and a re-
laxation which drives the system to thermal equilibrium.
In contrast to the persistent currents discussed in [2,3,8]
the dynamical magnetization effect discussed here has es-
sentially classical origin and hence it gives much stronger
currents. However, it disappears in the presence of disor-
der when the mean free path becomes smaller than the
size of the dot. Thus the electron dynamics should be
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ballistic inside the dot which should have a stretched form
since the effect is absent inside a ring and is weak inside
a square shaped dot. Also the effect is the strongest when
the microwave frequency is comparable with frequency of
electron oscillations inside the dot. The above conditions
were not fulfilled in the experiments [9,10] and therefore
the dynamical magnetization was not seen there.

The physical origin of dynamical magnetization can al-
ready be seen from a simple model of two decoupled dissi-
pative oscillators for which a monochromatic driving leads
to a certain degree of synchronization with the driving
phase [11]. This phenomenological approach was proposed
by Magarill and Chaplik [12] who gave the first estimates
for photo induced magnetism in ballistic nanostructures.
Here we develop a more rigorous approach based on the
density matrix and semiclassical calculations of the dy-
namical magnetization. We also extend our analysis to a
generic case of a nonlinear potential inside the dot that
leads to qualitative changes in the magnetization depen-
dence on microwave frequency. We also trace certain paral-
lels between the dynamical magnetization, directed trans-
port (ratchets) induced by microwave fields in asymmetric
nanostructures [13–16] and Landau damping [17,18].

The paper has the following structure: in Section 2
we consider the case of a quantum dot with a harmonic
potential, a nonlinear potential is analyzed in Section 3,
a quantum dot in a form of Bunimovich stadium [19] is
considered in Section 4, discussions and conclusions are
given in Section 5.

2 Quantum dots with a harmonic potential

Electron dynamics inside a two-dimensional (2D) dot is
described by a Hamiltonian

H = (p2
x +p2

y)/2m+U(x, y)−xfx cosωt− yfy cosωt (1)

where m is electron mass and px,y and x, y are conju-
gated momentum and coordinate. An external force fx,y

is created by a linear-polarized microwave field with fre-
quency ω. The polarization angle θ and the force ampli-
tude f are defined by relations fx = f cos θ, fy = f sin θ.
In this section we consider the case of a harmonic poten-
tial U(x, y) = m(ω2

xx2+ω2
yy

2)/2 where ωx,y are oscillation
frequencies in x, y directions (generally non equal).

Let us consider first a phenomenological case when an
electron experiences an additional friction force F = −γp
where γ is a relaxation rate (this approach had been con-
sidered in [12] and we give it here only for completeness).
The dynamical equations of motion in this case are linear
and can be solved exactly that gives at t � 1/γ:

x(t) = � eiωtfx/m

ω2
x − ω2 + iγω

= � X(t),

y(t) = � eiωtfy/m

ω2
y − ω2 + iγω

= � Y (t), (2)

where � marks the real part. Then, the electron velocities
are

x(t) = � ieiωtωfx/m

ω2
x − ω2 + iγω

= � X(t),

y(t) = � ieiωtωfy/m

ω2
y − ω2 + iγω

= � Y (t). (3)

This gives the average momentum

L = m 〈x(t)vy(t) − y(t)vx(t)〉
= � −iωfxfy/m

(ω2
x − ω2 + iγω)(ω2

y − ω2 − iγω)
. (4)

In the limit of small γ � ωx,y equation (4) gives for the
off-resonance case

Loff =
γω2(ω2

x − ω2
y)fxfy/m

(ω2
x − ω2)2(ω2

y − ω2)2
, (5)

while at the resonance ω = ωx

Lres =
fxfy/m

γ(ω2
x − ω2

y)
. (6)

From a physical viewpoint an average momentum appears
due to a phase shift between oscillator phases induced by
dissipation and an orbit takes an elliptic form with rota-
tion in one direction. In some sense, due to dissipation the
two oscillators become synchronized by external force [11].
As usual [4], an average orbital momentum L for one elec-
tron gives a total magnetic moment M = NLe/2mc where
N is a number of electrons in a quantum dot. A pictorial
view of spectral dependence of M on ω at various ratios
ωx/ωy is given in [12].

To extend the phenomenological approach described
above we should take into account that the electrons in-
side the dot are described by a thermal distribution and
the effects of microwave field should be considered in
the frame of the Kubo formalism for the density matrix
(see e.g. [3]). For analysis it is convenient to use cre-
ation, annihilation operators defined by usual relations
x̂ =

√
�/(2mωx)(â + â+), ŷ =

√
�/(2mωy)(b̂ + b̂+) and

p̂x = −i
√

(m�ωx)/2(â− â+), p̂y = −i
√

(m�ωy)/2(b̂− b̂+).
The unperturbed Hamiltonian in absence of microwave
field takes the form Ĥ0 = �ωx(â+â+1/2)+�ωy(b̂+b̂+1/2).
Then the orbital momentum is

L̂ =
i�

2√ωxωy
[(ωx − ωy)(âb̂ − â+b̂+)

+ (ωx + ωy)(âb̂+ − â+b̂)]. (7)

The only non zero matrix elements of L̂ are

〈nx, ny|L̂|nx + δx, ny + δy〉 =
i�

2√ωxωy
(δxωx − δyωy)

× [(nx + (1 + δx)/2)(ny + (1 + δy)/2)]1/2, (8)
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where δx,y = ±1 and nx,y are oscillator level numbers.
The perturbation induced by a microwave field V̂ (t) =
(−fxx̂ − fy ŷ) cosωt = V̂ cosωt should be also expressed
via operators â, â+, b̂, b̂+.

