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Abstract. We develop a theoretic description of the photogalvanic current induced by a high frequency
radiation in asymmetric nanostructures and show that it describes well the results of numerical simulations.
Our studies allow to understand the origin of the electronic ratchet transport in such systems and show
that they can be used for creation of new types of detectors operating at room temperature in a terahertz
radiation range.

PACS. 72.40.+w Photoconduction and photovoltaic effects – 73.63.-b Electronic transport in nanoscale
materials and structures – 05.45.Ac Low-dimensional chaos

1 Introduction

Since the experiments of Glass et al. performed in 1974
[1] and the theoretical explanations developed in 1976
[2,3] it is known that an asymmetry of crystal at a mi-
croscopic scale can lead to emergence of macroscopic sta-
tionary directed current when the crystal is irradiated by
an external light source. The appearance of directed cur-
rent induced by zero-mean force of radiation in absence of
any external static voltage has been named the photogal-
vanic effect. This unusual phenomenon based on interplay
of space asymmetry, relaxation and external driving had
been mainly discussed for interaction of light with crys-
tals [4,5]. However, this effect has a rather generic physical
origin and the interest to it has been significantly renewed
recently when it became clear that it may play an impor-
tant role for transport in bio-systems where it is difficult to
create static forces in space and where directed transport
may be more easily generated by some oscillating param-
eters in presence of asymmetry at a molecular level (see
e.g. a review [6]). In this community the phenomenon be-
came known as ratchet, following an example of pawl and
ratchet described by Feynman and showing that a directed
transport in asymmetric systems at a thermal equilibrium
is forbidden by the second law of thermodynamics [7].

The appearance of the photogalvanic or ratchet effect
in various systems is described in the reviews [8,9]. The
effect has been observed with vortices in Josephson junc-
tion arrays [10,11,12], cold atoms [13], macroporous sili-
con membranes [14], microfluidic channels [15] and other
systems. The great variety of systems clearly confirms a
generic nature of the phenomenon.

In parallel to these ratchet studies, a technological
progress made possible to produce artificial superlattices
in semiconductors with two-dimensional electron gas
(2DES). The experimental studies of superlattices of an-
tidots in a form of disks demonstrated an important con-
tribution of periodic orbits in the transport properties of
2DES [16,17]. It is important to note that the interest to
particle dynamics on a lattice of rigid disks goes back to
the days of Galton who in far 1889 showed the appear-
ance of statistical laws in such systems [18]. A rigorous
mathematical description of chaos on the Galton board
that leads to statistical laws has been given by Sinai [19].
The links between the chaotic dynamics, periodic orbits
and experimental results for 2DES transport properties in
antidot superlattices have been established in theoretical
studies [20]. The interest to effects of microwave radiation
on 2DES transport appeared at a relatively early stage,
however, during a relatively long time only the case of
antidots with a disk shape has been considered (see e.g.
[21,22]). Due to symmetry reasons the photogalvanic effect
is absent in such a case.

The experimental studies of 2DES transport in asym-
metric structures in presence of ac-driving have been
started in [23,24,25]. They demonstrated the principal ex-
istence of photogalvanic transport but no detailed analysis
had been done for 2D structures. The quasi-1D case [24]
has been analyzed in more detail but the ratchet transport
in this case is rather slow due to very slow ac-driving.
Thus, the ratchet transport in this case was linked to
quantum tunneling effects (see [24] and discussions in [9]).
On the contrary the experiments in 2D structures [23,25]
have been performed at rather high frequencies (50GHz
and more) showing that high frequency control of ratchet
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transport is possible in principle. Moreover, the experi-
ment [25] demonstrated that the photogalvanic current
exists at room temperature. Unfortunately, there was no
further development of this interesting research line. Prob-
ably, the absence of theoretical understanding of the phe-
nomenon is partially responsible for this.

The theoretical studies of ratchet transport in asym-
metric 2DES structures in the form of semidisks Galton
board have been started in [26] and further developed in
[27,28]. They used extensive numerical simulations of dy-
namical equations in combination with simple analytical
estimates. A rigorous analytical approach, based on the
kinetic equation, has been developed in [29] that allowed
to solve exactly a case at a low density of asymmetric
scatterers of a specific form. Here we combine all these
methods that allows us to obtain a global theoretical de-
scription of the photogalvanic effect in asymmetric nanos-
trutures. The development of such global theory allows
to make clear predictions for conditions under which the
photogalvanic effect can be used for construction of room
temperature detectors of high frequency radiation sensi-
tive to polarization.

The paper has the following structure: Section II gives
a description of various models of asymmetric nanostruc-
tures and represents simple analytical computations com-
pared with numerical simulations; Section III describes
analytical results based on the kinetic equation and also
considers a general question of ratchets in dynamical sys-
tems with or without time reversibility; the effects of mag-
netic field on the photogalvanic current are considered in
Section IV; discussion of the results and possible applica-
tion of the effect are given in Section V.

2 Model description, analytical and numerical

results

In our studies we consider two main types of antidots: ori-
ented elastic semidisks and cuts (1D intervals of length
D) which produce specular reflection from left side and
diffusive scattering reflection from right side (see Fig. 1).
The cuts model has been introduced in [29] to mimic ef-
fect of scattering on a semidisk (right diffusive side of cut
approximately represents circular part of semidisk). The
kinetic equation can be solved exactly in this case. For
the semidisks Galton board we assume that the semidisks
form a triangular lattice (see Fig.1 in [28]) with R being
a distance between disk centers and rd being the disk ra-
dius. Orientation of a semidisk on (x, y)−plane and angles
of elastic scattering are shown in Fig. 2. For the case of
cuts, as in [29], it is assumed that the cuts are irregularly
distributed in space with a concentration of cuts in a unit
area being nc (all cuts are vertical as in Fig. 1). The ki-
netic theory [29] also works in a case of regular lattice of
cuts if their density is low.

