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We study analytically and numerically the ratchet transport of interacting particles induced by a
monochromatic driving in asymmetric two-dimensional structures. The ratchet flow is preserved in
the limit of strong interactions and can become even stronger compared to the non-interacting case.
The developed kinetic theory gives a good description of these two limiting regimes. The numerical
data show emergence of turbulence in the ratchet flow under certain conditions.
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I INTRODUCTION

For systems without spatial inversion symmetry the
appearance of directed flow of particles induced by a
time-periodic parameter variation with a zero-mean force
is now commonly known as the ratchet effect (see re-
views [1, 2, 3]). This phenomenon is ubiquitous in na-
ture so that such flows appear in a variety of systems
including asymmetric crystals [4, 5] and semiconductor
surfaces [6] under light radiation, vortexes in Josephson
junction arrays [7], macroporous silicon membranes [8],
microfluidic channels [9] and others. A significant in-
crease of interest to ratchets is related to the experimen-
tal progress in the investigation of molecular transport in
biological systems like proteins characterized by asymme-
try and non-equilibrium [1, 2, 3]. At the same time the
nanotechnology development allowed to fabricate artifi-
cial asymmetric nanostuctures with the two-dimensional
electron gas (2DEG) where it has been shown that in-
frared or microwave radiation creates a ratchet transport
[10, 11, 12, 13]. The theoretical studies predicted that the
directionality of ratchet flow in such systems can be con-
trolled by the polarization of radiation [14, 15, 16, 17, 18]
that has been confirmed by recent experiments with a
semi-disk Galton board for 2DEG in AlGaAs/GaAs het-
erojunctions [19].

Till present the theoretical studies of ratchet trans-
port have been done mainly for non-interacting particles
[1, 2, 3, 4, 5, 14, 18]. However, in many systems the inter-
actions between particles are of primary importance like
for example for microfluidic channels [9], 2DEG nanos-
tructures with strong electron-electron (e-e) interactions
at a large rs parameter [20], granulated materials [21] and
one-dimensional Luttinger liquids [22]. On a first glance
it seems that a strong scattering between particles should
suppress the ratchet transport. But on the other hand
the local conservation of momentum of particles indicates
that even in presence of strong interactions the ratchet
flow still should exist. The investigation of the proper-
ties of ratchet transport for interacting particles in two
dimensions is the main aim of this paper. The theory
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FIG. 1: (color online)Geometry of asymmetric scatterers ori-
ented in (x, y)-plane: cuts with elastic (left) and diffusive
(right) sides; elastic semidisks; liner-polarized force F has an-
gle θ in respect to x-axis.

developed is based on the kinetic approach used in [18]
extended to the case of strong interactions. The theory
is compared with the extensive numerical simulations of
ratchet transport of interacting particles in asymmetric
structures. The model description is given in Section II;
the analytical theory based on the kinetic equation is de-
veloped in Section III; the numerical results are presented
in Section IV and the discussion is given in Section V.

II MODEL DESCRIPTION

The interactions between particles are treated in the
frame of the mesoscopic multi-particle collision model
(MMPCM) proposed by Kapral (see e.g. [23]). This
method exactly preserves the total momentum and en-
ergy of particles colliding inside each ofNcel collision cells
on which the whole coordinate space with N particles is
divided. In this method the collisions inside cells are
modeled by rotation of all particle velocities in the mov-
ing center of mass frame of a given cell on a random angle
after a time τK . To equilibrate the whole system of in-
teracting particles in presence of external monochromatic
driving force F cosωt we use the Nosè-Hoover thermostat
[24] which drives the system to the Boltzmann equilib-
rium with a temperature T = mvT

2/2 on a relaxation
time τH . Such a combination of two methods for sys-
tems with interactions and ac-driving has been already

http://arXiv.org/abs/0808.2970v2
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FIG. 2: (color online)Polarization dependence of the average
ratchet flow vf in the flashing cuts model with (top panel) and
without (bottom panel) interactions; diamonds and circles
show numerical data for vf,x and vf,y components, curves give
the fits of data (see text). The system parameters are: N =
104, Ncel = 100×100 inside the periodic space domain R×R
with vT τH/R = 2.4, τc/τH = 0.45, τK/τH = 0.02, ωτH = 3,
FvT τc/T = 0.64 for the top panel and same parameters for
the bottom panel but τK/τH = ∞ and impurity scattering is
added with τim/τH = 0.5; total integration time is t/τH ≈
103.