In the Kubo formalism the evolution of the density
matrix ρ̂(t) is described by the equation

i�∂ρ̂
∂t = [Ĥ0 + V̂ (t), ρ̂] − i�γ(ρ̂ − ρ̂0) (9)

where ρ̂0 is the equilibrium density matrix:
ρ̂0 =

∑
nx,ny≥0 ρnx,ny |nx, ny〉〈nx, ny|. Using perturbation

theory ρ̂(t) can be expanded in powers of the external
potential amplitude V̂ (t): ρ̂(t) = ρ̂0 + ρ̂1(t) + ρ̂2(t) + ... In
the first order we have

〈α|ρ̂1(t)|β〉 =
(ρ(εβ) − ρ(εα))〈α|V |β〉

εβ − εα − �ω + iγ�
eiωt/2

+
(ρ(εβ) − ρ(εα))〈α|V |β〉

εβ − εα + �ω + iγ�
e−iωt/2. (10)

For the harmonic potential we obtain

〈nx + δx, ny|ρ̂1(t)|nx, ny〉 =

(ρnx,ny − ρnx+δx,ny)fx

√
nx + (1 + δx)/2

8�mωx

×
(

eiωt

−ωxδx − ω + iγ
+

e−iωt

−ωxδx + ω + iγ

)
, (11)

〈nx, ny + δy|ρ̂1(t)|nx, ny〉 =

(ρnx,ny − ρnx,ny+δy)fy

√
ny + (1 + δy)/2

8�mωy

×
(

eiωt

−ωyδy − ω + iγ
+

e−iωt

−ωyδy + ω + iγ

)
. (12)

The time averaged second order correction to the density
matrix is given by

〈α|〈ρ̂2(t)〉t|β〉 =
〈α|〈[V̂ (t), ρ̂1(t)]〉t|β〉

εβ − εα + i�γ
(13)

where [...] marks the commutator between two operators.
To compute the average momentum L we need to

find the terms 〈nx +δx, ny +δy|〈ρ̂2(t)〉t|nx, ny〉. According
to (13) they are expressed via the matrix elements like

〈〈nx + δx, ny + δy|V̂ (t)|nx + δx, ny〉
×〈nx + δx, ny|ρ̂1(t)|nx, ny〉〉t =
(ρnx,ny − ρnx+δx,ny)fxfy

×[(ny + (1 + δy)/2)(nx + (1 + δx)/2)/(64m2ωxωy)]1/2

×
(

1
−ωxδx − ω + iγ

+
1

−ωxδx + ω + iγ

)
, (14)

and

〈〈nx + δx, ny + δy|ρ̂1(t)|nx, ny + δy〉
×〈nx, ny + δy|V̂ (t)|nx, ny〉〉t =
(ρnx,ny+δy − ρnx+δx,ny+δy )fxfy

×[(ny + (1 + δy)/2)(nx + (1 + δx)/2)/(64m2ωxωy)]1/2

×
(

1
−ωxδx − ω + iγ

+
1

−ωxδx + ω + iγ

)
. (15)

Therefore

〈〈nx + δx, ny + δy|V̂ (t)|nx + δx, ny〉
×〈nx + δx, ny|ρ̂1(t)|nx, ny〉〉t
−〈〈nx + δx, ny + δy|ρ̂1(t)|nx, ny + δy〉
×〈nx, ny + δy|V̂ (t)|nx, ny〉〉t =

[(ny + (1 + δy)/2)(nx + (1 + δx)/2)/(64m2ωxωy)]1/2

×fxfy

(
1

−ωxδx − ω + iγ
+

1
−ωxδx + ω + iγ

)

×(ρnx,ny − ρnx+δx,ny − ρnx,ny+δy + ρnx+δx,ny+δy) (16)

and

〈nx + δx, ny + δy|〈ρ̂2(t)〉t|nx, ny〉 =
fxfy

8�m
√

ωxωy
gnx,ny,δx,δy(ω)

× [(nx + (1 + δx)/2)(ny + (1 + δy)/2)]1/2, (17)

where

gnx,ny,δx,δy(ω) =
[

1
−ωxδx − ω + iγ

+
1

−ωxδx + ω + iγ

+
1

−ωyδy − ω + iγ
+

1
−ωyδy + ω + iγ

]