In the limit of low density of scatterers (cuts or disks)
the scattering time τc is

τc = 1/(ncDv) (cuts),
τc =

√
3R2/(8rdv) (semidisks),

(1)

 

 

x

y

Fig. 1. The model of oriented scatterers in a form of vertical
cuts of length D with a concentration nc. The scattering on
cuts is elastic from the left side and diffusive from the right
side. The average scattering time on cuts is τc = 1/(ncDVF ),
where VF is the Fermi velocity of 2DES.

Fig. 2. Geometry of the semidisk scatterer in (x, y)−plane
and definition of the angle notations. A trajectory colliding
with the semidisk at an angle φi is scattered at an angle φf ,
which depends on the impact parameter d; the electric field E
is linear-polarized under angle θ to x−axis.

where v is the particle velocity (for the Fermi gas v = VF

where VF is the Fermi velocity of 2DES). In addition to
scattering on antidots we assume that there is also scatter-
ing on impurities which is characterized by the scattering
time τi (see [28,29]). Between the collisions with antidots
and impurities the electron motion is affected only by an
electric microwave field E cosωt linear-polarized under an-
gle θ to x−axis (see Fig. 2). The force acting on electron
is F = eE and the electron velocity at time t+ τs is

v(t + τs) = v(t) +
2eE

mω
cos(ωt+ ωτs/2) sin(ωτs/2), (2)

where e,m are electron charge and mass.
To find the velocity of stationary flow induced by mi-

crowave oscillations we assume that without microwave
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the equilibrium distribution of electron velocities is given
by the Maxwell or the Fermi-Dirac distributions at tem-
perature T . Also it is assumed that the microwave field is
relatively weak and it only slightly perturbs the equilib-
rium distribution. Let us start for simplicity from the case
of the Maxwell distribution fM (v) = exp(−mv2/2T )/Z
(here Z is the normalization constant). Then, according
to (2), the perturbed distribution is

f(v, t, τs) = fM (v) ×

exp[
2evE cos(ωt+ ωτs/2) sin(ωτs/2)

Tω
] , (3)

where we omit the velocity independent terms.
To compute the ratchet velocity we first consider the

cuts model. We also make certain simplifications which al-
low to understand the physical origin of the ratchet trans-
port keeping a more rigorous treatment for the next Sec-
tion. Thus, we compute the averaged perturbed distribu-
tion function. It is obtained by averaging f(v, t, τs) over
all initial times t and the free flight time τs.

fc(v) =<

∫ ∞

0

pc(τ)f(v, t, τs)dτs >t (4)

Here pc(τs) is the probability that the scattering oc-
curs after a time τs. Its exact expression depends on the
geometry of the sample and temperature, but for simplic-
ity we may assume that pc(τs) = exp(−τs/τc)/τc where τc
is the mean scattering time. Expanding the exponent up
to a second order in E and averaging over t, τs gives:

fc(v) = fM (v) ×
(

1 +
(τcveE)2

T 2

1

1 + (τcω)2

)

(5)

With this distribution we can compute the ratchet flow
velocity vf,x (in x direction) considering only one scatter-
ing on a cut. Indeed, vf,x is the sum of two terms orig-
inated from scatterings on the two sides of a cut vf,x =
v+,x−v−,x. The contribution from the right side is v+,x =<
|v| > /π since the outgoing direction of the particle is ran-
dom and the average depends only on the magnitude of the
velocity before scattering |v|. On the contrary the scatter-
ing on the left side just changes the sign of the velocity in
the x direction: vx, as a consequence v−,x =< vxη(vx) >
where η(vx) is the step theta-function. The 1/π factor in
the expression of v+,x originates from the averaging over
the random scattering angle, it is not present for v−,x

since the scattering on the left side of the cut is elastic
and no additional averaging is needed. If the distribution
is isotropic these two averages are equal, keeping this fact
in mind we may compute the contribution to v+,x, v−,x

only from the anisotropic (non equilibrium) part of fc(v).
This gives

vf,x = v+,x − v−,x =
3τ2

c e
2E2

2
√

2πm3T

1

1 + (τcω)2
×

(

1

π

∫ 2π

0

cos2(φ− θ)dφ −
∫ π/2

−π/2

cos2(φ− θ) cos(φ)dφ

)

= − τ2
c e

2E2

2
√

2πm3T

1

1 + (τcω)2
cos(2θ) , (6)

where φ is the polar angle of the velocity v, θ is the polar-
ization angle and the coefficient comes from the average
value of < v4 > computed over the equilibrium distribu-
tion fM .

Similar computations give the ratchet velocity vf,y in
y−direction. Here the contribution from the right cut side
vanishes v+,y = 0 since after a random scattering the di-
rections with φ and −φ have equal probability. The con-
tribution from the left side is given by v−,y =< vyη(vx) >:

vf,y = v−,y =
3τ2

c e
2E2

2
√

2πm3T

1

1 + (τcω)2
×

(

∫ π/2

−π/2

cos2(φ− θ) sin(φ)dφ

)

=
τ2
c e

2E2

√
2πm3T

1

1 + (τcω)2
sin(2θ) (7)

As a result Eqs. (6,7) give the angle ψ of the direc-
tion of ratchet flow (tanψ = vf,y/vf,x) as a function of
polarization angle θ:

tan(ψ) = −2 tan(2θ) (8)

It is important to note that in the computations above
we assumed that a scattering event definitely occurs after
time τc. This model is rather convenient for numerical
simulations that allows to make a comparison with the
above theoretical estimates. Such a model corresponds to
scattering events randomly placed in time. For a static
random distribution of cuts in space one should compute
the scattering probability with a transport cross section
that gives a numerical factor 3 instead of 2 in Eq. (8) (see
next Section).