used in [25]. As in [18] the asymmetry appears due to
asymmetric scatterers having form of vertical cuts with
diffusive (right) and elastic (left) sides (cuts model) or of
elastic semi-disks of radius rd (semi-disks model) placed
in a periodic square lattice of size R×R. The system ori-
entation geometry and two types of scatterers are shown
in Fig.1 (see also [18] and Fig. 5 below). In the cuts
model it is assumed that the scattering on cuts takes
place instantaneously at random moments of time which
have a Poisson distribution with time scale τc. This cor-
responds to the case of flashing cuts model (instanta-
neous appearance of cut at some moment of time) which
is slightly different from the case of static cuts randomly
distributed in the plane (both cases were discussed in
[18]). As in [18], in absence of interactions an effective
impurity scattering is added with the scattering time τim.
The monochromatic force is polarized as it is shown in
Fig. 1 with F = F (cos θ, sin θ). Here, we present numeri-
cal results only for the semidisks model and the flashing
cuts model, which is rather convenient for numerical sim-
ulations, but in the analytical treatment we also consider
the static cuts model.

The results of numerical simulations for the polariza-
tion dependence of the ratchet flow in the flashing cuts
model are shown in Fig. 2. In absence of interactions
the results are well described by the theory [18] with the
fit dependence vf/vT = b(− cos(2θ), 2 sin(2θ))/2 where
b = 0.0064(FvTτc/T )2 ≈ 0.8bth and bth is the theory
value (see Eqs.(9),(41) in [18]). For interacting particles
the fit gives the dependence vf/vT = bint(−a1 cos2 θ +
a2 sin2 θ, sin(2θ)) with bint/b = 2.7 and a1 = 0.10, a2 =
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FIG. 3: (color online) Same as in Fig. 2 for the semi-disk
model with R/rd = 4, Frd/T = 0.15, ωτH = 1, effective
τc/τH ≈ R2/(2rdvT τH) = 0.85, other parameters are as in
Fig. 2.

0.29. In presence of interactions the ratchet flow appears
even after polarization averaging. The results for the
semi-disks model are shown in Fig. 3. Without interac-
tions the data are satisfactory described by the theoret-
ical dependence vf/vT = b(− cos(2θ), sin(2θ)) with the
fitting value b = 0.24(Frd/T )2 ≈ 0.4bth and the theoret-
ical value bth of [18] (see Eq.(42) and discussion there).
In presence of interactions the polarization dependence
of the flow is qualitatively changed: the component vy is
enhanced by a factor 8 and vx remains negative for all θ
showing signature of 4th θ−harmonic (Fig. 3, top panel,
curves are drown to adapt an eye).

III ANALYTICAL THEORY

The numerical simulations are based on the dynamical
description of motions of many interacting particles. To
obtain an analytical description of the ratchet transport
we use the kinetic equation approach valid for systems
with developed chaos and rapid decay of correlations.
The validity of the kinetic equation requires rare colli-
sions with asymmetric scatterers (antidots) and random-
ness of scattering events. Under such conditions the ki-
netic equation can be applied for comparative study with
the numerical data even if the numerical simulations are
done for a deterministic system with a periodic lattice of
semi-disks of relatively large size.

The symmetry of the system determines the ratchet
flow which mean velocity vf is quadratic in the ampli-
tude of the ac-force F(t) = Re(Fe−iωt). Therefore, the
flow velocity can be described by the phenomenological
expressions

vf,x = αxxx|Fx|2 + αxyy|Fy|2, vf,y = 2Re(αyxyFxF
∗
y ).
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The tensor components αxxx, αxyy and Re(αyxy) de-
termine the response produced by a linear-polarized
monochromatic force (ImF = 0). In absence of inter-
actions (see [18]), for the linear polarization along x or y
axes the mean flow is directed along x-axis; the current
in y direction appears for tilted linear-polarized force.

