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Destruction of Anderson localization by a weak nonlinearity
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We study numerically a spreading of an initially localized wave packet in a one-dimensional discrete
nonlinear Schrödinger lattice with disorder. We demonstrate that above a certain critical strength
of nonlinearity the Anderson localization is destroyed and an unlimited subdiffusive spreading of
the field along the lattice occurs. The second moment grows with time ∝ tα, with the exponent α

being in the range 0.3 − 0.4. For small nonlinearities the distribution remains localized in a way
similar to the linear case.
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The Anderson localization [1] has been originally dis-
cussed for electron propagation in a disordered potential.
Nowadays, an impressive technological progress in exper-
iments with cold atoms allows one to create a disordered
quasi-1D potential by laser fields and to detect signatures
of localization of a Bose-Einstein condensate (BEC) in
presence of disorder [2, 3, 4, 5, 6]. An interesting new as-
pect in such systems is an importance of nonlinear effects
since in a good approximation the evolution of BEC can
be described by the nonlinear Gross-Pitaevskii equation
(see e.g. [7]). An interplay of disorder, localization, and
nonlinearity appears also in other physical systems like
wave propagation in nonlinear disordered media (see e.g.
[8, 9]), chains of nonlinear oscillators (see e.g. [10]) with
randomly distributed frequencies, and models of quan-
tum chaos with a kicked soliton [11] and a kicked BEC
[12, 13, 14].

We focus here on the discrete Anderson nonlinear
Schrödinger equation (DANSE)

i~
∂ψn

∂t
= Enψn + β| ψn |2ψn + V (ψn+1 + ψn−1) , (1)

where β characterizes nonlinearity, V is hopping matrix
element, on-site energies are randomly distributed in the
range −W/2 < En < W/2, and the total probability is

normalized to unity
∑

n | ψn |2 = 1. For β = 0 and weak
disorder all eigenstates are exponentially localized with
the localization length l ≈ 96(V/W )2 at the center of
the energy band [19]. Hereafter we set for convenience
~ = V = 1, thus the energy coincides with the frequency.

For nonlinear equation (1) we consider the following
problem: how an initially localized field | ψn(0) |2= δn,0

is spreading? In the linear case the spreading saturates
after excitation of all linear modes that have significant
values at n = 0. The same process of “initial excita-
tion” of modes happens in the nonlinear case as well,
this initial stage of spreading has been analyzed recently
in refs. [20, 21] and is now well understood. However,
a behavior at large time scales remains less clear. The
results presented in [20] support the view of eventual ex-
ponential localization of the field. We demonstrate below

that the spreading is unlimited, however it is rather slow
– subdiffusive.

The basic idea is to use the equivalence between the
Anderson localization and the localization of quasienergy
eigenstates in a kicked quantum rotator [15, 16]. In
the latter model the case of quantum chaos with nonlin-
earity has been considered analytically and numerically
in [17, 18] and it has been shown that above a certain
nonlinearity level, nonlinear phase shifts lead to a com-
plete delocalization with a subdiffusive spreading over all
states [17]. Furthermore it has been argued that the same
situation should appear for the DANSE (1).

We first apply the theoretical arguments of paper [17]
to model (1), and then perform large scale numerical sim-
ulations of a wave packet spreading on a time scale which
is by 5-6 orders of magnitude larger compared to that in
[20]. Our results are in general consistent with the theory
developed for the quantum chaos model [17] that predicts
unlimited subdiffusive spreading.

At first glance, the effect of nonlinearity seems to be
vanishing in the limit of a broadly spread distribution.
Indeed, if the field is spread over ∆n sites, then due to
the conservation of the total probability in Eq. (1) the
field is small | ψn |2≈ 1/∆n and correspondingly small
are the nonlinear effects. However, one should compare
the nonlinear frequency shift δω ∼ β | ψn |2 with the
characteristic distance ∆ω between frequencies of excited
modes (the latter are the exponentially localized modes
of the linear disordered lattice). As the number of these
modes is proportional to ∆n, the distance between the
frequencies obeys ∆ω ∼ 1/∆n, and the relative nonlin-
ear frequency shift δω/∆ω ∼ β is independent of the
width of the field distribution but is proportional to the
nonlinearity parameter β. This means that the effect of
nonlinearity does not qualitatively depend on the width
of field distribution: if for some β > βc the field is
chaotic, chaos remains while spreading, and no transi-
tion to regularity that blocks spreading is expected; for
small nonlinearities β < βc the dynamics which is nearly
regular (KAM regime) for localized distributions remains
as such for all times. However, quantitative difference
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can occur and the spreading can slow down for wide dis-
tributions. Again, to roughly estimate this effect, we
can adopt here the arguments of [17]. In the basis of
linear localized modes, the evolution of the amplitudes
Cm of these modes is due to their nonlinear coupling,
i.e. Ċm ∼ βCm1