×ρnx,ny−ρnx+δx,ny −ρnx,ny+δy +ρnx+δx,ny+δy

−ωxδx − ωyδy + iγ
. (18)

Thus

〈nx, ny|L̂|nx + δx, ny + δy〉
× 〈nx + δx, ny + δy|〈ρ̂2(t)〉t|nx, ny〉 =

ifxfy

16mωxωy
Gnx,ny,nx+δx,ny+δy (ω), (19)
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where

Gnx,ny,δx,δy(ω) =
[

1
−ωxδx − ω + iγ

+
1

−ωxδx + ω + iγ

+
1

−ωyδy − ω + iγ
+

1
−ωyδy + ω + iγ

]

× δxωx − δyωy

−ωxδx − ωyδy + iγ

×(ρnx,ny − ρnx+δx,ny − ρnx,ny+δy + ρnx+δx,ny+δy)
×(nx + (1 + δx)/2)(ny + (1 + δy)/2). (20)

Therefore, the final result is

〈L〉 = Tr(L̂〈ρ̂2(t)〉)
=

ifxfy

16mωxωy

∑

nx,ny≥0,δx,δy

Gnx,ny,nx+δx,ny+δy(ω)

=
fxfy

16mωxωy
I(ω)

∑

nx,ny≥0

ρnx,ny

=
fxfy

16mωxωy
I(ω)N, (21)

where

I(ω) = i
∑

δx,δy

[
1

−ωxδx − ω + iγ
+

1
−ωxδx + ω + iγ

+
1

−ωyδy − ω + iγ
+

1
−ωyδy + ω + iγ

]

× δxωx − δyωy

−ωxδx − ωyδy + iγ
δxδy. (22)

Here N is the number of electrons in the quantum dot.
Of course, I(ω) is real and can be presented by another
equivalent expression:

I(ω) =
Q(ω)
R(ω)

, (23)

with

Q(ω) = 8γωxωy(ω2
x − ω2

y)(5γ6 + 20γ4ω2 + 9γ2ω4

+2ω6 + (6γ4 + 15γ2ω2 − ω4)ω2
y

+(γ2 + 3ω2)ω4
y + ω4

x (γ2 + 3ω2 + ω2
y)

+ω2
x(6γ4 + 15γ2ω2 − ω4 + (7γ2 − 8ω2)ω2

y + ω4
y))(24)

and

R(ω) = ((γ2 + ω2)2 + 2(γ2 − ω2)ω2
x + ω4

x)
×((γ2 + ω2)2 + 2(γ2 − ω2)ω2

y + ω4
y)

×(ω4
x + ω4

y + γ4 + 2[(ω2
x + ω2

y)γ2 − ω2
xω2

y]). (25)

We used the relation

(nx + (1 + δx)/2)(ny + (1 + δy)/2)
+(nx + (1 − δx)/2)(ny + (1 − δy)/2)
−(nx + (1 − δx)/2)(ny + (1 + δy)/2)
−(nx + (1 + δx)/2)(ny + (1 − δy)/2) = δxδy (26)

to reduce equations (19, 20) to equations (21–23).
It is important to note that the final result (22) for the

average momentum L is independent of unperturbed ther-
mal distribution ρnx,ny . The momentum grows linearly
with the number of electrons in the dot N . For ω ∼ γ ∼
ωx ∼ ωy we have L ∼ fxfyN/(mω3) in agreement with
the phenomenological result (4). However, the exact de-
pendence (22–25) obtained here from the Kubo theory is
different from the phenomenological result (4) obtained
originally in [12]. For example, at ω � ωx ∼ ωy > γ
our result gives L ∼ γN/(mω2(ω2

x − ω2
y)) while the phe-

nomenological result (5) of [12] gives L ∝ 1/ω6.
To obtain the expression for L we used above the quan-

tum Kubo theory. However, the result (22) has a purely
classical form and therefore it is useful to try to obtain it
from the classical kinetic theory. With this aim let us con-
sider an arbitrary two dimensional system with a Hamil-
tonian H = H(qx, px, qy, py, t). Then the kinetic equation
for the distribution function ρ(x) [18] reads

∂ρ

∂t
+ {H, ρ} = −γ(ρ − ρ0) (27)

where ρ0 is the equilibrium thermal distribution, {H, f}
are the Poisson brackets and for simplicity of notations
x = (x, px, y, py). After a change of variables (t′,x′) =
(t, T0,tx) this equation is reduced to

∂ρ(x′, t′)
∂t′

= −γ(ρ(x′, t′) − ρ0(Tt′,0x′)) (28)

where Tt′,t notes the time evolution operator from time t
to time t′ given by the dynamics of the Hamiltonian H .
This equation can be solved explicitly that leads to the
time averaged distribution function:

〈ρ(x, t)〉t = γ

∫ 0

−∞
eγt′〈ρ0(Tt+t′,tx)〉tdt′ (29)

where Tt+t′,t is the time evolution operator in the phase
space. Then the average of any quantity Q(x) (for example
Q = xpy − pxy) can now be expressed as:

〈Q(x)〉 =
∫

Q(x)〈ρ(x, t)〉tdx

= γ

〈∫ 0

−∞
eγt′

(∫
Q(x

)
ρ0(Tt+t′,tx)dx)dt′

〉

t

= γ

∫
dxρ0(x)

∫ 0

−∞
dt′eγt′〈Q(Tt,t+t′x)〉t

= γ

∫
dxρ0(x)

∫ ∞

0

dt′e−γt′〈Q(Tt+t′,tx)〉t. (30)
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Here it is used that the transformation x′ = Tt+t′,tx is
area-preserving in the phase space. For the case of two
oscillators with frequencies ωx, ωy the time evolution can
be find explicitly so that for dynamics in x we have

(
x(t + t′)
px(t+t′)

ωx

)
=

(
cosωxt′ sin ωxt′
− sinωxt′ cosωxt′

)

×
(

x − fx/m
ω2

x−ω2 cosωt
px

ωx
+ fxω

(ω2
x−ω2)ωx

sinωt

)

+

(
fx/m

ω2
x−ω2 cosω(t + t′)

− ωfx

(ω2
x−ω2)ωx

sin ω(t + t′)

)

(31)

with a similar equation for y, py. After averaging over t we
obtain

〈x(t + t′)py(t + t′)〉t =
ω

2
fx

(ω2
x − ω2)

fy/m

(ω2
y − ω2)

×
[
−ωy

ω
sin(ωyt′) cos(ωxt′) + sinωt′ cos(ωxt′)

+
ω

ωx
sin(ωxt′) cos(ωyt′) − ω

ωx
sin(ωxt′) cosωt′

]
(32)

with a similar expression for 〈y(t+t′)px(t+t′)〉t. After sub-
stitution of (32) in (30) the integration over t′ gives exactly
the expression (22) with I(ω) given by equations (23–25).
The integration can be done analytically or with help of
Mathematica package. This result shows that the average
momentum L can be exactly obtained from the classical
formula (30).

A comparison of results of numerical simulations of
classical dynamics with Monte Carlo averaging over large
number of trajectories from an equilibrium distribution
is shown in Figure 1. The numerical data clearly confirm
the validity of the theoretical expressions given by equa-
tions (22–25).

It is interesting to note that if instead of equation (9)
for the density matrix one would assume an adiabatic
switching of microwave field with a rate γ then the average
induced momentum L would be given by the classical rela-
tion (4) for a classical oscillator. Indeed, such a procedure
simply induces an imaginary shift in driving frequency.
Such type of switching had been assumed in [12] and may
be considered to give a qualitatively correct result even if
a rigorous description is given by equation (9) with the
final answer in the form of equations(21-25) being quan-
titatively different from equation (9).

For comparison with the physical values of magnetic
moment M in real quantum dots it is convenient to use
rescaled momentum Mr. To do this rescaling we note that
the magnetic moment is expressed via the orbital mo-
mentum as M = eL/(2mc) (in SGS units). Due to the
relation (21) it is convenient to choose a unit of orbital
momentum induced by a microwave field for one electron
as L0 = mvF Lx(fxfyL

2
x)/E2

F where EF = mv2
F /2 is the

Fermi energy in a dot. Then the unit of magnetic momen-
tum is M0 = eNL0/mc where N is the number of electrons
in a dot. This implies that the physical magnetic moment
M can be expressed via our rescaled value according to

Fig. 1. (Color online) Dependence of the rescaled magneti-
zation Mr = −2M/M0 on the rescaled microwave frequency
ω/ωx for a quantum dot with a harmonic potential at ωy/ωx =
3 (see definitions of M0 and Mr in equation (33)). Here
Lx = vF /ωx and vF is the velocity Fermi at the Fermi energy
EF . The rescaled relaxation rate is γ/ωx = 0.1; 0.25; 0.5 (red,
blue, green curves/circles from top to bottom at ω/ωx = 1).
Circles show numerical data obtained from equation (30) by
integration of classical dynamics and Monte Carlo averaging
over 104 trajectories from the Fermi-Dirac equilibrium distri-
bution at zero temperature; full curves show the theoretical
result given by equations (21–25).

the relations

M = −MrM0/2, M0 = eNL0/mc,

M0 = eNvF Lx(fxfyL2
x)/(cE2

F ), (33)

where the oscillation frequency in x is ωx = VF /Lx. It is
important to stress that the total magnetization of the dot
is proportional to the number of electrons in a dot with
fixed EF .