Also above it is assumed that there are no impurities.
In their presence the result is proportional to the proba-
bility of scattering on antidots which is equal to the ratio
τi/(τi + τc) = τ/τc due to time ergodicity. Here and below
τ = τcτi/(τc + τi) is the relaxation time scale determined
by the geometrical mean of τi and τc. Hence, in presence
of impurities the ratchet velocity is given by

vf =
τ3e2E2

2τc
√

2πm3T

1

1 + (ωτ)2

(

− cos(2θ)
2 sin(2θ)

)

(9)

where up and down terms correspond to x and y compo-
nents of the ratchet velocity.

The method described above can be also applied to an-
other form of antidots, e.g. for semidisks. The main differ-
ence from the cut model is that the direction after collision
φf is no longer completely determined by the impact angle
φi nor completely random (see Fig. 2). In fact, it is given
by a conditional probability g(φf |φi) that depends on the
geometry of the scatterer. Due to the scatterer asymmetry,
in general, this distribution is not invariant under y-axis
mirror symmetry. To obtain the expression of g(φf |φi) for
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a semidisk scatterer it is convenient to represent g via two
parts:

g(φf |φi) =

{

g+(φf |φi), φi ∈ (−π/2, π/2)
g−(φf |φi), φi ∈ (π/2, 3π/2)

(10)

Let us first compute the contribution to g from colli-
sions with negative x impact velocity g+ that correspond
to impact angles φi ∈ (−π/2, π/2). The scattering is elas-
tic on all sides of the semidisk. Integrating over the impact
parameter d (see Fig. 2) gives the conditional probability
g+(φf |φi) of scattering in the direction φf assuming a col-
lision with an impact angle φi.

g+(φf |φi) =
cos

φf−φi

2

2(1 + cosφi)
χ[φi−π,π−φi](φf ) (11)

Here χ[φi−π,π−φi] is the characteristic theta-function of
the interval [φi − π, π − φi]. After scattering with an im-
pact angle φi some values of the outgoing angle φf are
forbidden since the trajectory can not cross the bulk of
the scatterer, for example φi + π is always forbidden, the
χ function incorporates this restriction into g+(φf |φi).

The contribution from the trajectories with positive
x impact velocities is given by the distribution g−(φf |φi)
for impact angles in the interval φi ∈ (π/2, 3π/2). The
resulting conditional probability g−(φf |φi) splits in two
terms: the first comes from the collision with the straight
edge of the semidisk and is expressed as a delta function,
the second is related to the collisions with the curved edge
and is similar to the expression given in Eq.(11). Hence,

g−(φf |φi) =
2| cosφi|

1 + | cosφi|
δ(φf + φi − 2π)

+
| cos

φf−φi

2 |
2(1 + | cosφi|)

χ[−|π−φi|,|π−φi|](φf ) (12)

One can check that the distributions obtained in Eqs.(11,
12) are normalized to 1. This normalization corresponds to
the conservation of the number of particles after collision:
∫ 2π

0 g+(φf |φi)dφf =
∫ 2π

0 g−(φf |φi)dφf = 1.
Another effect that was not taken into account in the

cuts model is that the scattering probability depends on
the impact angle φi. The probability gc(φi) that the colli-
sion occurs under the angle φi is proportional to the length
of the segment obtained by projecting the semidisk on a
parallel to the impact direction : rd(1 + | cos(φi)|), this
leads to the probability distribution

gc(φi) =
1 + | cosφi|
2(2 + π)

(13)

The distributions given by Eqs. (11,12,13) and the distri-
bution function fc(v) (5) give the ratchet velocities via
expressions:

vf,x =

∫ 2π

0

dφf

∫

d2v|v| cos(φf )g(φf |φi)gc(φi)fc(v)

vf,y =

∫ 2π

0

dφf

∫

d2v|v| sin(φf )g(φf |φi)gc(φi)fc(v)

(14)

0 1 2 3
θ 

0

0.5

1

1.5

2

2.5

3

v 
( 

 )
/v

 (
0)

f
f

θ

Fig. 3. Dependence of the rescaled absolute value of ratchet
velocity vf (θ)/vf (θ = 0) on the polarization angle θ for the
cuts and semidisks models (angle is given in radians). For the
the semidisk scatterers (black curve with circular dots) the
lattice constant is set to R/rd = 4.5, the impurity scattering
time is τi ≈ 15rd/vT and the Maxwell equilibrium distribu-
tion is characterized by a temperature T . With these settings
the numerically determined average time interval between two
successive collisions with semidisks is τc ≈ 0.77τi ≈ 11rd/vT

(we note that the theoretical scattering time is τc ≈ 4.4rd/vT

with the thermal velocity v = vT =
√

(2T/m) in Eq. (1)). In
the simulations for the cuts model (green curve with circular
dots) the temperature T and the time scales τc, τi are taken
to be the same as their numerical values in the semidisks case.
In both cases the microwave field amplitude and frequency are
eErd/T = 0.4 and ωrd/

√
2mT = 0.316. The smooth curves

represent the theoretical predictions of Eq. (9) (blue curve for
the cuts model) and Eq. (15) (red line for the semidisks model).