Cm2
Cm3

. Assuming randomness of the
phases, we can estimate the rate of excitation of a newly
involved mode as ∼| C |6∼ 1/(∆n)3. On the other hand,
excitation of a new mode is none other than diffusive
spreading of the field, thus d

dt (∆n)2 ∼ 1/(∆n)3. Solu-
tion of this equation yields subdiffusive spreading

(∆n)2 ∝ t2/5 . (2)

For numerical simulations we used the operator split-
ting integration scheme for the time evolution given by
(1): ψn(t + ∆t) = R̂Ŝψn(t), where R̂ = exp(−i(En +

β| ψn |2)∆t) is local and Ŝ = exp(−2∆t cos θ̂) is nontriv-

ial because θ̂ is the operator conjugated to n̂ = −i∂/∂θ.
This kick-like integration scheme is unitary and preserves
the total probability. In addition it introduces high
harmonics with frequencies ωm = m2π/∆t and integer
m. However, at small ∆t these frequencies are signif-
icantly larger than the system energy band width B:
ω1 = 2π/∆t ≫ B = (4 + W ) and their average effect
should be exponentially small. We have chosen ∆t = 0.1
that gives high frequency oscillations of total energy on
a percent level. A further decrease of ∆t by an order
of magnitude does not affect the average behavior of the
field spreading.

We used two discrete implementations for the evolu-
tion operator Ŝ of the linear Schrödinger equation. In
the first one we represent Ŝ as a band matrix whose ele-
ments are Bessel functions. At ∆t = 0.1 we keep Bessel
functions Jm(2∆t) with | m |≤ 10 that preserves prob-
ability on one integration step with the accuracy better
than 10−16, whereas after time t = 108 the probability is
preserved with accuracy better than 10−7. For one disor-
der realization such a run with the total number of sites
N = 2001 and t = 108 takes about 6000 mins of CPU
on a 4GHz-workstation. In another implementation we
used the unitary Crank-Nicholson scheme [22]. The re-
sults obtained by both methods are very similar; below
mainly those from the first method are presented because
of its better efficiency.

To characterize the wave packet spreading over the lat-
tice sites we compute its average squared width, i.e. the
second moment 〈(∆n)2〉 = σ(t) =

∑

n(n−〈n〉)2| ψn(t) |
2
.

The averaging over disorder realizations was performed
for the logarithm of this quantity, i.e. for logσ. The de-
pendence of the averaged σ on time t is shown in Fig. 1
for a moderate nonlinearity β = 1 and disorder strengths
W = 2 and W = 4. It clearly shows a subdiffusive
spreading

σ(t) ∝ tα (3)
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FIG. 1: (color online) The dependence of the second moment
σ of the probability distribution wn on time t for two disorder
strengths W = 2 (top full red/gray curve) and W = 4 (bottom
full black/blue curve) for β = 1; dotted curves of same color
show data at β = 0 (for large t only the average value is shown
by a horizontal line). The values of log

10
σ are averaged over 8

disorder realizations and over time intervals ∆(log
10

t) ≈ 0.1.
Dashed lines show the numerical fits log

10
σ = α log

10
t + η

with α = 0.344±0.003, η = 1.76±0.02 (done for 3 ≤ log
10

t ≤
8 for W = 2) and α = 0.306±0.002, η = 0.94±0.01 (done for
2 ≤ log

10
t ≤ 8 for W = 4). The full straight line shows the

slope α = 0.4. Here and below the logarithms are decimal.

which continues without any sign of saturation up to ex-
tremely large time tmax = 108. At tmax the variance
σ becomes by two orders of magnitude larger than its
saturation value at β = 0. Yet the initial spreading at
t . l for β = 1 is similar to the linear case β = 0 in
agreement with [21]. The exponent α was determined by
a fit in the time interval t0 < t < tmax, where t0 is the
characteristic time at which the linear spreading ends:
σ(β = 0; t) . σ(β, t0). The fits are shown in Fig. 1 and
the fit values are given in the caption to Fig. 1. The sta-
tistical error in the value of α is rather small due to a
large time interval, however α values for individual real-
izations fluctuate rather strongly varying in the interval
0.32 ≤ α ≤ 0.39 and 0.28 ≤ α ≤ 0.41 with the standard
deviation errors ∆α/α = 0.026 and 0.045, for W = 2 and
4 respectively. There are also certain time variations, e.g.
for 105 ≤ t ≤ 108 the fits give α = 0.375 and 0.319 for
W = 2 and 4 respectively. In spite of these variations the
value of α differs visibly from the theoretically expected
value α = 0.4 (Ref. [17] and Eq. (2)). We will return to
the discussion of this deviation later.

A more detailed characterization of the field spreading
is given by the probability distribution wn = | ψn(t) |2.
We show log10 wn averaged over disorder realizations in
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FIG. 2: (color online) Probability distribution wn over lattice
sites n at W = 4 for β = 1, t = 108 (top blue/solid curve)
and t = 105 (middle red/gray curve); β = 0, t = 105 (bottom
black curve; the order of the curves is given at n = 500).
At β = 0 a fit lnwn = −(γ|n| + χ) gives γ ≈ 0.3, χ ≈ 4.
The values of log

10
wn are averaged over the same disorder

realizations as in Fig. 1.

