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Abstract. We study numerically the effects of static imperfections and residual couplings between qubits
for the quantum phase estimation algorithm with two qubits. We show that the success probability of the
algorithm is affected significantly more by static imperfections than by random noise errors in quantum
gates. An improvement of the algorithm accuracy can be reached by application of the Pauli-random-error-
correction method (PAREC).

PACS. 03.67.Lx Quantum computation – 85.25.Cp Josephson devices – 24.10.Cn Many-body theory

1 Introduction

Quantum computers [1] are doing steady progress in-
creasing the number of qubits and accuracy of quantum
gates. Among most advanced physical implementations
with possible scalable architecture are ion based quantum
computers (see e.g. [2] and Refs. therein) and solid state
superconducting qubits (see e.g. [3–5]). In the present sit-
uation when only a few qubits are available and the quan-
tum gate accuracy is limited it is interesting to test the
performance of simple quantum algorithms operating at
such realistic conditions. One of such algorithms is the It-
erative Quantum Phase Estimation Algorithm (IQPEA)
proposed recently by Dobš́ıček et al. [6]. According to
the results obtained there the IQPEA works reliably even
in presence of relatively strong noise in quantum gates.
The algorithm [6] is based on the semiclassical Quan-
tum Fourier Transform (QFT) [7] which uses one ancilla
qubit, iterative measurements and classical information
feedback. The advantages of the algorithm are the follow-
ing: it uses only a single ancillary qubit and its theoretical
accuracy of the eigenvalue found is limited only by the
number of times the algorithm is applied. Due to that
the IQPEA can be used as a benchmark algorithm for
the maximal accuracy that could be obtained in a given
experimental setup [6].

We describe briefly the IQPEA in the case of a two
qubit circuit proposed in [6] as a minimal benchmark-
ing circuit. The goal is to measure the eigenphase φ of
some operator U with precision set to m significant bits.
The standard Phase Estimation Algorithm (PEA) [8,9] re-
quires m ancillary qubits, to get the desired precision, and
the possibility to implement efficiently control−U2k

gates.
Using the semiclassical implementation of the QFT [7] an
alternative algorithm with only one ancillary qubit and

measurements can be designed. One further step ahead
is done in [6] where a feedback of the measurement re-
sult is used to correct the phase. In this way the IQPEA
provides a way to compute the phase theoretically with ar-
bitrary precision. The proposed scheme can be used as a
benchmarking circuit which is tolerant to a rather strong
random noise in quantum gates.

In [6] only the case of random noise errors in quantum
gates and environment dephasing are considered. At the
same time it is known that a presence of static imperfec-
tions and residual couplings between qubits may lead to
an emergence of quantum chaos in a quantum computer
hardware [10]. Such static imperfections affect the accu-
racy of quantum computation in a significantly stronger
way compared to random errors in quantum gates [11,12].
Thus it is interesting to test the effects of static imperfec-
tions in IQPEA with a small number of qubits, e.g. two
qubits. Indeed, our studies presented in this paper show
that the static imperfections lead to a significant drop of
the computation accuracy and the algorithm success prob-
ability. To correct these quantum errors induced by static
imperfections in IQPEA we apply the Pauli-random-error-
correction (PAREC) method proposed in [13] and tested
in various quantum circuits [14,15]. We note that the fact
that the randomization can improve the signal has been
already well known for the NMR spin-echo techniques [16].
For the quantum algorithms a similar fact was noted
in [17] where static random matrix terms were introduced
in a quantum propagator. Differently from these cases the
PAREC method makes the dynamical random rotations of
the computational basis of quantum computer code using
the freedom of register numbering accessible to the pro-
grammer. Our results for IQPEA show that the PAREC
allows to improve significantly the accuracy of quantum
computation.
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The paper is organized as follows. First we briefly de-
scribe the IQPEA for a 2-qubit system (Sect. 2). We then
compare the effects of random phase errors in quantum
gates and the effects of static imperfections (Sect. 3). Then
we show how the PAREC method corrects the errors in-
duced by static imperfections (Sect. 4). The summary of
the results is given in Section 5.