We also note that for the elliptically-polarized force
with ImF 6= 0 there exists also a circular ratchet effect
determined by the product of Im(αyyx) and Im(FxF

∗
y )

but we will not consider this effect here.

Kinetic equation

The kinetic equation in the momentum space p reads

∂f

∂t
+ F(t)

∂f

∂p
= Î(f). (1)

where in the case of microwave field, E(t) is the electric
field E(t) interacting with electron gas F(t) = eE(t), e is
the electron charge. The collision operator Î = Îel + Îee

contains the operator of elastic collisions (including im-
purities and scatterers (or antidots)) Îel and interparticle
(electron-electron or e-e) collisions Îee.

The integral of elastic collisions with scatterers and
static impurities reads as

Îel(fp) =
∑

p′

Qpp′fp′ =
∑

p′

[W (p′,p)fp′ −W (p,p′)fp],

(2)
where Qpp′ is the kernel of the operator Îel and W (p′,p)
is the probability of the transition from p′ to p.

The interparticle collisions operator (e-e) operator is

Îee(f) =
2π

S2

∑

p1,p′,p′

1

δp+p1,p′+p′

1
(3)

× δ(ǫp + ǫp1 − ǫp′ − ǫp′

1
)u2

p−p′

×
{

fp′fp′

1
(1 − fp)(1 − fp1) − fpfp1(1 − fp′)(1 − fp′

1
)
}

.

Here S is the sample area, uk is the Fourier transform of
e-e-interactions.

Interparticle collisions satisfy the conservation of the
total momentum of gas. Due to the Galileo invariance the
action of the collision integral on the equilibrium distri-

bution function with shifted argument Îeef
(0)
p+a vanishes

for any a. Expanding by a we have:

Îee(f
(0)
p ) = 0, Î ′ee(a∂pf

(0)) = 0,

Î ′′ee(a∂pf
(0) ∗ a∂p′f (0)) + Î ′ee(aiaj∂

2
pi,pj

f (0)) = 0. (4)

We use the following notations for the first and the second
variations around equilibrium: δÎee(f) = Î ′ee(δf) (linear
operator), δ2Îee(f) = Î ′′ee(δf ∗ δf) (bi-linear operator, as-
terisk denotes integration with two functions of different
arguments).

The ratchet flow is generated by the anisotropy of col-
lisions. This anisotropy is constructed artificially due to
asymmetric form of oriented scatterers. As theoretical
models we considered cases of fixed oriented anisotropic
scatterers, namely cuts and semidisks. The model of
static cuts is analytically solvable [18] but has a disad-
vantage since it leads to a divergence due to electrons
moving along the mirrors. Even if this divergence can
be regularized by an isotropic impurity scattering such a
property is not very convenient. Due to that it is useful to
use a modified model of flashing cuts which does not have
such divergence. In this model at any moment a particle
can meet a scatterer with a constant probability indepen-
dent of its velocity and direction of motion; after collision
the particle equi-probably scatters into any angle of the
right semicircle if it collides from the right semicircle and
is mirror-reflected if it collides from left semicircle (see
Fig.1). Such a model of flashing cuts gives a significant
simplification for analytical and numerical studies.

The corresponding transition probability in these mod-
els are given by (see also [18]):

W (p′,p) =
4π2

mS
w(ϕ′, ϕ)δ(εp − εp′); (5)

with

w(ϕ′, ϕ) =
1

τc

[

cosϕ′ θ(cosϕ′)δ(ϕ′ + ϕ− π) (6)

− 1

2
cosϕ′ cosϕ θ(cosϕ)θ(− cosϕ′)

]

(static cuts),

w(ϕ′, ϕ) =
1

τc

[

cosϕ′ θ(cosϕ′)δ(ϕ′ + ϕ− π)+

1

4
| sin (

ϕ− ϕ′

2
)|[θ(ϕ− ϕ′)θ(−ϕ− ϕ′) (7)

+ θ(ϕ′ − ϕ)θ(ϕ + ϕ′)]
]

(semi-disks),

w(ϕ′, ϕ) =
1

τc
[θ(cosϕ′)δ(ϕ′ + ϕ− π)+

1

π
θ(cosϕ)θ(− cosϕ′)] (flashing cuts). (8)

Here ϕ is the polar angle of electron momentum (−π <
ϕ < π), τc(ε) is the characteristic scattering time on
asymmetric scatterers, θ(x) is the Heaviside function.