In the calculation of these integrals it turns out that
the isotropic (equilibrium) term of fc(v) vanishes that cor-
responds to the absence of the effect at equilibrium. In the
contribution of the anisotropic term of Eq.(5) only the an-
gular integrals are different from Eq. (6,7) while the inte-
gral on |v| is identical and leads to the same dependence
on system parameters. As a result we obtain

vf =
πτ3e2E2

2(2 + π)τc
√

2πm3T

1

1 + (ωτ)2

(

− cos(2θ)
sin(2θ)

)

(15)

To check the obtained theoretical expressions (9) and
(15) we performed numerical simulations of the cuts and
semidisks models. The dynamical equations are solved nu-
merically between collisions. The Maxwell equilibrium at
temperature T is generated with the help of the Metropo-
lis thermalization algorithm as it is described in [28]. The
computation time along one trajectory is about few hun-
dred thousands of microwave periods. The angular depen-
dence of the ratchet velocity is shown in Figs. 3,4. It is
in a very good agreement with the obtained theoretical
expressions both for the cuts and semidisks models. We
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0 1 2 3
θ

-4

-2

0

2

4

ψ

Fig. 4. Dependence of the angle ψ of the ratchet flow direction
on the polarization angle θ for the parameters of Fig. 2 with
the same choice of colors: black curve for numerical data and
red line for theory (ψ = π − 2θ) in the semidisks model; green
curve for numerical data and blue curve for theory (see Eq. (8))
in the cuts model; angles are given in radians.

will consider the dependence on the parameters τc, τi in
the next Section.

3 The kinetic equation approach

The approach described above can be also used for the
Fermi-Dirac equilibrium distribution. However, it if more
convenient to use a more general approach based on the
kinetic equation which reads:

∂f

∂t
+ eE cosωt

∂f

∂p
= −f − f0

τ
, (16)

where f0 is an unperturbed equilibrium distribution, p =
mv. The solution can be presented in a form of expansion
over powers of external weak field: f = f0 + f1 + f2 + ....
The first term is

f1(p, t) = − τeEv

2(1 + iωτ)

∂f0
∂ǫ

exp(iωt) + CC , (17)

where CC is a complex conjugated part. The time aver-
aged correction of f2 gives

< f2(p, t) >t= −τeE < cosωt
∂f1
∂p

>

≈ (τeEv)2

2(1 + (ωτ)2)

∂2f0
∂ǫ2

, (18)

where we use an approximation that the isotropic term
originating from the term ∂f1/∂v does not contribute to
the ratchet velocity and therefore can be omitted. Also
we assume that the relaxation time τ is independent of

particle energy. The correction (18) has the same form as
in Eq. (5). Thus, for example,

vf,x =< |v| > /π− < vxη(vx) >=

− (emτE)2

6(1 + (ωτ)2)
cos(2θ)

∫ ∞

0

v4 ∂
2f0(v)

∂ǫ2
dv

and for the Fermi-Dirac distribution at T ≪ EF we obtain
the ratchet flow velocity for the cuts model

vf =
τ3e2E2

2πτc
√

2m3EF

1 − π2T 2/(24E2
F )

1 + (ωτ)2

(

− cos(2θ)
2 sin(2θ)

)

(19)
while for the semidisks model

vf =
πτ3e2E2

2(2 + π)τc
√

2m3EF

1 − π2T 2/(24E2
F )

1 + (ωτ)2

(

− cos(2θ)
sin(2θ)

)

.

(20)

The angle dependence remains the same as for the Maxwell
equilibrium.

The case of weak asymmetry can be also treated in a
more formal way based of the Green function formalism in
the kinetic equation. First we note that in the second order
on alternating electric field the components of steady-state
current density can be described by phenomenological ex-
pressions

jx = αxxx|Ex|2 + αxyy|Ey |2,
jy = Re(αyxy)(ExE

∗
y + E∗

xEy) + Im(αyxy)[EE∗]z .(21)

The components of the photogalvanic tensor αxxx, αxyy

and Re(αyxy) determine the response to the linear-polarized
microwave field. For linear polarization along x or y axes
the current flows along the x direction; the current in y
direction appears for a tilted linear-polarized electric field.

The kinetic equation written in the operator form reads

∂f

∂t
+ F̂ f = Îf, (22)

where f(p, φ) is the distribution function and p =

p(cosφ, sinφ) is the electron momentum. The term (F̂ f)
represents the action of electric field E(t) = Re(Eωe

−iωt)
of the electromagnetic wave with the complex amplitude
Eω = E∗

−ω:

F̂ = eE(t)
∂

∂p
= e[Ex(cosφ

∂

∂p
− sinφ

p

∂

∂φ
) +

+Ey(sinφ
∂

∂p
+

cosφ

p

∂

∂φ
)] ≡ 1

2
F̂ωe

iωt + CC (23)

The term Îf is the collision integral

Îf(p, φ) =

∫ 2π

0

dφ′[W (φ′, φ)f(p, φ′) −W (φ, φ′)f(p, φ)],

(24)

where W (φ′, φ) is the scattering probability.
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The stationary solution of the kinetic equation in the
second order of electric field can be written as

f2 =
1

2
Re
(

Ĝ0F̂ωĜ
ωF̂−ωf0

)

(25)

where F̂ω = eEω
∂

∂p
, Ĝ is the Green function of kinetic

equation. For small asymmetry

Ĝω =
1

iω − 1/τ
− 1

(iω − 1/τ)2
Î−, (26)

where Î− is the antisymmetric part of scattering operator
on cuts, semidisks etc. The quantity τ = τiτc/(τi +τc) can
be attributed to the symmetric part of scattering on cuts
and to the impurity relaxation time τi.