3 Dots with a nonlinear potential

It is very important to extent the methods developed
above to a generic case of a nonlinear potential inside a
dot. With this aim we consider the case of 2D quartic
nonlinear oscillator described by the Hamiltonian

H = (p2
x + p2

y)/2m + (r2
xx4 + r2

yy4 + 2Kx2y2)/4. (34)

For K = 0 we have two decoupled quartic oscillators. Due
to nonlinearity the frequencies of oscillations scale with
energy as ωx,y ≈ 1.2(r2

x,yEF /m2)1/4 (see e.g. [20]). In this
case Lx = (4EF /r2

x)1/4, Ly = (4EF /r2
y)1/4 and we choose

the fixed ratio Ly/Lx =
√

rx/ry = 1/
√

3 for our stud-
ies. The rescaled momentum and magnetization are again
given by equation (33).

The value of averaged orbital momentum is obtained
by numerical integration of Hamiltonian equations of mo-
tion in presence of a linear-polarized monochromatic field
(see (1, 34)). The effects of relaxation to stationary state
with a rate γ are taken into account via relation (30). The
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Fig. 2. (color online) Dependence of rescaled momentum Mr

given by equation (33) on rescaled frequency ωLx/vF for the
case of quartic oscillator with the Hamiltonian (34) at K = 0
and Ly/Lx = 1/

√
3 (rx/ry = 1/3), the monochromatic field

has fx = fy and fxLx/EF = 0.25. Curves correspond to dif-
ferent values of the relaxation rate γLx/vF = 0.03 (red), 0.06
(blue), 0.14 (green) (from bottom to top at ωLx/vF = 1.2).
The curves are obtained from equation (30) by integration of
classical dynamics and Monte Carlo averaging over 104 trajec-
tories from the Fermi-Dirac distribution at zero temperature.

Fig. 3. (Color online) Same as in Figure 2 but for γLx/vF =
0.14 (green), 0.3 (violet), 0.45 (yellow), 0.55 (black) (from top
to bottom at ωLx/vF = 1.2).

average momentum 〈L〉 is obtained by Monte Carlo aver-
aging over 104 trajectories from the Fermi-Dirac distribu-
tion at zero temperature. The integration time is about
104 oscillation periods.

The dependence of rescaled magnetization on mi-
crowave frequency ω for different relaxation rates is
shown in Figures 2, 3. In contrast to the case of har-
monic potential the dependence on frequency is char-
acterized by a broad distribution with a broad peak
centered approximately near oscillation frequency ωx =
1.2(r2

xEF /m2)1/4 ≈ 1.2vF /Lx. Significant magnetiza-
tion is visible essentially only inside the interval ωx ≈
1.2vF /Lx < ω < ωy ≈ 2.1vF /Lx. Data obtained also
show that at small relaxation rates magnetization drops
to zero approximately as Mr ∝ γ (see Fig. 2). Also Mr

drops with the increase of γ at large γ (see Fig. 3). This
behaviour is qualitatively similar to the case of harmonic
potential (see Eqs.(5, 6)).

Fig. 4. (Color online) Same as in Figure 2 for γLx/vF = 0.14
and different coupling strength K between x, y-modes in (34):
KL4

x/EF = 4 (red), 0 (green), 8 (blue), 16 (black) (from top
to bottom at ωLx/vF = 1.3).

Fig. 5. (Color online) Example of a trajectory inside the
Bunimovich stadium dot in presence of microwave driving.
The system parameters are Lx/R = 3.5, Ly/R = 2, mi-
crowave polarization angle θ = π/4 (fx = fy), fR/EF = 0.28,
ωLx/VF = 1.7, T/EF = 0.1, vF τrel/R ≈ 2, vF τi/R ≈ 500.

It is important to note that according to data shown in
Figure 4 the coupling between x, y-modes, which generally
leads to a chaotic dynamics [20], does not lead to signif-
icant modifications of the magnetization spectrum. Only
at rather large values of K, when the modes are strongly
deformed, the spectrum starts to be modified.

To show that the magnetization dependence on fre-
quency found for the quartic oscillator (34) represents a
typical case we also study magnetization in chaotic bil-
liards described in the next section.

4 Magnetization in chaotic billiards

To study microwave induced magnetization in billiards we
choose the Bunimovich stadium billiard [19] as a typical
example. The semicircle radius is taken to be R, the to-
tal size of stadium in x is Lx, and in y it is Ly = 2R.
Usually we use Lx = 3.5R (see Fig. 5). Inside the billiard
the particle is affected only by monochromatic force, the
collisions with boundaries are elastic.

To take into account that without monochromatic
force the particles relax to the Fermi-Dirac equilibrium
we used the generalized Metropolis approach developed
in [15]. Namely, after a time interval ∆t the kinetic en-
ergy of particle E is changed randomly into the interval
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Fig. 6. (Color online) Rescaled momentum Mr as a function
of rescaled microwave frequency ωLx/vF in the Bunimovich
billiard. All parameters are as in Figure 5, curves correspond
to different values of relaxation time τrel with vF τrel/R = 0.5
(green), 0.7 (violet), 1.1 (blue), 2 (red), 8 (black) (from top to
bottom at ωLx/VF = 2).