Linear response

We consider the limit of high rate of interparticle scat-
tering exceeding the rate of elastic collisions. At the same
time the interactions preserve the total momentum and
in isotropic media do not affect the momentum relax-
ation. This is not the case for an anisotropic medium
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where the interactions indirectly lead to the momentum
relaxation due to the conversion of the first angular har-
monic of the distribution function fp to higher harmonics
produced by the anisotropic scattering. In particular, it
is generally excepted that in an isotropic medium with
closed Fermi surface the e-e scattering does not affect
the conductivity. Nevertheless, in the considered case
of anisotropic medium e-e collisions indirectly affect the
momentum relaxation rate. This action is realized due
to the conversion of the first angular harmonics of the
distribution function to higher harmonics produced by
the anisotropic scattering. As a result, the conductiv-
ity becomes temperature dependent in the temperature
range when the e-e relaxation time is comparable with
the elastic relaxation time.

At first we consider the linear response to the electric
field using the expansion f = f (0) + f (1) + f (2) + ... in
small driving force F . The linearized kinetic equation

can be written in the form (f (1)(t) = Re(f
(1)
ω eiωt)):

− iωf (1)
ω + Fω∂pf

(0) = Î(1)(f (1)
ω ), (9)

where the collision operator contains the elastic collisions
with anisotropic scatterers determined by Îel and inter-
particle or e-e collisions determined by Î ′ee:

Î(1) = Îel + Î ′ee (10)

The formal solution of Eq.(9) in the first order of alter-
nating force is

f (1)
ω = (iω + Î(1))−1(Fω∂p)f (0). (11)

In the case of weak e-e interaction Î ′ee can be canceled.
In the opposite limit of strong e-e scattering the formal
parameter describing Îee is large. Having in mind Eq. (4)
we see that the inverse operator (ω+Î(1))−1 can be found
by a projection on the subspace of the Hilbert space of

the basis functions ψi = ∂f(0)

∂pi
/||∂f(0)

∂pi
|| corresponding to

zero eigenvalue of the operator Î ′ee. Thus the operator
Îel is replaced by its projection, while Î ′ee can be can-
celed. The resulting tensor of conductivity of e-charged
particles with density ne reads

σij(ω) =
e2ne

m

τi
1 − iωτi

δij , (12)

where τi are relaxation times of the first harmonics of the
distribution function related with the projected operator
of elastic collisions:

1

τi
= −

∑

p,p′

ψi(p)Qpp′ψi(p
′). (13)

Here in τi index i is axis index (x or y). For the consid-
ered systems from the relations (6)-(8) we have τi = τ̄c/ai

and

ax =
π

8
+

4

π
, ay =

2

3π
(for static cuts),

ax =
2

3
+

8

3π
, ay =

2

3
(for semi-disks),

ax =
3

2
+

4

π2
, ay =

1

2
(for flashing cuts). (14)

The quantity τ̄c is determined by gas statistics:

1

τ̄c
=

∫ ∞

0
dε(f (0)′)2(ε/τc(ε))
∫ ∞

0 dεε(f (0)′)2
,

where prime notes the derivative over the energy ǫ.
In the case of static cuts or semi-disks 1/τc(ε) ∝ εs

with s = 1/2. So one can write τ̄c = τc(εF ) (strongly
degenerate Fermi case) and τ̄c = 4

√

2/πτc(T )/3 (Boltz-
mann case); s = 1/2 for fixed obstacles and s = 0 for
flashing cuts (in this case τc(ε) = const).

