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Using Gross-Pitaevskii equation, we study the time reversibility of Bose-Einstein condensates (BEC) in

kicked optical lattices, showing that in the regime of quantum chaos, the dynamics can be inverted from

explosion to collapse. The accuracy of time reversal decreases with the increase of atom interactions in

BEC, until it is completely lost. Surprisingly, quantum chaos helps to restore time reversibility. These

predictions can be tested with existing experimental setups.

DOI: 10.1103/PhysRevLett.101.074102 PACS numbers: 05.45.Mt, 03.75.�b, 37.10.Jk, 67.85.Hj

In recent years, remarkable progress has been made in
the manipulation and control of the dynamics of BEC in
optical lattices (see, e.g., the review [1]). In such systems,
the velocity spread is very small. This allows to perform
very precise investigations of the kicked rotator, known as
a paradigm of quantum and classical chaos [2]. As a result,
high order quantum resonances were recently observed
experimentally [3], and various nontrivial effects in the
kicked rotator dynamics were probed [4,5]. It should be
stressed that in BEC, the interactions between atoms are of
crucial importance, in contrast with other implementations
of the kicked rotator with cold atoms [6–9], where such
interactions are negligible. Recently, a method of time
reversal for atomic matter waves has been proposed for
the kicked rotator dynamics of noninteracting atoms [10].
This method also allows to realize effective cooling of the
atoms by a few orders of magnitude. The problem of time
reversal of dynamical motion of atoms originates from the
famous dispute between Boltzmann and Loschmidt on the
origin of irreversible statistical behavior in time reversible
systems [11,12]. The results obtained in [10] showed that
the quantum dynamics of noninteracting atoms can be
reversed in time even if the corresponding classical dy-
namics is practically irreversible due to dynamical chaos
[13,14]. The investigation of the effect of interactions on
time reversibility is of prime importance, since the original
dispute between Boltzmann and Loschmidt concerned in-
teracting atoms. In this Letter, we study the effects of
interactions between atoms in BEC on the time reversal
accuracy. We emphasize that interactions bring new ele-
ments in the problem of time reversal compared to the case
of one particle quantum dynamics [10], acoustic [15], and
electromagnetic waves [16].

To describe the BEC dynamics in a kicked optical
lattice, we use Gross-Pitaevskii equation (GPE) [17]
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where the first two terms on the r.h.s. correspond to the
usual GPE, and the last term represents the effect of the
optical lattice of period � ¼ 2�=�, with �TðtÞ being a

periodic delta-function with period T. The interaction be-
tween atoms is quantified by the nonlinear parameter g ¼
Ng1D where N is the number of atoms in the condensate
and g1D ¼ �2a0@!? is the effective 1D coupling con-
stant, !? being the radial trap frequency and a0 the 3D
scattering length. Here,  ðx; tÞ is normalized to one. In the
following, we choose units such that @ ¼ m ¼ � ¼ 1so
that the momentum of atoms is measured in recoil units;
time t is measured in units of T. For g ¼ 0, Eq. (1) reduces
to the usual kicked rotator model with classical chaos
parameter K ¼ kT and effective Planck constant T (see,
e.g., [10]). In this case, the time reversal can be done in the
way described in [10]: the forward propagation in time is
done with T ¼ 4�þ � while the backward propagation is
performed using T ! T0 ¼ 4�� �, with inversion of the
sign of k at the moment of time reversal tr. This procedure
allows to perform approximate time reversal (ATR) for
atoms with small velocities inside the central recoil cell.
This ATR procedure works quite accurately for noninter-
acting atoms (g ¼ 0), but can be significantly affected by
the nonlinear interaction [g � 0 in (1)] encountered in
BEC. Indeed, in the regime of strong interactions and
BEC size ‘s smaller than �, earlier investigations [18] of
the soliton dynamics in GPE with g > 0 and periodic
boundary conditions have shown that a soliton moves
with good accuracy along chaotic classical trajectories of
the Chirikov standard map [2]. As a result, even if one
performs exact time reversal (ETR), the presence of very
small numerical errors completely destroys reversibility
due to the instability of chaos. However, here we are
mainly interested in the typical regime of BEC experi-
ments where ‘s > �. Our studies show that in this regime,
time reversal can be achieved with good accuracy for
interactions of moderate strength.
To investigate time reversibility for BEC, we numeri-

