
ar
X

iv
:0

71
1.

17
56

v1
  [

qu
an

t-
ph

]  
12

 N
ov

 2
00

7

EPJ manuscript No.
(will be inserted by the editor)

Quantum phase estimation algorithm in presence of static
imperfections

Ignacio Garcı́a-Mata and Dima L. Shepelyansky
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Abstract. We study numerically the effects of static imperfections and residual couplings between qubits for the
quantum phase estimation algorithm with two qubits. We showthat the success probability of the algorithm is af-
fected significantly more by static imperfections than by random noise errors in quantum gates. An improvement of the
algorithm accuracy can be reached by application of the Pauli-random-error-correction method (PAREC).

PACS. 03.67.Lx Quantum computation – 85.25.Cp Josephson devices– 24.10.Cn Many-body theory

1 Introduction

Quantum computers [1] are doing steady progress increasing
the number of qubits and accuracy of quantum gates. Among
most advanced physical implementations with possible scal-
able architecture are ion based quantum computers (see e.g.[2]
and Refs. therein) and solid state superconducting qubits (see
e.g. [3,4,5]). In the present situation when only a few qubits
are available and the quantum gate accuracy is limited it is in-
teresting to test a performance of simple quantum algorithms
operating at such realistic conditions. One of such algorithms
is the Iterative Quantum Phase Estimation Algorithm (IQPEA)
proposed recently by Dobšı́čeket al. [6]. According to the re-
sults obtained there the IQPEA works reliably even in presence
of relatively strong noise in quantum gates. The algorithm [6] is
based on the semiclassical Quantum Fourier Transform (QFT)
[7] which uses one ancilla qubit, iterative measurements and
a classical information feedback. The advantages of the algo-
rithm are the following: it uses only a single ancillary qubit and
its theoretical accuracy of the eigenvalue found is limitedonly
by the number of times the algorithm is applied. Due to that the
IQPEA can be used as a benchmark algorithm for the maximal
accuracy that could be obtained in a given experimental setup
[6].

We describe briefly the IQPEA in the case of a two qubit
circuit proposed in [6] as a minimal benchmarking circuit. The
goal is to measure the eigenphaseφ of some operatorU with
precision set tom significant bits. The standard Phase Estima-
tion Algorithm (PEA) [8] requiresm ancillary qubits, to get the
desired precision, and the possibility to implement efficiently
control-U2k

gates. Using the semiclassical implementation of
the QFT an alternative algorithm with only one ancillary qubit
and measurements can be designed [9]. One further step ahead
is done in [6] where a feedback of the measurement result is
used to correct the phase. In this way the IQPEA provides a

Correspondence to: http://www.quantware.ups-tlse.fr/dima/

way to compute the phasetheoretically with arbitrary preci-
sion. The proposed scheme can be used as a benchmarking cir-
cuit which is tolerant to a rather strong random noise in quan-
tum gates.

In [6] only the case of random noise errors in quantum gates
and environment dephasing are considered. At the same time it
is known that a presence of static imperfections and residual
couplings between qubits may lead to an emergence of quan-
tum chaos in a quantum computer hardware [10]. Such static
imperfections affect the accuracy of quantum computation in a
significantly stronger way compared to random errors in quan-
tum gates [11,12]. Thus it is interesting to test the effectsof
static imperfections in IQPEA with a small number of qubits,
e.g. two qubits. Indeed, our studies presented in this papershow
that the static imperfections lead to a significant drop of the
computation accuracy and the algorithm success probability. To
correct these quantum errors induced by static imperfections in
IQPEA we apply the Pauli-random-error-correction (PAREC)
method proposed in [13] and tested in various quantum circuits
[14,15]. Our results for IQPEA show that the PAREC allows to
improve significantly the accuracy of quantum computation.

The paper is organized as follows. First we briefly describe
the IQPEA for a 2-qubit system (Section 2). We then compare
the effects of random phase errors in quantum gates and the
effects of static imperfections (Section 3). Then we show how
the PAREC method corrects the errors induced by static im-
perfections (Section 4). The summary of the results is givenin
Section 5.