The physical origin of Eqs. (12) and (13) is a very
quick relaxation of higher angular momenta harmonics
as compared to the first harmonic relaxation. As a re-
sult the conductivity has different values at low temper-
ature, when τee ≫ τel and at high temperature when
τee ≪ τel. In both limits the conductivity does not de-
pend on e-e interaction, but has different values. In the
case of the Fermi distribution the conductivity changes
from low temperature value where τee ≫ τel to high tem-
perature value where τee ≪ τel. We should emphasize
that the transition between these two values is ruled by
the ratio τee/τel rather than by the ratio of temperature
T to the Fermi energy EF . The transition temperature
T0 can be estimated by equating e-e relaxation time to
the relaxation time given by elastic scattering. In clean
samples with high mobility the transition corresponds to
a rather low temperature T0 ∼ EF /α

√

λF /lp, where
α = (e∗)2/~vF is the dimensionless e-e interaction con-
stant, λF and vF are the Fermi wavelength and veloc-
ity lp is the elastic mean free path. For EF = 0.01eV ,
λF ≈ 10nm, α = 0.5, lp ∼ 10−4 cm, T0 ∼ 10K.

From Eq.(12) one can write the expression for ratio of
static conductivities σyy/σxx:

σyy/σxx = τy/τx = ax/ay. (15)

In case of flashing cuts this ratio is equal to 3 + 8/π2 ≈
3.81 (see Eq. (14)). For such scatterers the problem of
linear conductivity is solved exactly also in the limit of
absence of e-e interaction (see e.g. [18]). Using Eq.(8), we
find σii = nee

2τcbi/m, bx = 1/2, by = 3/2. Thus, in this
case σyy/σxx = 3. Hence, for example, for this flashing
cuts model the ratio σyy/σxx = 3 is changed significantly
when the temperature is changed from T < T0 to T > T0.

Quadratic response

The stationary ratchet flow appears in the second order
of ac-force F . In this case we can operate in a similar
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way as before. The nonlinearity occurs due to the field
term in the kinetic equation and nonlinear e-e collision
operator:

∂tf
(2) − (Îel + Î ′ee)(f

(2)) =

−(F(t)∂p)f (1) + Î ′′ee(f
(1) ∗ f (1)). (16)

The projection of anisotropic elastic collision opera-
tor onto the vector functions kills the third rank ten-
sor needed for photogalvanic current. So inclusion of
anisotropy should be done a bit more accurately. In short
the stationary ratchet current is generated in a follow-
ing way. The oscillating distribution function with vec-
tor anisotropy is converted by nonlinear e-e interactions
to the static second angular harmonics which in turn is
partially suppressed by linear e-e interactions and then is
transformed to the static vector anisotropy by anisotropic
elastic collisions. The main contribution to the station-
ary flow reads

ji =
1

S
Re

∑

p

viÎ
−1Î(−)Î−1Î(2)

ee (f
(1)
−ω ∗ f (1)

ω ), (17)

The Eq.(17) has simplified form in accordance with the
smallness of the elastic antisymmetric operator Î(−) as
compared with the inelastic scattering (Î(−) obligatory
contains higher angular harmonics). The subsequent sim-
plifications include: the substitution of Î ′ee instead of Î ′′ee,
according Eq. (4); use of the fact that inverse operators
Î−1 do not contain antisymmetric operators; the cancel-

lation of Î−1Î
(1)
ee acting on the second angular harmon-

ics; the replacement of the left operator Î−1 (taking into
account summation with vi) by the inverse projected op-
erator. As a result, we arrive at

vf,i = −1

2
C

∑

j,k

ajkiτiRe(τωjτ
∗
ωkFωjF

∗
ωk). (18)

Here ε = mv2/2 is the particle energy, aijk =<

vivj Î
(−)vk > τc/v

3 is a numerical tensor, characterizing
the asymmetry of scatterers (< ... > stands for average
over angles in the momentum space), prime again means
the derivative over particle energy, 1/τωi = −iω + 1/τi.
For the specific cases of our models we obtain

axxx =
1

48
, axyy = − 1

16
(for static cuts), (19)

axxx = −axyy =
1

12
, (for semi-disks),

axxx =
1

6π
, axyy = − 1

3π
, (for flashing cuts).

For C we have:

C =

∫ ∞

0 dε(f (0)′)2(v3/τc)
′

∫ ∞

0 dεε(f (0)′)2
.