(E−∆E, E +∆E) with a probability given by the Fermi-
Dirac distribution at given temperature T . The change
takes place only in energy while the velocity direction re-
mains unchanged (see below). This procedure imposes a
convergence to the Fermi-Dirac equilibrium with the re-
laxation time τrel ≈ ∆t(EF /∆E)2 (see [15] for detailed
description of the algorithm). In the numerical simula-
tions we usually used vF ∆t/R ≈ 0.05 and ∆E/EF = 0.15.
At such parameters a particle propagates on a sufficiently
large distance during the relaxation time: vF τrel/R ≈ 2. In
absence of ac-driving the Metropolis algorithm described
above gives a convergence to the Fermi-Dirac distribu-
tion with a given temperature T . In presence of microwave
force the algorithm gives convergence to a certain station-
ary distribution which at small force differs slightly from
the Fermi-Dirac distribution (the dependence of deformed
curves on energy is similar to those shown in Figure 2 of
reference [15]). However, in contrast to the unperturbed
case, the perturbed stationary distribution has an aver-
age nonzero orbital and magnetic momentum M . The de-
pendence of average momentum M on temperature T is
relatively weak if T � EF and therefore, the majority of
data are shown for a typical value T/EF = 0.1 (see more
detail below). To take into account the effect of impurities
the velocity direction of a particle is changed randomly in
the interval (0, 2π) after a time τi. Usually we use such τi

value that the mean free path is much larger than the size
of the billiard vF τi/R ≈ 500, in this regime the average
momentum is not affected by τi (see below). The average
momentum is usually computed via one long trajectory
which length is up to 107 times longer than R; computa-
tion via 10 shorter trajectories statistically gives the same
result. An example of typical trajectory snapshot is shown
in Figure 5. It clearly shows a chaotic behaviour (the lines
inside the billiard are curved by a microwave field).

The numerical data for dependence of average rescaled
momentum Mr (see Eq. (33)) on rescaled microwave fre-
quency ωLx/vF are shown in Fig. 6 for polarization θ =
π/4. Qualitatively, the dependence is similar to the case
of nonlinear oscillator discussed in previous section (see

Fig. 7. (Color online) Same as in Figure 6 but the length of
stadium is increased so that here Lx/R = 5.

Figs. 2–4). At the same time, there is also a difference in
the behaviour at small frequency (ωLx/vF < 1.5) where
the momentum changes sign. At small relaxation times
τrel the frequency dependence has a sharp peak near
ωLx/vF ≈ 2. The increase of τrel leads to a global de-
crease of average magnetization, that is similar to the data
of Figure 2, also the peak position shifts to a bit higher ω.
Let us also note that according to our numerical date the
rescaled momentum Mr is independent of the strength of
driving force f in the regime when fR/EF < 0.5. This is
in the agreement with the relation (33).

The position of peak is determined by the frequency
of oscillations along long x-axis of the billiard. Indeed, an
increase of this size of billiard from Lx = 3.5R (Fig. 6)
to Lx = 5R (Fig. 7) keeps the shape of resonance curves
practically unchanged. At the same time the rescaled mag-
netization drops approximately by a factor 2. This means
that there is no significant increase of M with increase
of Lx (M0 grows by a factor 2.9). From a physical view
point, it is rather clear since in the regime with Lx � Ly

further increase of Lx cannot lead to increase of magneti-
zation. This means that in equation (33) the value of M0

gives a correct estimate of real magnetization assuming
that Lx ∼ Ly,

The Bunimovich billiard has varies symmetries,
namely x → −x, y → −y. It is interesting to study
the magnetization properties when all of them are absent.
With this aim we introduced an elastic disk scatterer in-
side the billiard as it is shown in Figure 8. The depen-
dence of rescaled magnetization Mr on rescaled frequency
ωLx/vF is shown for this “impurity” billiard in Figure 9
for two polarization angles θ = π/4 and θ = 0. For θ = π/4
the behaviour in Figure 9 is rather similar to the case of
billiard without impurity (see Fig. 6), taking into account
that M0 values differ by a factor two that gives smaller Mr

values in Figure 9. In addition the peak at ωLx/vF = 2
is more broad that can be attributed to contribution of
orbits with a shorter periods colliding with the impurity.
The case of polarization with θ = 0 is rather different. In-
deed, here the average magnetization exists even if in the
billiard case Mr = 0 due to symmetry. Also the sign of
the momentum (magnetization) is different comparing to
the case of θ = π/4 polarization. For the impurity billiard
we find that at θ = 0 the absolute value of magnetization
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Fig. 8. (Color online) Example of a trajectory inside a dot in
a form of the Bunimovich stadium with a circular “impurity”
inside the billiard. The billiard boundary is as in Figure 5,
the circular impurity has the radius r = R/2, its center is
located at x = −0.75R, y = R/3 counting from the center of
the stadium. The system parameters are as in Figure 5 except
that the polarization angle θ = 0.