cally simulated the wave function evolution through (1),
using up to Ns ¼ 223 discretized momentum states with
�p ¼ 2:5� 10�5, space discretization�x ¼ 2�=ðNs�pÞ,
and with up to 4� 104 integration time steps between two
kicks. In this way, we obtain the probability distribution in
momentum space WpðtÞ ¼ jhpj ðtÞij2. The results of time

PRL 101, 074102 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

15 AUGUST 2008

0031-9007=08=101(7)=074102(4) 074102-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.074102


reversal performed by ATR procedure are shown in Fig. 1,
for an initial Gaussian distribution in momentum with rms
� ¼ 0:002 in recoil units (as in the experiment of [3]).
After this procedure, the returned wave packet at t ¼ 2tr
becomes clearly squeezed in momentum compared to the
initial one. In absence of interactions (g ¼ 0), the maxi-

mum of the final returned distribution Wf
0 ¼ Wp¼0ðt ¼

2trÞ is equal to the maximum of the initial one Wi
0 ¼

Wp¼0ðt ¼ 0Þ since ATR is exact for p ¼ 0 [10]. The

increase of the nonlinear parameter g leads to a reduction

of the ratio Wf
0=W

i
0 until complete destruction of revers-

ibility for g ¼ 20. However, the half-width pL of the
returned peak is only weakly affected by g. It should be
stressed that at the moment of time reversal tr, the wave
packet is completely destroyed (Fig. 1, left inset), and
nevertheless the peak is recreated at t ¼ 2tr (Fig. 1, right
inset). This process looks similar to the observed
‘‘Bosenova’’ explosion induced by the change of sign of
the interactions in BEC [19]. In our case, the sign of the
interactions is unchanged, but the time reversal allows to
invert the explosion which happens during 0 � t � tr into
a collapse for tr < t � 2tr. We also note that the ETR
procedure ( ðxÞ !  �ðxÞ at t ¼ tr) leads to an almost
perfect time reversal of the wave packet, indicating that
exponential instability is rather weak for our tr.

The behavior of Wf
0=W

i
0, shown in Fig. 2, can be ap-

proximately described through

Wf
0=W

i
0 � e��tr ; � ¼ Cg2

ffiffiffiffi
�

p
=Dq; (2)

where C is a numerical constant and Dq is the quantum

diffusion rate which determines the localization length l of
quantum eigenstates in momentum space when g ¼ 0: l ¼
Dq=2 withDq � k2=2 (see [10] for the exact expression of

Dq). Surprisingly enough, the accuracy of time reversal

increases when the chaotic diffusion rate Dq increases (see

Fig. 2). Qualitatively, this is due to the faster spreading of
the wave function in coordinate space that leads to a
decrease of the nonlinear term gj ðx; tÞj2 in (1), making

the dynamics closer to the linear case for whichWf
0 ¼ Wi

0.

An estimate for � can be obtained assuming that the non-
linear term generates additional corrections k! kþ aðtÞ
in (1), where a randomly varies in time and a� gj j2 �
g�=

ffiffi
l

p
. This relation takes into account the normalization

condition (j j2=�� 1) and assumes that inhomogeneities
in j ðxÞj2 are smoothed over l�Dq localized chaotic

eigenstates. With these assumptions, the decay rate of

Wf
0=W

i
0 is given by the Fermi golden rule �� jaj2 �

g2�2=Dq. Such a consideration assumes that � remains

constant during the dynamics while in fact it increases due
to diffusion in momentum that probably leads to the
smaller power of � found numerically (2). These estimates
qualitatively explain the surprising result of Fig. 2 which
shows that the increase of quantum chaos diffusion Dq

improves the time reversal at fixed g.
In addition to the ATR procedure described above, it is

possible to perform additionally the inversion of the sign of
the interactions g at t ¼ tr. In principle, such an inversion
of g can be realized in experiments similar to those of [19].
The numerical data for this case are shown in the inset of
Fig. 2. They can be described by the same formula as for