In the case of static cuts or semi-disks C = (3/2 +
s)v3

F /(τc(εF )ε2F ) (strongly degenerate Fermi case) and

C = 2ds(3/2 + s)/(21/2+smτc(T )
√
mT ) (Boltzmann

case); s = 1/2, ds = 1 for fixed obstacles and s = 0, d0 =√
π/2 for flashing cuts (in this case τc(ε) = const).
To compare with results of numerical calculations it is

convenient to write expressions for ratchet velocity com-
ponents. For the linear polarization of monochromatic
force we obtain

vfx/vT = −B(FvT τ̄c/T )2axxx×
[cos2 θ/(a3

x(1 + ω2τ2
x)) − sin2 θ/(axa

2
y(1 + ω2τ2

y ))]

vfy/vT = −B(FvT τ̄c/T )2axyy×
sin(2θ)(1 + ω2τxτy)/(axa

2
y(1 + ω2τ2

x)(1 + ω2τ2
y )) , (20)

where B = CT 2τ̄c/2v
3
T and we remind that τi = τ̄c/ai.

For the flashing cuts model we have τc = τ̄c, axxx =
1/6π, axyy = −1/3π, ax = 3/2 + 4/π2, ay = 1/2,

C = 2
√
π/(2mτc

√
2mT ), τc = const and for the semi-

disks model axxx = −axyy = 1/12, ax = 2/3 + 8/3π,

ay = 2/3, C = 2/(mτ̄c
√
mT ), τ̄c ∝ T−1/2. Here we give

the results for the Boltzmann distribution f (0), but sim-
ilar calculations work for other f (0), e.g. for the Fermi-
Dirac distribution. We also give a simplified derivation
of the ratchet flow in the Appendix. It is based on the
local equilibrium distribution and give the same results
as Eqs. (20).

The opposite limit in absence e-e interactions was ana-
lytically studied for the cases of static cuts [16] (exactly)
and approximately, for weak anisotropy, for static cuts
or semi-disks [18]. It is important to emphasize that in
both limits of weak and strong e-e interactions the cur-
rent does not contain the strength of interactions. The
transition between the regimes occurs when the interpar-
ticle scattering rate becomes comparable with the rate
elastic scattering on anti-dots and impurities.

IV NUMERICAL RESULTS

For the flashing cuts model the theory (20) gives a
good description of numerical data (see Fig. 4). For the
semi-disks model the agreement between the theory and
numerical simulations (Fig. 3, top) is less accurate, e.g.
4th θ-harmonic for vf,x is absent in (20). To understand
the origins of this difference we present the map of local
flow velocities at various polarizations θ in Fig. 5. For
θ = 0 the results clearly show the appearance of turbu-
lent flow with two vertexes behind the semi-disk. When
the interaction scattering time τK is increased by a factor
25 the interaction and turbulence practically disappear
and the average local flow becomes laminar (see Fig. 5
top left and bottom right panels). At the same time even
with strong interactions the flow has much more laminar
structure for θ = π/4 (Fig. 5, top right panel) when the
absolute value of the total ratchet velocity has its max-
imal value (see Fig. 3 top panel). Thus the ratchet flow
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FIG. 4: (Color online) Comparison between theory (20) (full
curves, no adjustable parameters) and numerical data for in-
teracting particles in the flashing cuts model (symbols); circles
are for vf,x and θ = π/2 (here vf,x > 0), diamonds are for
|vfx| and θ = 0 (here vf,x < 0 and we use the absolute value
of vf,x in the ratio vf,x/vf,y(π/4)); vf,y is taken at θ = π/4;
other parameters are as in Fig. 2, top panel.
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FIG. 5: (Color online) Map of local averaged velocities in
(x/R, y/R) plane of the semi-disks model for parameters of
Fig. 3 (top panel) at θ = 0 (top left); θ = π/4 (top right); θ =
π/2 (bottom left); θ = 0 and 25 times increased interaction
time compared to other panels (τK/τH = 0.5, τKvT /rd = 4.7
point in Fig. 6). The velocities are shown by arrows which
size is proportional to the velocity amplitude, which is also
indicated by color (from yellow/gray for large to blue/black
for small amplitudes).