Fig. 9. (Color online) Dependence of rescaled momentum
Mr = −2M/M0 on rescaled frequency ωLx/vF for the
Bunimovich stadium with impurity shown in Figure 8. Here
fR/EF = 0.28, θ = 0 (bottom black curve) and fR/EF = 0.2,
θ = π/4 (top red/gray curve); also in this figure we use defi-
nition M0 = eNvF Lx(f2L2

x)/(cE2
F ) which is more suitable for

polarization with θ = 0. Other parameters are T/EF = 0.1,
vF τrel/R ≈ 2, vF τi/R ≈ 500 (cf. with corresponding case in
Fig. 6).

decreases with the increase of relaxation time τrel in a way
similar to one should in Figures 6, 7.

The polarization dependence of magnetization is
shown in more detail in Figure 10 for the Bunimovich
stadium (Fig. 5) and the impurity billiard (Fig. 8). In the
first case we have M(θ) ∝ sin 2θ as in the case of oscillator
so that the magnetization averaged over all polarization
angles is equal to zero. In contrast to that in the second
case when all symmetries are destroyed the averaging over
all polarization angles gives nonzero magnetization of the
dot. In addition to that internal impurity gives a phase
shift in the polarization dependence. The phase shift is
due to absence of any symmetry. In such a case we have a
more general dependence M ∝ (fxfy + af2

x + bf2
y ), where

a, b are some constants.
In addition, we also checked that if at θ = 0 the disk

impurity inside the billiard is replaced by a semidisk of
the same radius then the dependence on the parameters
remains essentially the same, as well as the sign of mag-

Fig. 10. (Color online) Dependence of momentum M on po-
larization angle θ (M is rescaled to its value at θ = π/4) for the
Bunimovich stadium (red/gray) and the stadium with circular
impurity (black). Numerical data are shown by open circles
obtained for ωLx/vF = 0.78 (red/gray) and ωLx/vF = 1.56
(black) at fR/EF = 0.28, T/EF = 0.1, vF τrel/R ≈ 2,
vF τi/R ≈ 500. Smooth red/gray curve shows the theoret-
ical dependence sin 2θ; black curve shows a numerical fit
M(θ)/M(π/4) = −0.15 + 1.23 sin(2θ − 0.32).

Fig. 11. Example of a billiard with ratchet effect. Collisions
with the stadium and internal boundaries are elastic.

netization (the disk is divided by a vertical line onto two
semidisks and left semidisk is removed). It is interesting
to note that a negative sign of Mr means anti-clockwise
rotation. This direction of current rotation can be also un-
derstood in a link with ratchet flow on the semidisk Galton
board studied in [13–15]. The link with the ratchet effect
becomes especially clear if to consider the semidisk ratchet
billiard shown in Figure 11. Here, due to the ratchet ef-
fect discussed in [13–15] for polarization θ = 0 electrons
should move to the left in the upper half of the billiard
and to the right in the bottom half, thus creating negative
magnetization Mr. We think that if only upper semidisk
is left still the direction of rotation at θ = 0 microwave
polarization is due to the particle flow directed from right
to left in the upper part of the billiard that corresponds
to negative sign of magnetization Mr in Figure 9.

Finally, let us make few notes about the dependence
of magnetization Mr on the impurity scattering time τi

and temperature T . For example, for the impurity billiard
of Figure 8 at θ = 0 we find that the variation of Mr

is about 10% when vF τi/R is decreased from 500 down
to 50, and then Mr drops approximately linearly with
vF τi/R (e.g. Mr(vF τi/R = 10)/Mr(vF τi/R = 50) = 0.47,
Mr(vF τi/R = 5)/Mr(vF τi/R = 50) = 0.2, Mr(vF τi/R =
2.5)/Mr(vF τi/R = 50) = 0.08. The decrease of magnetiza-
tion with decrease of τi is rather natural since the ballistic
propagation of a particle between boundaries disappears
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as soon as the scattering mean free path vF τi becomes
smaller than the billiard size Lx. Similar effect has been
seen also for the ratchet flow on the semidisk Galton board
(see Fig. 9 in Ref. [15]). As far as for dependence on tem-
perature our data show that it was relatively weak in the
regime T/EF � 1. For example, for the set of parame-
ters of Figure 9 at θ = 0 the value of Mr is increased
only by 14% when T is decreased by a factor 4 (from
T/EF = 0.1 to T/EF = 0.025) and it is decrease by
40% when T increased from T/EF = 0.1 to T/EF = 0.2.
This dependence on T shows that the magnetization of
the dot remains finite even at zero temperature. This be-
haviour also has close similarity with the temperature de-
pendence for the ratchet flow discussed in [15,16]. Such
ballistic dots may find possible applications for detection
of high frequency microwave radiation at room temper-
atures. Indeed, the ratchet effect in asymmetric nanos-
tructures, which has certain links with the magnetization
discussed here, has been observed at 50 GHz at room tem-
perature [22].