Figs. 2, 3 at t = 105 and 108. For W = 4 the tails of the
probability distribution drop down to enormously small
values ∼ 10−130 that can be reached due to our inte-
gration scheme which works efficiently up to very small
absolute values of probability. The tails of the distribu-
tion wn drop exponentially with the same slope as for
the linear case β = 0 which is also shown; the decay rate
γ ≈ 0.30 is close to the theoretical value 2/l ≈ 0.33. An-
other notable feature of wn is a flat distribution, chapeau,
centered near the initially populated site n = 0. Inside
the chapeau the sites are populated in an approximately
homogeneous way, and hence its width is essentially de-
termined by the second moment σ(t). For W = 2 the
decay rate γ for β = 0 drops approximately by a factor
≈ 4 compared to the case W = 4, in agreement with
the theoretical expression for l. Due to a larger value of
l, the spreading over the lattice sites is broader and a
non-exponential shape of the distribution wn at t = 108

is more visible. At shorter times t = 105 the tails of the
distribution are very similar to those in the linear case
β = 0.

The dependence of σ(t) on nonlinearity β is shown in
Fig. 4 for W = 4. One can clearly see that for β = 0.03
the growth of σ is stopped completely, the probability
distribution wn is close to exponential localization like
for β = 0 (see Fig.5). For β = 0.1 there is still a very
slow increase of σ with time, which is however hardly
distinguishable from a saturation. This value of β is pre-
sumably close to a critical one, at which the unlimited
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FIG. 3: (color online) Same as in Fig. 2 but with W = 2.
At β = 0 a fit ln wn = −(γ|n| + χ) gives γ ≈ 0.06, χ ≈
−3. The values of ln wn are averaged over the same disorder
realizations as in Fig. 1.

spreading sets on. A similar transition occurs for W = 2.
These data show that a delocalization transition takes
place at a certain critical nonlinearity βc ≈ 0.1. We note
that the qualitative and quantitative features of the dy-
namics seem to be independent of the sign of β: the
spreading for β = −1 is similar to that for β = 1 (we
have checked this also for β = ±2).
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FIG. 4: (color online) Dependence of the second moment σ of
probability distribution wn on time t for different strengths
of nonlinearity β = 1, 0.1, 0.03, 0 at W = 4 (curves from top
to bottom at log

10
t = 4.5, respectively). Data are shown for

one particular disorder realization.
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FIG. 5: (color online) Probability distribution wn over lattice
sites n for the same disorder realization as in Fig. 4, for W =
4, t = 108 and for different nonlinearities β = 1, 0.1, 0.03, 0
(from top to bottom; for clarity 3 bottom curves have ad-
ditional vertical shifts -10, -20 and -30 compared to the top
one).

The obtained results show close similarities between
the DANSE model and the nonlinear kicked rotator stud-
ied in [17]. In both cases for β > βc a subdiffusive
spreading over the lattice continues up to enormously
long times. In both models the probability distribution
has a chapeau with approximately homogeneous proba-
bility distribution. Outside of the chapeau the probabil-
ity drops exponentially. The width of the chapeau grows
in a subdiffusive way and the exponent α of this growth
is approximately the same for both models. The question
about the exact value of the exponent remains open. It
is possible that at W = 4 the localization length is rela-
tively short and there are deviations from the theoretical
value α = 0.4 given in [17]. Longer computations with a
better statistical averaging are needed to determine the
exact value of α; the latter may also depend on the pa-
rameters β and W . In particular, slower diffusion might
be due to inhomogeneities of the effective mode-to-mode
hopping rates, which are more pronounced for smaller lo-
calization lengths, i.e. for larger disorderW . At the same
time the obtained numerical data clearly show the exis-
tence of unlimited spreading over the lattice for β > βc.
Indeed, for the data of Fig. 1 at W = 2 the nonlinear fre-
quency shift δω ≈ βwn ≈ β/

√

σ(tmax) ≈ 0.006 is much
smaller than the typical level spacing between localized
states δν ≈ B/l ≈ 0.25. The same is true for W = 4.
This means that in simulations we have reached the time
scales with apparently asymptotic behavior.

In conclusion, we have demonstrated that in a one-
dimensional nonlinear disordered lattice the Anderson lo-
calization is destroyed and the field spreads subdiffusively

far beyond the linear localization range. This effect ap-
pears to have a threshold in the nonlinearity coefficient,
although the transition might be not perfect, as even for
small nonlinearities an extremely slow spreading of the
field due to Arnold diffusion mechanism is not excluded.
It appears also promising to look for other manifesta-
tions of nonlinearity-induced destruction of localization,
e.g. in the scattering problem [23].

We thank S.Aubry and S. Flach for useful discussions.
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