FIG. 1 (color online). Initial (blue/black solid curve) and final
return probability distributions Wp obtained by ATR procedure

vs momentum p for various nonlinearities g. Insets : probability
distributionWp at t ¼ tr ¼ 10 (left) and final one at t ¼ tf ¼ 2tr
(right) on a larger scale for g ¼ 10. All probability distributions
are scaled by their value at p ¼ 0, t ¼ 0. Initial state is a
Gaussian packet with rms � ¼ 0:002. Here, k ¼ 4:5, T ¼ 4�þ
� for 0 � t � tr and T

0 ¼ 4�� � for tr < t � 2tr with � ¼ 2
and tr ¼ 10. Black dots correspond to the wave function after
ETR procedure.

FIG. 2 (color online). Ratio of final to initial probabilities at
p ¼ 0 as a function of g2

ffiffiffiffi
�

p
tr=Dq. Symbols mark the numerical

data for: k ¼ 4:5, � ¼ 0:002, tr ¼ 10 (0 � g � 20, blue
squares); k ¼ 8, g ¼ 10, tr ¼ 10 (0:002 � � � 0:2, green
circles); k ¼ 4:5, g ¼ 10, � ¼ 0:002 (1 � tr � 15, magenta
triangles); g ¼ 10, � ¼ 0:002, tr ¼ 10 (4 � k � 9, cyan re-
versed triangles); k ¼ 4:5, g ¼ 10 (g ¼ 15 for the inset), tr ¼
10 (0:002 � � � 0:026, red pentagons); k ¼ 4:5, g ¼ 5 (g ¼
15 for the inset), � ¼ 0:002 (1 � tr � 15, yellow diamonds);
the curve shows the dependence (2) with C ¼ 0:22. Inset : same
ratio but for a change of sign of g during the reversed evolution,
the curve has C ¼ 0:15.
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the case of unchanged g, but with a smaller numerical
constant C. The relatively small difference between the
two cases indicates that the main mechanism of time
reversal destruction is related to transitions to other mo-
mentum states induced by the nonlinear interaction.

The time reversal leads to a squeezing of the wave
packet in momentum space near p ¼ 0, that can be inter-
preted as an effective Loschmidt cooling [10]. The effects
of interactions on this cooling process are analyzed in
Fig. 3. The temperature Tf of the returned atoms can be

defined as the temperature of those atoms with momentum
in the interval [� 2pL, 2pL] at t ¼ 2tr (see [10]). For g ¼
0, the ratio Tf=T0 of final to initial temperatures drops

significantly with k. At small g ¼ 0:5, the ratio remains
essentially unchanged for all values of k considered. In
contrast, for stronger nonlinearity (g ¼ 10), there is no
cooling at low values of k � 3, but for strong chaos with
k > 3, cooling reappears and becomes very close to the
case g ¼ 0 at large k values. Thus, strong quantum chaos
surprisingly enhances the cooling of BEC. This result is the
consequence of relation (2), according to which the return
probability becomes larger and larger with the increase of
the quantum diffusion rate Dq � k2=2.

The results presented in Figs. 1–3 show that time rever-
sal can be performed for BEC through the ATR procedure
even in the presence of strong interactions. The cooling
mechanism works also in the presence of these interac-
tions, provided quantum chaos is sufficiently strong.