5 Discussion

According to our numerical results (see e.g. Fig. 2) and
equation (33) the rescaled magnetization of a dot can
be as large as Mr/2 ∼ 0.1 when the relaxation time
τrel is comparable with a typical time of electron os-
cillations in a dot. Thus, the magnetization of a dot is
M = 0.1M0. According to equation (33), at fixed elec-
tron density, the magnetization is proportional to the
number of electrons N inside the dot. Due to this, the
magnetization induced by a microwave field can be much
larger than the magnetization induced by persistent cur-
rents discussed in [1–3,7,8]. For example, for 2DES in
AlGaAs/GaAs the effective electron mass m = 0.067me

and at electron density ne ≈ 2 × 1011 cm−2 we have
EF ≈ 100 K, vF /c ≈ 1.4 × 10−3. Hence, according to
equation (33) for a microwave field of f/e = 1 V/cm
acting on an electron in a dot of size Lx = 1 µm we
obtain N ≈ 2 × 103, fR/EF ≈ 0.01 and M0/µB ≈
2mevF LxN(fLx/EF )2/� ≈ 5 × 103N(fLx/EF )2 ≈ 103,
where µB = e�/(2mec) is the Bohr magneton. Nowadays
technology allows the production of samples with very
high mobility so that the mean free path can have values
as large as few tens of microns at 4K. At ne = const we
have the scaling M0 ∝ L5

xf2 and for an increased dot size
Lx = 10 µm and field f/e = 3 V/cm the magnetization of
one dot is M ≈ 0.1M0 ≈ 108µB. This is comparable with
the total magnetization of 107 rings in [1]. Therefore, this
one dot magnetization induced by a microwave field can
be observed with current experimental setups [9,10,21].
We note that the magnetization is only weakly dependent
on the temperature when the mean free pass at a given
temperature is larger than the dot size.

This ballistic magnetization should also exist at very
high frequency driving, e.g. THz or optical frequency,
which is much larger than the oscillation frequency. In
this regime the magnetization drops with the driving fre-

quency M ∝ 1/ω2 (see Eqs. (21–25)) but this drop may
be compensated by using strong driving fields.

From the theoretical view point many questions re-
main open and further studies are needed to answer them.
Thus, an analytical theory is needed to compute the mag-
netization in dots with a nonlinear potential or billiards.
At a first glance, as a first approximation one could take
analytical formulas for harmonic dot equations (21–25)
and average this result over frequencies variation in a
dot with a nonlinear potential. However, in the limit of
small relaxation rate γ (or large τrel) such an averag-
ing gives finite magnetization independent of γ. Indeed,
in analogy with Landau damping [17,18] such integration
gives an effective dissipation independent of initial γ → 0.
The appearance of such a magnetization independent of
γ would also be in a qualitative agreement with the re-
sults obtained for ratchet transport on the semidisk Gal-
ton board [14,15] and in the asymmetric scatterer model
studied in [16]. Indeed, according to these studies the ve-
locity of ratchet is independent of the relaxation rate in en-
ergy (relaxation over momentum direction is reached due
to dynamical chaos). In fact this indicates certain similar-
ities with Landau damping where the final relaxation rate
is independent of the initial one. Also, the results obtained
in [15,16] show that the ratchet velocity can be obtained
as a result of scattering on a one asymmetric scatterer.
Therefore, it is rather tentative to use the semidisk bil-
liard of Figure 11 and to say that the magnetization in it
appears as the result of ratchet flow: for the polarization
θ = 0 the ratchet flow goes on the left in the upper part
of the billiard and on the right in the bottom part. The
velocity of such ratchet flow vf in this 2DES is given by
the relations found in [15,16], namely vf/vF ∼ (fR/EF )2.
This flow gives a magnetization of billiard dot induced by
a microwave field which is of the same order as M0 in the
relation (33). However, in this approach the rescaled mo-
mentum Mr is simply some constant independent of the
relaxation rate in energy, as is the case for the ratchet
transport on infinite semidisk lattice. This result is in
contradiction with our numerical data for the magneti-
zation dependence on the relaxation rate in energy which
gives approximately Mr ∝ γLx/vF ∼ Lx/(vF τrel) (see
Figs. 2, 6, 7). A possible origin of this difference can be
attributed to the fact that the ratchet flow is considered
on an infinite lattice while the magnetization takes place
in a confined system and the relaxation properties are dif-
ferent in these two cases.

Also we should note that here we have used the approx-
imation of noninteracting electrons and have neglected
all collective effects. In principle, it is well-known that
microwave radiation can excite plasmons in 2DES (see
e.g. [23]). These excitations can be viewed as some oscil-
latory modes with different frequencies ωx, ωy and there-
fore in analogy with equations (21–25), it is natural to
expect that a liner-polarized radiation can also create ro-
tating plasmons with finite magnetization induced by this
rotation. In addition, the effects of screening should be
also taken into account. All these notes show that further
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theoretical studies are needed for a better understanding
of radiation induced magnetization in 2DES dots.

We thank Kvon Ze Don for useful discussions and for pointing
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