2 Brief description of IQPEA

The goal of IQPEA is to find the eigenphase of an operator
Û . We consider the simplest case with one-qubit unitary
diagonal operator in the computational basis

Û =
(

e−i2πφ 0
0 ei2πφ

)
, (1)

with φ ∈ [0, 1]. We want to find φ with up to m bits
of accuracy (or error smaller than 2−m). The IQPEA [6]
procedure consists in applying m times the circuit shown
in Figure 1 to the 2-qubit state |00〉. For simplicity we use
the representation

φ =
m∑

i=1

φi2−i def= 0.φ1φ2 . . . φm000 . . . (2)

assuming that the binary expansion of φ is finite. For the
first step (i = 0) we take ωi = 0 so the Z-rotation does
not act. After this first run

|φ0〉 =
1
2

[
(1 + ei2πφ)|00〉 + (1 − ei2πφ)|10〉] (3)

and the measurement of the “left” qubit yields P0(|0〉) =
cos2(π(0.φm)) which is unity if φm = 0 and zero if φm = 1.
Thus the least significant bit of φ is obtained deterministi-
cally. The key element is that in the following steps of the
algorithm we use the classical information obtained from
the measurement to correct the phase by a Z-rotation.
Before the last Hadamard gate the phase in the second
step is 2π(0.φm−1φm00 . . .) and after performing a Z-
rotation with ωk = −2π(0.0φm−1) the probability be-
comes P1(|0〉) = cos2(π(0.φm−1)). Consequently, the re-
sult of the first measurement is used as a feedback for the
algorithm to obtain the second least significant bit which
is obtained deterministically. In theory, following this pro-
cedure each bit can be obtained.

In reality the phase is

φ = φ̃ + δ2−m (4)

where φ̃ = 0.φ1φ2 . . . φm000 and δ ∈ [0, 1) is the reminder.
The probability of measuring φm correctly is thus

P1(|0〉) = cos2(π((0.φm) + δ/2))
P1(|1〉) = sin2(π((0.φm) + δ/2))

}
= P1 = cos2(πδ/2).

(5)

|0〉 H • Rz(ωi) H
��

��� xk

|0〉 U2m−1−i |0〉

Fig. 1. Step i (where i = 0, . . . , m − 1) of the IQPEA of [6].
Here RZ is a rotation by an angle ωi around ẑ axis.

The next step gives P2 = cos2(πδ/22) and eventually Pk =
cos2(πδ/2k) so that the total probability of measuring the
phase correctly is given by

Ptot(δ) =
m∏

k=1

cos2(πδ/2k) =
sin2(πδ)

22m sin2(πδ/2m)
. (6)

The success probability in (6) is bounded in the limit
m → ∞ by 4/π2 [9]. In fact, the rounding error permits us
to neglect the least significant bit and consider as proba-
bility of success the sum Ptot(δ)+Ptot(1−δ) = 8/π2 when
m → ∞ [6]. This lower bound could be raised by repeated
measurement of the first few bits and majority vote [6,9].

3 IQPEA and static imperfections

We consider two kinds of circuit imperfections: random
phase errors in rotations and static imperfections due
to residual couplings between qubits. To model random
quantum phase errors we assume that the rotation on
angle θ

Rσ(ν)(θ) = exp[−iσ(ν)θ/2] (7)

(with σ(ν) a Pauli operator) is replaced by rotation on
angle θ(1+∆) with ∆ randomly and uniformly distributed
in the interval

∆ ∈ [− ε1
2

,
ε1
2

] . (8)

In other words the original rotation Hamiltonian has now
an additional term

δHrnd =
∆θ

2
σ(ν). (9)

Each gate in Figure 1 is implemented with rotations hav-
ing different random realizations of ∆. This is the case of
random noise errors considered in [6] where it was shown
that the algorithm is rather robust.

On the other hand, we model the effects of resid-
ual static couplings between qubits by an imperfection
Hamiltonian of the form used in [10,12]:

δHstat(x) = δ1σ
(z)
1 + δ2σ

(z)
2 + 2Jσ

(x)
1 σ

(x)
2 (10)

where σ
(ν)
i are the Pauli operators acting on the ith qubit

and δi, J are random coefficients uniformly distributed
according to

δi, J ∈ [−a
√

3ε2, a
√

3ε2] , (11)
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Fig. 2. (Color online) Success probability for the algorithm to de-
termine the phase with a precision of up to 10 bits, as a function of
the parameter ε = ε1 = ε2 characterizing the error strength. Sym-
bols mark: random phase errors in the Hadamard gates (�), the Rz

gate (�), the controlled-U2k

(◦) and errors in all of the gates (•). The
case of static imperfections is shown by (�)/(�) in absence/presence
of random phase errors in the gates. Averaging is done over 2000
randomly chosen phases.