of interacting particles has certain similarities with a hy-
drodynamic flow of the Navier-Stocks equation around
semi-disk body [26]. However, for θ = π/2 the ratchet
flow is composed from two alternative flows moving in
opposite directions at the cell boundaries and the semi-
disk center (Fig. 5, bottom left panel), such a rather flow

0.1 1 10
  V   / r

-0.04

-0.02

0

0.02

0.04

0.06

0.08

v 
 / 

V

τ TK

T
f

d

FIG. 6: (color online) Dependence of the ratchet velocity vf

on the Kapral interaction scattering time τK in the semi-disk
model, numerical data are shown by symbols: vf,y/vT (red
circles) and vf,x/vT (yellow diamonds) for θ = π/4; vf,x/vT

(violet squares) for θ = 0; vf,x/vT (blue triangles) for θ = π/2;
other parameters are as in Fig. 3, top panel, curves are drown
to adapt an eye.

is different from hydrodynamic flows with fixed velocity
far from the body. For a qualitative description of the
turbulent flow we may argue that the turbulence leads
to a difference of pressures on different sides of the scat-
terer producing different resistances for different flow di-
rections. This generates the ratchet flow for the ac-force
driving. In general the kinetic description is applicable
when the interaction scattering length is large compared
to the scatterer size, e.g. vT τK > rd for semi-disks. At
small values of τK this condition is broken (Figs. 3,5)
and we have transition to the hydrodynamic like regime
where the theory (20) gives only approximate descrip-
tion. For the flashing cuts model the kinetic description
remains always valid since the size of scatterer is zero.

The dependence of the ratchet velocity on the interac-
tion scattering time τK is shown in Fig. 6. The increase
of interactions (small τK) can change the sign of the flow
in x-direction that is in a qualitative agreement with the
theory (20). For weak interactions the flows are oppo-
site in x for polarization θ = 0 and θ = π/2 while at
strong interactions they are collinear. Thus in 2DEG
in AlGaAs/GaAs heterojunctions where interactions are
relatively weak (rs ∼ 1) the flows are opposite for two
polarizations in agreement with the experiment [19], but
for other materials with stronger interactions (e.g. SiGe
with rs ≈ 6) the flows may become collinear. We also
note that at strong interactions the rescaled ratchet char-
acteristics are not sensible to the temperature variation
that indicates that we have an effective liquid flow with
temperature independent viscosity.
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V DISCUSSION

In conclusion, our extensive numerical simulations
show that even in the regime of strong interactions
between particles a stationary ratchet flow is gener-
ated by monochromatic driving in the asymmetric pe-
riodic arrays. The obtained result are well described by
the analytical theory based on the kinetic equation for
strongly interacting particles. It is interesting to note
that for asymmetric arrays the tensor of conductivity be-
comes temperature dependent due to interplay of inter-
actions and relaxation of high momentum harmonics (see
Eq. (15) and discussion there). It would be interesting to
investigate the effects of interactions on ratchet transport
in experiments similar to those of [19].

This research is supported in part by the ANR projects
MICONANO and NANOTERRA (France) and RFBR
NN 08-02-00152-a, 08-02-00506-a (Russian Federation).

APPENDIX

Here, on the example of the flashing cuts model we give
a more simple and heuristic derivation of the ratchet flow
compared to the exact kinetic equation approach (1). In
the regime of very strong interactions we can assume that
the ensemble of particles is in a local equilibrium state
and hence the distribution function can be written as

f(v, t) = f0(v − v0(t)) (A-1)

where v0(t) is the instantaneous velocity of the center
of mass. We put here the particle mass m = 1. It is
assumed that the interactions give rapid relaxation to the
local equilibrium distribution f0(v − v0(t)). The matrix
of conductivity can be determined from the momentum
balance between acceleration created by a small applied
static force F and momentum loss on the asymmetric cut
scatterer:

dp

dt
= F− 1

τc
(< Vc(v)f0(v − v0) > −v0) = 0 , (A-2)

where Vc(v) is the vector of average velocity after a scat-
tering with the incident velocity v. It is expressed via the
scattering probabilityW (v′,v) (see the main text above)
as Vc(v) =

∫

dv′W (v′,v)v′. This gives the relation

< Vc(v)f0(v − v0) >= (A-3)
∫

dv

(

2|v|θ(−vx)
π − vx θ(vx)
vyθ(vx)