2 Brief description of IQPEA

The goal of IQPEA is to find the eigenphase of an operatorÛ .
We consider the simplest case with one-qubit unitary diagonal
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operator in the computational basis

Û =

(

e−i2πφ 0
0 ei2πφ

)

, (1)

with φ ∈ [0,1]. We want to findφ with up tom bits of accuracy
(or error smaller than 2−m). The IQPEA [6] procedure consists
in applyingm times the circuit shown in Fig. 1 to the 2-qubit
state|00〉. For simplicity we use the presentation

φ =
m

∑
i=1

φi2
−i def

= 0.φ1φ2 . . .φm000. . . (2)

assuming that the binary expansion ofφ is finite. For the first
step (i = 0) we takeωi = 0 so theZ-rotation does not act. After
this first run

|φ0〉 =
1
2

[

(1+ ei2πφ)|00〉+(1− ei2πφ)|10〉
]

(3)

and the measurement of the “left” qubit yieldsP0(|0〉) =
cos2(π(0.φm)) which is unity ifφm = 0 and zero ifφm = 1. Thus
the least significant bit ofφ is obtained deterministically. The
key element is that in the following steps of the algorithm we
use the classical information obtained from the measurement
to correct the phase by a Z-rotation. Before the last Hadamard
gate the phase in the second step is 2π(0.φm−1φm00. . .) and af-
ter performing a Z-rotation withωk =−2π(0.0φm−1) the prob-
ability becomesP1(|0〉) = cos2(π(0.φm−1)). Consequently, the
result of the first measurement is used as a feedback for the
algorithm to obtain the second least significant bit which is
obtained deterministically. In theory, following this procedure
each bit can be obtained.

|0〉 H • Rz(ωi) H
NM





xk

|0〉 U
2

m−1−i |0〉

Fig. 1. Stepi (wherei = 0, . . . , m−1) of the IQPEA of [6]. HereRZ
is a rotation by an angleωi around ˆz axis.

In reality the phase is

φ = φ̃ + δ2−m (4)

whereφ̃ = 0.φ1φ2 . . .φm000 andδ ∈ [0,1) is the reminder. The
probability of measuringφm correctly is thus

P1(|0〉) = cos2(π((0.φm)+ δ/2))
P1(|1〉) = sin2(π((0.φm)+ δ/2))

}

= P1 = cos2(πδ/2). (5)

The next step givesP2 = cos2(πδ/22) and eventuallyPk =
cos2(πδ/2k) so that the total probability of measuring the phase
correctly is given by

Ptot(δ ) =
m

∏
k=1

cos2(πδ/2k) =
sin2(πδ )

22m sin2(πδ/2m)
. (6)

The success probability in (6) is bounded in the limitm→ ∞ by
4/π2 [8]. In fact, the rounding error permits us to neglect the
least significant bit and consider as probability of successthe
sumPtot(δ )+ Ptot(1− δ ) = 8/π2 whenm → ∞ [6]. This lower
bound could be raised by repeated measurement of the first few
bits and majority vote [8,6].

3 IQPEA and static imperfections

We consider two kinds of circuit imperfections: random phase
errors in rotations and static imperfections due to residual cou-
plings between qubits. To model random quantum phase errors
we assume that the rotation on angleθ

Rσ (ν)(θ ) = exp[−iσ (ν)θ/2] (7)

(with σ (ν) a Pauli operator) is replaced by rotation on angle
θ (1+ ∆) with ∆ randomly and uniformly distributed in the
interval

∆ ∈ [−ε1

2
,

ε1

2
] . (8)

In other words the original rotation Hamiltonian has now an
additional term

δHrnd =
∆θ
2

σ (ν) (9)

Each gate in Fig. 1 is implemented with rotations having differ-
ent random realizations of∆ . This is the case of random noise
errors considered in [6] where it was shown that the algorithm
is rather robust.
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Fig. 2. (Color online) Success probability for the algorithm to de-
termine the phase with a precision of up to 10 bits, as a function of
the parameterε = ε1 = ε2 characterizing the error strength. Symbols
mark: random phase errors in the Hadamard gates(�), theRz gate (�),
the controlled-U2k

(◦) and errors in all of the gates (•). The case of
static imperfections is shown by (△)/(N) in absence/presence of ran-
dom phase errors in the gates. Averaging is done over 2000 randomly
chosen phases.