The photogalvanic current reads

ji =
e3

4π2
Re

∫

dp
{

τ2Î−(E−ω
∂

∂p
)

τ

1 − iωτ
(Eωv)f ′

0

+τ(E−ω
∂

∂p
)Î−

τ2

(1 − iωτ)2
(Eωvf ′

0)
}

(27)

Here v = p/m is the electron velocity, f0(ε) is the equi-
librium distribution function in energy ǫ, prime means
derivative over energy.

From Eq.(27) we find the current induced by the linear
polarized microwave field

ji =
e3

4π2
Re

∫

dp
{

τ2viÎ
−vjvk

( τf ′
0

1 − iωτ

)′

− τ2τ ′f ′
0

(1 − iωτ)2
vivj Î

−vk

}

EjEk. (28)

We use the identities Îξ(ǫ) = 0, < Îχ(p) >= 0, and

< pipj Îpk >= − < pk Îpipj >, where ξ(ǫ) is an arbitrary
function of energy, χ(p) is an arbitrary function of mo-
mentum; angular brackets stand for the operation of av-
erage over angles in p-space: < ... >=

∫

dφ
2π (...). The first

and the second identities follow from the conservation of
number of particles, the third is the consequence of the de-
tailed balance principle according to which the probability
of transition has the symmetry W (p′,p) = W (−p,−p′).

Further we consider an algebraic energy dependencies
of relaxations times: τ, τc ∝ εs. This dependence corre-
sponds to the scattering on a geometric impediment with
Î− = (1/τc)Î− where the operator Î− is the integral op-
erator on φ, τc is the characteristic time of scattering on
cuts or half-disks which depends on the concentration of
scatterers nc. The power s = −1/2 corresponds to scat-
tering on impurities/scatterers with fixed density in space.
We note that s = 3/2 may correspond to a case of charged
non-screened impurities distributed in the system plane.
Eq.(28) can be transformed to the form:

ji =
e3m

2π

∫

dεf ′
0

v3τ3

τcε(1 + ω2τ2)

{

(2 − 2s)ajki

+
s(1 − ω2τ2)

(1 + ω2τ2)
aijk

}

EjEk , (29)

where v = vu, aijk =< uiujÎ−uk > and u is a uni-
tary vector. The stationary current ji = αijkEωjE

∗
ωk un-

der linear polarized field is given by the following compo-
nents of photogalvanic tensor (see Figs. 1,2): αxxx, αxyy

and Re(αyxy). At T = 0 (a degenerate Fermi gas) the
expressions for these components read

αxxx = − e3VF τ
3

πτc(1 + ω2τ2)
(30)

×
[

(2 − 2s) +
s(1 − ω2τ2)

(1 + ω2τ2)

]

axxx ,

αxyy =
e3VF τ

3

πτc(1 + ω2τ2)
(31)

×
[

(2 − 2s)axxx − s(1 − ω2τ2)

(1 + ω2τ2)
axyy

]

,

Re(αyxy) = − e3VF τ
3

πτc(1 + ω2τ2)
(32)

[

(2 − 2s)axyy +
s(1 − ω2τ2)

2(1 + ω2τ2)
(axyy − axxx)

]

.

Here, τ, τc are relaxation times taken at ε = εF . Now it is
necessary to calculate two quantities axxx and axyy. They
depend on the model of asymmetric scatterers. For the
case of cuts the scattering probability has the form:

W (φ′, φ) = τc
−1[cosφ′ θ(cosφ′)δ(φ′ + φ− π)

−1

2
cosφ′ cosφ θ(cosφ)θ(− cosφ′)] . (33)

Using Eq.(33) we obtain axxx = 1/48, axyy = −1/16. As
a result we have in this model:

αxxx = − e3VF τ
3

48πτc(1 + ω2τ2)2

×[2 − s+ (2 − 3s)ω2τ2] , (34)

αxyy =
e3VF τ

3

48πτc(1 + ω2τ2)2

×[2 + s+ (2 − 5s)ω2τ2] , (35)

Re(αyxy) =
e3VF τ

3

24πτc(1 + ω2τ2)2

×[(3 − 2s) + (3 − 4s)ω2τ2)] . (36)

The formulas (34,35,36) with s = −1/2 follow also from
the exact solution of the problem for cuts obtained in [29].

According to the previous Section for the semidisks
model the scattering probability is

W (φ′, φ) =
1

τc

{

cosφ′ θ(cosφ′)δ(φ′ + φ− π)

+
1

4
| sin(

φ′ − φ

2
)|
[

θ(φ − φ′)θ(−φ′ − φ)

+θ(φ′ − φ)θ(φ′ + φ)
]

}

. (37)

This probability W leads to the following results for the
photogalvanic coefficients in the semidisks model:

αxxx = −αxyy = −Re(αyxy)
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Fig. 5. Dependence of the rescaled velocity of ratchet vf/VF

on the rescaled collision time τc/τi obtained by numerical sim-
ulations of the cuts mode (symbols) for ωτi = 4.7; 7.05; 9.4
(red, black, green symbols from top to bottom respectively).
The full curves show the theoretical dependence Eq. (43,45) for
corresponding ωτi multiplied by a numerical factor Q = 0.54.
Here, the equilibrium Fermi-Dirac distribution has the tem-
perature T/EF = 0.1 and eEτiVF /EF = 4.2; the polarization
angle θ = 0.