Up to now, we have discussed the case of BEC with
‘s � �. It is also interesting to analyze the opposite re-
gime ‘s < � with the initial soliton distribution

 ðx; tÞ ¼
ffiffiffi
g

p
2

exp½ip0ðx� x0 � p0t=2Þ þ ig2t=8�
cosh½g2 ðx� x0 � p0tÞ� : (3)

For k ¼ 0, this is the exact solution of Eq. (1), which
describes the propagation of a soliton with constant veloc-

ity p0 [20]. At moderate values of k, the shape of the
soliton is only slightly perturbed, and its center follows
the dynamics described by the Chirikov standard map [18]:
�p0 ¼ p0 þ k sinx0; �x0 ¼ x0 þ �p0T, where bars denote the
values of the soliton position and velocity after a kick
iteration. In the chaotic regime with K > 1, the soliton
dynamics becomes truly chaotic. Indeed, two solitons
with slightly different initial velocities or positions diverge
exponentially with time. As a result of this instability, even
the ETR procedure does not produce an exact return of the
soliton to its initial state, due to the presence of numerical
integration errors. This is illustrated in Fig. 4, where the
distance in phase space � between the initial and returned
solitons is shown as a function of the time reversal moment
tr. If the initial position of the soliton is taken inside the
chaotic domain, � grows exponentially with tr as ��
expð�trÞ. The numerical fit gives a value of � very close
to the Kolmogorov-Sinai entropy h of the standard map at
the corresponding value of K. For large values of tr, the
difference � becomes so large that the time reversed soliton
is located far away from the initial one, meaning that time
reversibility is completely destroyed (Fig. 4, left inset). In
contrast, if the soliton starts in the regular domain, the
growth of � remains weak during the whole integration
time. In this regime, even for large values of tr, the values
of � remain small and the soliton returns very close to its
initial state (Fig. 4, right inset).
Another way to characterize the stability of the non-

linear wave dynamics described by Eq. (1) is to study the
behavior of the fidelity defined as fðtÞ ¼ jh 1ðtÞj 2ðtÞij2,
where  1 and  2 are two solitons with slightly different
initial conditions. It is important to note that for g ¼ 0, the
function fðtÞ is independent of t; thus, variation with time
appears only due to nonlinear effects. In a certain sense,
this quantity can be considered as a generalization of the

FIG. 4 (color online). Left panel: phase space distance � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �p2

p
between the initial soliton and its time reversed

image obtained by ETR ( ðxÞ !  �ðxÞ) vs tr for k ¼ 1, T ¼ 2,
and g ¼ 10; symbols show numerical data averaged over 50
trajectories inside the chaotic (green circles) and regular (red
triangles) domains. The solid line shows the linear fit hln�i ¼
0:47tr � 10:29. The slope is close to the Kolmogorov-Sinai
entropy h � 0:45 at K ¼ kT ¼ 2. Right panels: soliton at initial
time t ¼ 0 (blue/black) and final time t ¼ 2tr (red/ gray) with
tr ¼ 40 for initial conditions inside the chaotic domain (top) and
regular domain (bottom, initial, and final solitons are super-
imposed).

FIG. 3 (color online). Loschmidt cooling of time reversed
BEC atoms characterized by the ratio of final Tf and initial T0
temperatures as a function of k for an initial Gaussian momen-
tum distribution with rms � ¼ 0:002 and g ¼ 0 (solid curve),
g ¼ 0:5 (green/gray circles), and g ¼ 10 (red/black squares).
Here, tr ¼ 10 and � ¼ 2.
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usual fidelity [21] discussed for the Schrödinger evolution
to the case of nonlinear evolution given by GPE. The
dependence of f on time is shown in Fig. 5 for different
values of the nonlinear parameter g. For small values of g,
the function is almost constant on the considered time
interval, while for large values of g, it drops quickly to
almost zero after a logarithmically short time scale corre-
sponding to the separation of the two solitons. These two
qualitatively different behaviors can be understood as fol-
lows. For relatively weak nonlinearity, fðtÞ � expð��tÞ
with � / g2 [see Eq. (2)] that corresponds to the usual
Fermi golden rule regime of the fidelity decay in linear
quantum systems with perturbation [21]. For stronger g,
we enter the regime where nonlinear wave packets move
like chaotic individual particles which leads to an abrupt
drop of fidelity as soon as the separation becomes
larger than the size of the wave packets. In this regime,
‘s < � and time reversal is destroyed. In the opposite
limit ‘s > � shown in Fig. 1, the time reversal can be
maintained at moderate values of g. The transition between
these two regimes is rather nontrivial and requires further
investigations.