On the other hand, we model the effects of residual static
couplings between qubits by an imperfection Hamiltonian of
the form used in [10,12]:

δHstat(x) = δ1σ (z)
1 + δ2σ (z)

2 +2Jσ (x)
1 σ (x)

2 (10)
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whereσ (ν)
i are the Pauli operators acting on theith qubit and

δi, J are random coefficients uniformly distributed according to

δi, J ∈ [−a
√

3ε2,a
√

3ε2] , (11)

(with a constant). We suppose that between each gate in the
algorithm there is a finite time∆ t which remains fixed during
the algorithm and thatδH acts via the unitary propagator

Ustat = eiδH (12)

where the time∆ t has been absorbed into the constantsδ and
J in (10). The time∆ t can be considered as an effective gate
duration, a similar scheme is used in [12].

In order to compare the effects of both types of errors we
compute〈tr[δH2]〉 ∝ ε2. The valuea ≈ 0.37 is determined so
that

〈tr[δH2
rnd]〉 ≈ 〈tr[δH2

stat]〉 if ε1 = ε2 , (13)

the approximation is done takingθ = π in in Eq. (9).
The static type of imperfections is especially important since

generally the errors produced in this case are accumulated co-
herently that leads to a quadratic term in the decay of fidelity
[12] thus limiting considerably the maximum time over which
an accurate quantum computation can be performed.

In Fig. 2 we show the success probability of measuring cor-
rectly the phaseφ , for a chosen accuracy of 2−10, as a function
of the parametersε1 = ε2 = ε. We averaged over 2000 uni-
formly random phasesφ ∈ [0,1]. For the cases where only ran-
dom phase errors act we see that the algorithm is rather robust.
Indeed, the decay of the success probability is relatively slow
even when all the gates involved have errors. On a contrary, a
dramatic drop of the accuracy of computation is seen when we
include the effects of static imperfections. The decay is much
faster than for random phase errors even for comparable values
of tr[δH2] corresponding to a typical experimental situation.

Z Z

U1

Z Z Y Y

U2

Y Y

X X X X Z Z Z Z

1 PAREC block

Fig. 3. (Color online) Schematic representation of the PAREC method.
The vertical thick (red) lines indicate the place where the static cou-
pling propagatorUstat is applied. In order to preserve tr[δH2] we take
ε/2 for each propagator. The dashed lines enclose a PAREC block.
Repetition of PAREC between two gates means applying repeatedly
one PAREC block after another.

4 Accuracy improvement using PAREC

In this Section we address the issue of quantum error correc-
tion (QEC) of errors induced by static imperfections duringthe
algorithm. The random errors in gates can be corrected up to

a certain reasonable limit by usual QEC schemes which how-
ever require a significant increase of the number of qubits [1].
Here we study a different scheme to correct the effects pro-
duced by the static imperfections propagatorUstat. One possible
way to correct errors produced by residual static couplingswas
introduced in [13]. The idea is simple: contrary to random er-
rors the static imperfections lead to a coherent accumulation of
errors [12]. If some randomness is introduced then the effect
of the residual couplings changes each time and does not ac-
cumulate coherently. The PAREC method [13] profits from the
freedom of choice of computational basis and uses this freedom
by conveniently changing repeatedly and randomly the compu-
tational basis along the computation. In order not to changethe
algorithm and the desired result a special care must be taken
to properly compensate for the changes made renumbering the
computational basis.
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Fig. 4. (Color online) Success probability of IQPEA which deter-
mines the phase with a precision of up to 10 bits, in the presence of
static imperfections, as a function of the imperfection strengthε2. The
curves show the influence of PAREC and how probability is enhanced
with the increase of the number of times PAREC is applied: (�) No
PAREC; (�) 1 time; (◦)5 times; (•) 10 times. No random imperfec-
tions are present (ε1 = 0). Averaging is done over 2000 randomly cho-
sen phases.

The procedure is represented schematically in Fig. 3. To
change the computational basis we first pick randomly from the
set of Pauli matrices and identity matrix{Xi,Yi,Zi, Ii} (where
i = 1,2), and apply them to each qubit. We suppose that the
time it takes to apply the Pauli operators is much shorter than
any other time scales. We keep the information of this first
choice,X1,Z2 in the Figure, and implement the suitably trans-
formed gate(Z1⊗X2)U1(Z1⊗X2). After that to come back to
the original basis, the operator(Z1⊗X2) is applied again. The
places whereUstat has acted are represented in Fig. 3 by thick
vertical gray (red) lines. This procedure is repeated before and
after each gate, but of course the key is that a new random se-
quence of Pauli operators is drawn, in the figure(Y1⊗Z2). So
it is clear that betweenU1 andU2 the imperfection propaga-
tor Ustat has acted on different bases. We have called the com-
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plete sequence of Pauli operators that act between two gates
one PAREC block.