= − e3VF τ
3

12πτc(1 + ω2τ2)2
[2 − s+ (2 − 3s)ω2τ2] . (38)

In the numerical simulations for the cuts model it was
taken that τ is independent of energy (s = 0). In such a
case from the above Eqs. (34,3536) and Eq. (38) we obtain

αxxx = −αxyy = −1

3
Re(ayxy)

= − e3τ3
√

2ne

24m
√
mεF τc(1 + ω2τ2)

(cuts); (39)

αxxx = −αxyy = −Re(ayxy)

= − e3τ3
√

2ne

6τcm
√
mεF (1 + ω2τ2)

(semidisks), (40)

where ne is the electron density related to the current by
the relation j = eneVf .

Let us also note that at τ = const for the case of
Maxwell equilibrium we obtain

αxxx = −αxyy = −1

3
Re(ayxy)

= −
√

2πneτ
3e3

24m
√
mTτc(1 + ω2τ2)

(cuts), (41)

αxxx = −αxyy = −Re(ayxy)

= −
√

2πneτ
3e3

6m
√
mTτc(1 + ω2τ2)

(semidisks) . (42)

It is important to note that the relation αxxx = −αxyy,
which is valid for semidisk antidots at any s, implies that

the total photogalvanic current is zero for depolarized ra-
diation. For a general form of scatterers and τ dependent
on energy (s 6= 0) even depolarized radiation produce
nonzero photogalvanic current. This is for example the
case for the cuts model with fixed density of impurities
where s = −1/2.

We should again emphasize the difference between for-
mulas obtained using the kinetic equation approach and
simplified way which leads to Eqs.(6-7). The difference
in numerical factors appears due to different methods of
averaging: in Eqs.(6-7) it is assumed that the scattering
events are randomly distributed in time, while in the ki-
netic approach it is assumed that the scattering events
are randomly distributed in space. A simple way to ob-
tain Eqs. (39-42) is to consider the mean force applied
from the electron gas to an asymmetric scatterer. This
force is determined by the momentum production on the
scatterer, or, in other words, residue of flows of momenta
of incident

∫

vxpDf(p)dp/2π2 and scattered particles. If
the anisotropy is weak, the momentum production can be
found substituting the expression for distribution func-
tion (18) into the collision integral (24). The flow velocity
is determined by equating this force per unit area to the
friction of electron system, −P/τ , where P = mvfne is
the full mean momentum of electron gas. The result ob-
tained in this way is the same as those obtained from the
kinetic approach if the mean free time does not depend on
the energy (Eq. 39-42).

For a direct comparison with numerical simulations
it is convenient to rewrite Eqs. (39,40) to obtain explicit
expressions for the ratchet velocity. For the Fermi-Dirac
distribution at T ≪ EF this gives for the cuts model

vf =
S

24

(

− cos(2θ)
3 sin(2θ)

)

(43)

and for the semidisks model

vf =
S

6

(

− cos(2θ)
sin(2θ)

)

, (44)

where

S =
e2τ3

√
2E2

m
√
mEF τc(1 + ω2τ2)

= VF
(eEτVF )2τ

2E2
F τc(1 + ω2τ2)

. (45)

To compare the polarization dependence given by
Eqs. (43,44,45) (see also Eqs. (41,42)) with the numeri-
cal results shown in Figs. 3,4 we should take into account
that in the numerical simulations of the cuts model the
collisions with cuts take place always after time τc (ran-
dom positions of cuts in time) while the computations
above assume fixed distribution of scatterers in space that
leads to a factor 3 sin(2θ) in Eq. (43 instead of 2 sin(2θ)
in Eqs. (9,19). A part of this, the functional dependence
on parameters is the same in both computations. A slight
difference in a numerical coefficient related to different
ways of averaging for cuts randomly distributed in time
(Eq. (19)) and in space (Eq. (43)).
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The comparison of the theoretical dependence on τ, τc
(Eqs. (43,45) with the numerical data in the cuts model is
shown in Fig. 5 at different values of microwave frequency
and θ = 0. It shows that the numerical data are well de-
scribed by the theoretical relation vf = −QS/24 with a
numerical factor Q ≈ 0.5. This confirms that the theory
gives a good description of the numerical results.

It is also interesting to compare the theory for the disks
model with the numerical data of [28] (see Fig.8 there).
Using the value of τc from Eq. (1) for a low density at
R/rd ≈ 4 and eErd/EF = 0.5 we obtain from Eqs. (44,45)
vf/VF ≈ 0.14 instead of the numerical value vf/VF ≈ 0.05
(according to Fig.8 in [28] at θ = 0 and R/rd = 4 we have
ωτ ≈ 0.8 since τi ≫ τc). This means that a numerical
factor Q between the theory Eqs. (44,45) and the numer-
ical simulations [28] is Q ≈ 1/3. Such a correction can be
considered as rather satisfactory since the theory assumes
low density approximation which is not yet well justified
at R/rd = 4. Also the theory of kinetic equation works in
one-collision approximation which may work not so well
for completely dynamical systems of semidisks lattice.