The results of Figs. 4 and 5 show that the soliton
dynamics described by GPE (1) is truly chaotic. This leads
to the destruction of time reversibility induced by expo-
nential growth of small perturbations. However, the real
BEC is a quantum object with a mass proportional to the

numberN of atoms. Thus, it has effective @eff / 1=
ffiffiffiffi
N

p
, and

since the Ehrenfest time tE for chaotic dynamics depends
only logarithmically on @ [2,21], this time remains rather
short tE � j ln@eff j=h� ðlnNÞ=2h. Thus, for the parameters
of Fig. 4 with N ¼ 105, we have tE � 13, and the quantum
BEC should have no exponential instability of motion on a
larger time scale. Hence, in the time reversal procedure, the
real quantum BEC remains stable and reversible contrary

to the BEC described by GPE. We think that the resolution
of this paradox relies on the absence of second quantization
in GPE that makes the soliton dynamics essentially
classical.
The dimensionless nonlinear parameter is g ¼

�Na0�=4�l2?, where l? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!?

p
. Values of g � 0:1

have been achieved with a radial frequency � 800 Hz and
N � 5000 � Nmax ¼ l?=ja0j[22]. This value can be fur-
ther increased up to g � 10 by increasing !? (e.g., to
20 kHz [23]) and increasing � using a CO2-laser [24] or
crossed laser beams. Thus, experimental setups similar to
[3–5,22] can test the fundamental question of BEC time
reversal discussed here.
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[9] J. Chabé et al., arXiv:0709.4320.
[10] J. Martin et al., Phys. Rev. Lett. 100, 044106 (2008).
[11] J. Loschmidt, Sitzungsberichte der Akademie der

Wissenschaften, Wien, II 73, 128 (1876).
[12] L. Boltzmann, Sitzungsberichte der Akademie der

Wissenschaften, Wien, II 75, 67 (1877).
[13] I. P. Kornfeld et al., Ergodic Theory (Springer, N.Y.,

1982).
[14] A. Lichtenberg and M. Lieberman, Regular and Chaotic

Dynamics (Springer, N.Y., 1992).
[15] A. Derode et al., Phys. Rev. Lett. 75, 4206 (1995);

J. de Rosny et al., ibid. 84, 1693 (2000).
[16] G. Lerosey et al., Phys. Rev. Lett. 92, 193904 (2004);

Science 315, 1120 (2007).
[17] F. Dalfovo et al., Rev. Mod. Phys. 71, 463 (1999).
[18] F. Benvenuto et al., Phys. Rev. A 44, R3423 (1991).
[19] E. A. Donley et al., Nature (London) 412, 295 (2001).
[20] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61,

118 (1971) [Sov. Phys. JETP 34, 62 (1972)].
[21] T. Gorin et al., Phys. Rep. 435, 33 (2006).
[22] K. E. Strecker et al., Nature (London) 417, 150 (2002).
[23] I. Llorente-Garcia et al., J. Phys. Conf. Ser. 19, 70 (2005).
[24] S. Friebel et al., Phys. Rev. A 57, R20 (1998).

FIG. 5 (color online). Fidelity of two solitons with close initial
conditions vs time t for k ¼ 1, T ¼ 2 and different nonlineari-
ties. The initial states are solitons (3) with g ¼ 10 and initial
conditions ðx0; p0Þ ¼ ð0:5; 1:25Þ and ðx00; p0

0Þ ¼ ð0:5; 1:255Þ in-

side the chaotic domain.

PRL 101, 074102 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

15 AUGUST 2008

074102-4