The effect of PAREC can be seen in Fig. 4. The black solid
curve (with � symbols) shows the success probability when
static (but not random) imperfections act. The gray (red) line
(with � symbols) show the result when one PAREC block is
applied between each gate of the algorithm that already gives a
considerable gain.

If instead of one PAREC block we introduce many of them
(NPAREC) keeping∆ t fixed, and supposing that the time to imple-
ment the Pauli gates is negligible, then the imperfection Hamil-
tonian can be described with the help of the transformation

δi →
δi√

2NPAREC

; J → J√
2NPAREC

. (14)

As a consequence, the coherent effect of static imperfections is
suppressed. This can be seen in Fig. 4. The gray (red) curves
show the success probability as a function ofε2 for different
values ofNPAREC (up to NPAREC = 10). AsNPAREC grows the prob-
ability grows accordingly. In the ideal limit of infinitely many
PAREC blocks between gates (with a fixed gate-to-gate time)
the success probability tends to constant maximum value for
all ε, a result which reminds us of a Zeno-like effect [16]. This
is also illustrated in Fig. 5 (top), where the dark region in the
density plot of the success probability indicates the limiting
value attained for large values ofNPAREC. The maximum value is
the ideal value with perfect gates which is only limited by the
value of the reminderδ defined in (4). Nevertheless, the limit
can be attained only theoretically because the time betweenIQ-
PEA gates cannot be fixed if we add (ideally) infinitely many
PAREC gates, no matter how fast we can implement them.

Up to now we have considered PAREC with perfect Pauli
gates while now we turn to a more realistic situation. With
this aim we also consider the possibility of random phase er-
rors of IQPEA gates to be also present in the PAREC Pauli
gates. Therefore we expect that in the presence of random im-
perfections, both in the IQPEA and in PAREC, there will be an
optimal value ofNPAREC after which the presence of too many
faulty Pauli gates yields PAREC useless. This is demonstrated
in Fig. 5 (bottom). For this a further consideration must be
made. In Fig. 2, for illustration reasons only, we tookε1 = ε2
such that the strength of both effects is comparable. However,
we expect that in experiments the effect of random phase errors
can be reduced to a minimum, so that in fact we have to assume
ε2 > ε1. For the plot in Fig. 5 we tookε2 = 5ε1. As a result the
maximum of the success probability occurs approximately at
NPAREC = 5 after which the PAREC method looses its efficiency.
The position of the peak as well as its height depends on the ra-
tio ε2/ε1. The obtained data show that the IQPEA with PAREC
can operate reliably even in presence of relatively strong static
imperfections.

5 Summary

To summarize, we tested the effects of static imperfectionsin
the IQPEA [6]. Due to its simplicity this algorithm can be used
as a benchmarking circuit for quantum computers with two
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Fig. 5. (Color online) Success probability (shown by color) of the IQ-
PEA which determines the phase with a precision of up to 2−10 as a
function of the number of timesNPAREC PAREC is applied and of the
static imperfections strengthε2. Top: the case where only static im-
perfections are considered (ε1 = 0). Bottom: both static and random
imperfections are present (including in PAREC gates); hererandom
errors in gates are also present, their strength is taken asε1 = ε2/5.
Averaging is done over 2000 randomly chosen phases.

qubits. We have shown that static imperfections produce a dra-
matic drop of success probability even for algorithms involving
a rather small number of gates. In this context we have tested
the PAREC method [13] and shown that it improves signifi-
cantly the computation accuracy, even if the method is more
suited to algorithms with a larger gate sequence involved. We
also present results with repetitions of the PAREC method that
produces a Zeno-like effect in preservation of probability. Even
though, the realistic scenario would suggest a smallNPAREC (may
be evenNPAREC = 1), the results obtained demonstrate a convinc-
ing improvement of the algorithm success probability induced
by PAREC. The extension of the IQPEA circuits to a larger
number of qubits is straightforward, as well as the PAREC im-
plementation.
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