Finally, let us return to a simple derivation of the pho-
togalvanic current given in a paragraph after Eq. (42). Ac-
cording to this consideration the directed flow appears on
a time scale of the order of τ . For a purely dynamical sys-
tem, like the semidisks Galton board, we have τi = ∞ and
τ = τc. We note that τc is given by Eq. (1) and is propor-
tional to the inverse Lyapunov exponent of chaotic dynam-
ics in absence of microwave driving. This leads to an inter-
esting fundamental question about the photogalvanic cur-
rent in a purely dynamical system. Indeed, in absence of
friction the semidisks Galton board with a monochromatic
driving is a Hamiltonian system which has time reversibil-
ity property (like cosωt), while the appearance of directed
current on a time scale τc breaks time reversibility. The
dependence of the photogalvanic current on parameters of
a real relaxation process is clear from the phenomenolog-
ical point of view: the current changes its sign with the
time inversion while the electric field squared keeps its
sign (Eq. (21)). This means that the photogalvanic coeffi-
cient α in Eq. (21) should contain the relaxation constant.
By its own, the kinetic equation is irreversible even if only
the static potential scatterers are taken into account. In
fact, a purely dynamical system is reversible and hence the
stationary current should vanish for it. In principle this
point can be explained by the dynamical chaos where the
time reversibility is broken in practice for a coarse-grained
distribution. However, a more delicate point is the ques-
tion about the detailed balance principle. In a dynamical
system it means that the transition probabilities are pro-
portional to a measure in the Hamiltonian phase space
and if all phase space is chaotic there should be no global
directed current on large time scales. In a sense the nu-
merical results [26] are in favor of this statement since
there a small friction force Ff = −γp gives the velocity
of stationary flow vf ∼ γR which disappears in the limit
of γ → 0. However, in the limit of small γ the situation
is somewhat specific since the average steady state energy
Es, analogous to temperature, grows with a decrease of γ

as Es ∼ ((eE)2/γ)2/3 ∼ T that leads finally to the rela-
tions similar to those given by Eqs. (9,15,41,42). The nu-
merical simulations performed in [27] have been done with
the Nosè-Hoover dynamics (see [30]) which can be viewed
as a purely dynamical time reversible Hamiltonian sys-
tem in an extended phase space with additional variables.
Thus the photogalvanic current can appear in a Hamil-
tonian asymmetric system with monochromatic driving.
However, the directed flow we discussed takes place only
in some part of total phase space corresponding to phys-
ical variables and it is possible that the total current in
total extended phase space still remains zero. Indeed, in
principle it is known that in chaotic Hamiltonian systems
there may be two separate components (e.g. one with a
regular motion and another with a chaotic motion) with
a directed current in each component but with the total
current equal to zero (see examples in [31]). The ratchet
analyzed in [27] with the Nosè-Hoover dynamics can be
such a case. Also, the contradiction can be resolved if to
assume an existence of a certain time scale after which the
photogalvanic current is stabilized. Thus, from a practi-
cal view point we may say that in a dynamical chaotic
Hamiltonian system signatures of directed flow appear af-
ter the time scale τc but since the current velocity vf it
proportional to a second power of weak field vf ∝ (eE)2

a relatively long time tr ∝ 1/(eE)2 is needed to observe
this current in presence of chaotic fluctuations and it is
necessary that the steady state distribution in energy is
established on a time scale which is shorter than tr. Fur-
ther studies are required to understand more deeply the
problem of time reversibility in the context of the photo-
galvanic effect.

4 Effects of a magnetic field for the semidisks

Galton board

For experiments on photogalvanic current in asymmetric
nanostructures it is important to know what are the effects
of a magnetic field B perpendicular to the 2DES plane on
the strength of current and its directionality. An analytic
solution of the kinetic equation becomes much more com-
plicated compared to the cases considered above. This is
especially the case when the Larmor radius RL of electron
motion becomes comparable with the size of asymmetric
antidots. Therefore, the numerical simulations in this case
become especially important. For the semidisks Galton
board the effects of magnetic field have been studied in
[28]. They clearly show that the ratchet current becomes
quite weak when the Larmor radius RL becomes smaller
then the semidisk radius rd. This is rather natural from a
physical view point since in this regime the scattering on
semidiscs is suppressed.

However, in the regime with rd/RL ∼ 1 a relatively
weak magnetic field can significantly affect the directional-
ity of photogalvanic current. This is illustrated in Figs. 6,7
obtained by numerical simulations with the method de-
scribed in [28]. The results of these Figures clearly show
that a moderate magnetic field can change the direction



A.D.Chepelianskii et al.: Photogalvanic current in artificial asymmetric nanostructures 9

0.0 0.4 0.8 1.2 1.6
−0.008

−0.004

0.000

0.004

0.008

vx /VF

rd / RL

Fig. 6. Dependence of rescaled ratchet velocity vx/VF in
x−direction on the ratio rd/RL proportional to the magnetic
field B perpendicular to the semidisks Galton board. The sys-
tem parameters are R/rd = 2.5, T/EF = 0.1, eErd/EF = 0.3,
lω/rd = 2πVF /(ωrd) = 9. The bottom (top) red (blue) curve
corresponds to the polarization angle θ = 0 (θ = π/2). The
rescaled mean free path due to impurity scattering is l/rd =
VF τi/rd = 45; the rescaled computation time is ωt = 3.1×106.
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d L
Fig. 7. Dependence of ratchet current angle ψ on a rescaled
magnetic field rd/RL ∝ B for the case of Fig. 6 at θ = 0; curve
with circles shows numerical data, angle is given in radians.

of current almost on 180 degrees (Fig. 7). The angular de-
pendence of Fig. 7 is not sensitive to the microwave field
strength and therefore is not related to the Lorentz force.
We attribute the origin of this strong angular dependence
to a significant change of scattering process in the regime
when rd/RL ∼ 1 related to multiple collisions of electron
with a semidisk.