Z Z

U1

Z Z Y Y

U2

Y Y

X X X X Z Z Z Z

1 PAREC block Fig. 3. (Color online) Schematic representation of the
PAREC method. The vertical thick (red) lines indi-
cate the place where the static coupling propagator
Ustat is applied. In order to preserve tr[δH2] we take
ε/2 for each propagator. The dashed lines enclose a
PAREC block. Repetition of PAREC between two
gates means applying repeatedly one PAREC block
after another.

with a constant. We suppose that between each gate in the
algorithm there is a finite time ∆t which remains fixed
during the algorithm and that δH acts via the unitary
propagator

Ustat = eiδH (12)

where the time ∆t has been absorbed into the constants
δ and J in (10). The time ∆t can be considered as an
effective gate duration, a similar scheme is used in [12].

In order to compare the effects of both types of er-
rors we compute 〈tr[δH2]〉 ∝ ε2. The value a ≈ 0.37 is
determined so that

〈tr[δH2
rnd]〉 ≈ 〈tr[δH2

stat]〉 if ε1 = ε2 , (13)

the approximation is done taking θ = π in equation (9).
The static type of imperfections is especially important

since generally the errors produced in this case are accu-
mulated coherently that leads to a quadratic term in the
decay of fidelity [12] thus limiting considerably the maxi-
mum time over which an accurate quantum computation
can be performed.

In Figure 2 we show the success probability of measur-
ing correctly the phase φ, for a chosen accuracy of 2−10,
as a function of the parameters ε1 = ε2 = ε. We aver-
aged over 2000 uniformly random phases φ ∈ [0, 1]. For
the cases where only random phase errors act we see that
the algorithm is rather robust. Indeed, the decay of the
success probability is relatively slow even when all the
gates involved have errors. On the contrary, a dramatic

drop of the accuracy of computation is seen when we in-
clude the effects of static imperfections. The decay is much
faster than for random phase errors even for comparable
values of tr[δH2] corresponding to a typical experimental
situation.

4 Accuracy improvement using PAREC

In this section we address the issue of quantum error cor-
rection (QEC) of errors induced by static imperfections
during the algorithm. The random errors in gates can be
corrected up to a certain reasonable limit by usual QEC
schemes which however require a significant increase of the
number of qubits [1]. Here we study a different scheme
to correct the effects produced by the static imperfec-
tions propagator Ustat. One possible way to correct er-
rors produced by residual static couplings was introduced
in [13]. The idea is simple: contrary to random errors the
static imperfections lead to a coherent accumulation of
errors [12]. If some randomness is introduced then the ef-
fect of the residual couplings changes each time and does
not accumulate coherently. The PAREC method [13] prof-
its from the freedom of choice of computational basis and
uses this freedom by conveniently changing repeatedly and
randomly the computational basis along the computation.
In order not to change the algorithm and the desired result
a special care must be taken to properly compensate for
the changes made renumbering the computational basis.
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Fig. 4. (Color online) Success probability of IQPEA which
determines the phase with a precision of up to 10 bits, in the
presence of static imperfections, as a function of the imper-
fection strength ε2. The curves show the influence of PAREC
and how probability is enhanced with the increase of the num-
ber of times PAREC is applied: (�) No PAREC; (�) 1 time;
(◦) 5 times; (•) 10 times. No random imperfections are present
(ε1 = 0). Averaging is done over 2000 randomly chosen phases.
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Fig. 5. (Color online) Success probability (shown by color)
of the IQPEA which determines the phase with a precision
of up to 2−10 as a function of the number of times NPAREC

PAREC is applied and of the static imperfections strength ε2.
Top: the case where only static imperfections are considered
(ε1 = 0). Bottom: both static and random imperfections are
present (including in PAREC gates); here random errors in
gates are also present, their strength is taken as ε1 = ε2/5.
Averaging is done over 2000 randomly chosen phases.