)

f0(v − v0)

where θ(v) is the Heaviside function. In the linear re-
sponse regime we can expand in v0 that gives f0(v −
v0) = f0(v) + f0(v)vv0

T + ... . After integrating over the

Maxwell distribution f0(v) we obtain

< Vc(v)f0(v − v0) >= (A-4)
∫

dv

(

2|v|θ(−vx)
π − vx θ(vx)
vyθ(vx)

)

f0(v)
vv0

T

=

(

− 8+π2

2π2 v0,x
1
2v0,y

)

where v0 is the velocity of the stationary flow. Then the
moment balance gives

(

v0,x

v0,y

)

= τc

(

2π2

8+3π2Fx

2Fy

)

(A-5)

and therefore σyy/σxx = τy/τx = ax/ay = 3 + 8/π2 that
is in agreement with the kinetic theory result given in the
main text. It is interesting to note that for the noninter-
acting particles we have σyy/σxx = 3 (see [18]).

To compute the ratchet flow we should expand the lo-
cal velocity in Eq. (A-1) up to the second order in the
driving force F : v0(t) = τ̂iF(t) + vf , vf = O(F 2) where
τi are the above values τx, τy given by the linear response;
we note that second frequency harmonics e±i2ωt are elim-
inated by the time averaging. Then the time averaged
distribution function is

f(v) =< f(v, t) >t= (A-6)

f0(v) + f0(v)
vvF

T
+

(vτ̂iF)2 − T (τ̂iF)2

4T 2
f0(v)

where f0(v) = 1
Z exp(− v2

2T ) is the Maxwell distribution
and vF is the average ratchet flow velocity. Again, the
time averaged momentum balance equation reads

(< Vc(v)f(v) > −vf ) = 0 . (A-7)

Using Eq. (A-7) we obtain from the second term the
contribution < Vc(v)f0(v)vvF

T >= ((1 − ax)vfx, (1 −
ay)vfy) which is similar to the linear response term.
The integration of the third Gaussian term gives
the additional contribution (F 2/8

√
2πT )[(−τ2

x cos2 θ +
τ2
y sin2 θ), 2τxτy sin(2θ)]. Finally we obtain

(

vfx

vfy

)

=
F 2

8τc
√

2πT

(

−τ3
x cos2 θ + τxτ

2
y sin2 θ

2τxτ
2
y sin(2θ)

)

(A-8)

For ω → 0 these expressions are in agreement with
Eqs. (20) obtained by the kinetic equation theory.

[1] F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69,
1269 (1997).

[2] P. Reimann, Phys. Rep. 361, 57 (2002).
[3] P. Hänggi, and F. Marchesoni, arXiv:0807.1283[cond-

mat] Rev. Mod. Phys. to appear (2008).



8

[4] E. M. Baskin, L. I. Magarill, M. V. Entin, Sov. Phys.-
Solid State 20, 1403 (1978) [Fiz. Tver. Tela 20, 2432
(1978)].

[5] V. I. Belinicher, B. I. Sturman, Sov. Phys. Usp. 23, 199
(1980) [Usp. Fiz. Nauk 130, 415 (1980)].

[6] V.L.Alperovich, V. I. Belinicher, V. N. Novikov, and
A. S. Terekhov, JETP Lett. 31, 546 (1980).

[7] J.B. Majer, J. Peguiron, M. Grifoni, M. Tusveld, and
J.E. Mooij, Phys. Rev. Lett. 90, 056802 (2003); A. V.
Ustinov, C. Coqui, A. Kemp, Y. Zolotaryuk, and M.
Salerno, Phys. Rev. Lett. 93, 087001 (2004).

[8] S. Matthias and F. Müller, Nature 424, 53 (2003).
[9] V. Studer, A. Pepin, Y. Chen, and A. Ajdari, Analyst

129, 944 (2004).
[10] A. Lorke, S. Wimmer, B. Jager, J.P. Kotthaus,

W. Wegscheider, and M. Bichler, Physica B 249-251,
312 (1998).

[11] H. Linke, T.E. Humphrey, A. Löfgren, A.O. Sushkov,
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