To make a more close link to possible experimental
studies we note that for the electron density ne = 2.5 ×
1011cm−2, an effective electron massm = 0.067me and the
semidisk radius rd = 0.4µm we have for the parameters

0.0 0.4 0.8 1.2 1.6
−0.008

−0.004

0.000

0.004

0.008

vx /VF

rd / RL

Fig. 8. Dependence of the ratchet rescaled velocity vx/VF on
the rescaled ratio rd/RL ∝ B for parameters of Fig. 6 at θ = 0
and various values of rescaled microwave frequency ωrd/VF =
0.335 (brown), 0.447 (orange), 0.648 (magenta), 0.693 (red),
0.805 (cyzen), 0.939 (yellow), 1.12 (blue), 1.39 (violet) (curves
from top to bottom at rd/RL = 0.8).

of Fig. 6 the following physical values: EF ≈ 100K, VF =
2.2 × 107cm/s, ω/2π = 60GHz, lω = 2πVF /ω = 3.6µm
and l = VF τi = 18µm (such value of l corresponds to
mobility of about 2 × 106cm2/V S), a magnetic field B =
0.075T corresponds to the Larmor frequency ωL ≈ 34GHz
and rd/RL = 0.4. For these parameters and data of Fig. 8
the microwave frequency changes from 29GHz to 120GHz
when the rescaled ratio changes from ωrd/VF = 0.335 to
1.39 (ωrd/VF = 0.693 for Fig. 6).

In absence of magnetic field there is no dependence of
current direction on the microwave frequency. On the con-
trary, in the regime rd/RL ∼ 1 the directionality of flow
can be also changed by changing ω as it is shown in Fig. 8.
We also note that the velocity of flow in x direction re-
mains the same with a change B → −B due to symmetry
reasons and we present data only for B > 0.

This angular dependence becomes weaker when the
mean free path l decreases due to decrease of impurity
scattering time τi (see Fig. 9). The results of Fig. 9 also
show that the ratchet effect disappears when l becomes
smaller than size of asymmetric antidot. Of course, the
current is absent when the semidisks are replaced by disks
(in this case the numerical data, shown by dashed curve
in Fig. 9, are on a level of statistical fluctuations).

The angular dependence of the photogalvanic current
B and ω found in this Section is rather nontrivial and fur-
ther studies are required to obtain a detailed explanation
for it.

5 Discussion

In this paper we developed a theory which determines
the strength and directionality of the phogalvanic cur-
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Fig. 9. Dependence of the ratchet rescaled velocity vx/VF on
the rescaled ratio rd/RL ∝ B for parameters of Fig. 6 at θ = 0
and various values of rescaled mean free path l/rd = VF τi/rd =
45, 22.5, 11.1, 4.5, 2.25, 1.1 (full curves from top to bottom at
rd/RL = 0.8; for the physical parameters given in the text l
changes from 18µm to 0.45µm); dashed curve corresponds to
the case when semidisks are replaced by disks and l/rd = 45.

rent in artificial asymmetric nanostructures. The theoret-
ical results are in good agreement with detailed numerical
simulations performed in this work and in [28]. We also
find from numerical simulations that the directionality of
photogalvanic current is very sensitive to weak magnetic
fields.

A microwave field of E = 1V/cm generates in a lat-
tice of semidisks with R ∼ 1µm a current of about 0.2
nA per lattice row at electron density ne ≈ 2.5 × 1011.
For a structure of 100µm we have currents of about 20
nA. The photogalvanic effect has classical grounds and
exists at room temperature if the mean free path remains
larger (or comparable) than the size of asymmetric an-
tidot. This is the case of the Lund experiment [25] with
l ∼ R ∼ 100nm (the polarization there corresponds to
θ = π/2, triangles are used instead of disks). For a fixed
ratio R/rd a decrease of R ∼ l by a factor 10 gives a drop
of current by a factor 100, however, the induced voltage
drops only by a factor 10 since a resistance also drops 10
times. While the experiments [23,25] demonstrate the ex-
istence of the effect there are still no experimental data to
be compared with our theoretical and numerical results:
in the experiments the strength of current is known but a
microwave field strength acting on electrons is not well de-
fined. Also till now only two polarization cases have been
analyzed experimentally (θ = 0 in [23] and θ = π/2 in
[25]). The directionality of current in these experiments is
in agreement with our results but a detailed experimental
investigation of the polarization dependence is still highly
desirable.

All these considerations clearly show that further ex-
perimental studies of photogalvanic currents in asymmet-
ric nanostructures are very interesting and important. In-

deed, the theory developed above considers only the case
of noninteracting particles. In reality electron-electron in-
teraction may play an important role, as well as plasmon
modes can also affect the photogalvanic effect. Also at
small scales with R ∼ 100nm the level spacing between
quantum levels inside one lattice cell becomes of the or-
der of 100GHz (at ne ∼ 3 × 1011) and quantum effects
may play an important role. Also at R < 100nm the col-
lision frequency enters in teraherz range VF /R > 1THz.
Thus such asymmetric nanostructures can be used as room
temperature detectors of radiation in teraherz range. In
analogy with the GORE-TEX material used in common
life for one-way transport of water and air [32] such ar-
tificial asymmetric nanostructures may be considered as
“NANO-GORE-TEX” material. The further studies of the
NANO-GORE-TEX properties may bring new interesting
applications including high frequency detectors and sen-
sors.
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CONANO and (for MVE and LIM) by the grant of RFBR
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03-51-6453.
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