The procedure is represented schematically in Fig-
ure 3. To change the computational basis we first pick
randomly from the set of Pauli matrices and identity ma-
trix {Xi, Yi, Zi, Ii} (where i = 1, 2), and apply them to
each qubit. We suppose that the time it takes to apply
the Pauli operators is much shorter than any other time
scales. We keep the information of this first choice, X1, Z2

in the Figure, and implement the suitably transformed
gate (Z1 ⊗ X2)U1(Z1 ⊗ X2). After that to come back to
the original basis, the operator (Z1⊗X2) is applied again.
The places where Ustat has acted are represented in Fig-
ure 3 by thick vertical gray (red) lines. This procedure
is repeated before and after each gate, but of course the
key is that a new random sequence of Pauli operators is
drawn, in the figure (Y1 ⊗Z2). So it is clear that between
U1 and U2 the imperfection propagator Ustat has acted on
different bases. We have called the complete sequence of
Pauli operators that act between two gates one PAREC
block.

The effect of PAREC can be seen in Figure 4. The
black solid curve (with � symbols) shows the success prob-
ability when static (but not random) imperfections act.
The gray (red) line (with � symbols) show the result when
one PAREC block is applied between each gate of the al-
gorithm that already gives a considerable gain.

If instead of one PAREC block we introduce many of
them (NPAREC) keeping ∆t fixed, and supposing that the
time to implement the Pauli gates is negligible, then the
imperfection Hamiltonian can be described with the help
of the transformation

δi → δi√
2NPAREC

; J → J√
2NPAREC

. (14)

As a consequence, the coherent effect of static imperfec-
tions is suppressed. This can be seen in Figure 4. The gray
(red) curves show the success probability as a function of
ε2 for different values of NPAREC (up to NPAREC = 10).
As NPAREC grows the probability grows accordingly. In
the ideal limit of infinitely many PAREC blocks between
gates (with a fixed gate-to-gate time) the success proba-
bility tends to constant maximum value for all ε, a result
which reminds us of a Zeno-like effect [18]. This is also
illustrated in Figure 5 (top), where the dark region in the
density plot of the success probability indicates the limit-
ing value attained for large values of NPAREC. The maxi-
mum value is the ideal value with perfect gates which is
only limited by the value of the reminder δ defined in (4).
Nevertheless, the limit can be attained only theoretically
because the time between IQPEA gates cannot be fixed if
we add (ideally) infinitely many PAREC gates, no matter
how fast we can implement them.

Up to now we have considered PAREC with perfect
Pauli gates while now we turn to a more realistic situ-
ation. With this aim we also consider the possibility of
random phase errors of IQPEA gates to be also present in
the PAREC Pauli gates. Therefore we expect that in the
presence of random imperfections, both in the IQPEA and
in PAREC, there will be an optimal value of NPAREC after
which the presence of too many faulty Pauli gates yields
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PAREC useless. This is demonstrated in Figure 5 (bot-
tom). For this a further consideration must be made. In
Figure 2, for illustration reasons only, we took ε1 = ε2 such
that the strength of both effects is comparable. However,
we expect that in experiments the effect of random phase
errors can be reduced to a minimum, so that in fact we
have to assume ε2 > ε1. For the plot in Figure 5 we took
ε2 = 5 ε1. As a result the maximum of the success prob-
ability occurs approximately at NPAREC = 5 after which
the PAREC method looses its efficiency. The position of
the peak as well as its height depends on the ratio ε2/ε1.
The obtained data show that the IQPEA with PAREC
can operate reliably even in presence of relatively strong
static imperfections.

5 Summary

To summarize, we tested the effects of static imperfections
in the IQPEA [6]. Due to its simplicity this algorithm can
be used as a benchmarking circuit for quantum computers
with two qubits. We have shown that static imperfections
produce a dramatic drop of success probability even for al-
gorithms involving a rather small number of gates. In this
context we have tested the PAREC method [13] and shown
that it improves significantly the computation accuracy,
even if the method is more suited to algorithms with a
larger gate sequence involved. We also present results with
repetitions of the PAREC method that produces a Zeno-
like effect in preservation of probability. Even though, the
realistic scenario would suggest a small NPAREC (may be
even NPAREC = 1), the results obtained demonstrate a con-
vincing improvement of the algorithm success probability
induced by PAREC. The extension of the IQPEA circuits
to a larger number of qubits is straightforward, as well as
the PAREC implementation.

This work was supported in part by the EC IST-FET project
EuroSQIP. For numerical simulations we used the codes of
Quantware Library [19].
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