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Synchronization mechanism of sharp edges in rings of Saturn
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ABSTRACT
We propose a new mechanism which explains the existence of enormously sharp edges in
the rings of Saturn. This mechanism is based on the synchronization phenomenon due to
which the epicycle rotational phases of particles in the ring, under certain conditions, become
synchronized with the phase of external satellite, e.g. with the phase of Mimas in the case
of the outer B ring edge. This synchronization eliminates collisions between particles and
suppresses the diffusion induced by collisions by orders of magnitude. The minimum of the
diffusion is reached at the centre of the synchronization regime corresponding to the ratio
2:1 between the orbital frequency at the edge of B ring and the orbital frequency of Mimas.
The synchronization theory gives the sharpness of the edge in a few tens of meters that is in
agreement with available observations.
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1 IN T RO D U C T I O N

Together with very small thickness, extreme sharp edges in rings
of Saturn are one of the most outstanding features of planetary
rings (see e.g. Borderis, Goldreich & Tremaine 1982; Fridman
& Gorkavyi 1999; Esposito 2002, 2006). Indeed, for example,
the outer B ring edge has a density drop by an order of mag-
nitude on a distance re ∼ 10 m that is enormously sharp com-
pared to the edge distance to Saturn (117 580 km), the B ring width
(25 580 km) and the width of Cassini division (4620 km). This is
especially surprising since the lifetime of the rings is enormously
large being of about 1012 orbital periods (Fridman & Gorkavyi
1999) and the particles inside the B ring are quite dense (e.g. there
are particles of size 10 m down to 1 cm and smaller with a distance
between them of about a few meters and less; Fridman & Gorkavyi
1999; Esposito 2002, 2006; Spahn & Schmidt 2006). Due to this,
about 10–100 collisions between particles per orbit should wash out
all sharp density contrasts in only a few orbital periods.

In many cases, and perhaps always, these sharp edges are associ-
ated with the gravitational perturbation by a moon inside or outside
the rings. The abruptness of the transition from nearly opaque to
practically transparent regions was constrained by the Voyager Pho-
topolarimeter data (Lane et al. 1982) to be smaller than about 100 m.
Cassini Ultraviolet Imaging Spectrograph occultation profiles show
edges sharper than tens of meters, and in fact the assumption of a
knife-edge sharpness is used to constrain the local ring thickness
near the edge to be of the order of 5 m only (Colwell et al. 2008;
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Colwell et al., in preparation; ring thickness and sharpness of the
edge should be of the same order).

After the pioneering work of Wisdom & Tremaine (1988), ex-
tensive numerical simulations of particle dynamics have been per-
formed by different groups (see e.g. Salo 1995; Lewis & Stewart
2000; Seiss et al. 2005; Charnoz et al. 2007; Sremcevic et al. 2007)
that allowed us to establish a number of interesting properties of ring
dynamics. However, the problem of sharp ring edges still remains a
mystery. Its solution requires extensive large-scale numerical sim-
ulations with particles of different scales, it may also require to
go beyond local box simulations invented by Wisdom & Tremaine
(1988). In view of these difficulties, it seems to be useful to ex-
plore certain simplified models that bring to surface new qualitative
physical effects which can be analysed more directly due to model
simplicity. Here, we introduce such a simplified model of ring dy-
namics for outer B ring edge called the SYNC (from SYNChroniza-
tion) model in the following. Numerical investigations of this model
show a striking phenomenon of synchronization of the epicycle mo-
tions of particles in the ring induced, under certain conditions, by
a periodical gravitational force of Mimas. In a general context, the
synchronization phenomenon, which has abundant manifestations
in science, nature, engineering and social life (Pikovsky, Rosenblum
& Kurths 2001; Strogatz 2003), can be roughly described as an ad-
justment of frequencies and phases of oscillators due to interaction
and/or forcing. In the present context, the phases of the epicycle
rotation of various particles become synchronized with the phase
of periodic gravitational force of Mimas, and as a result the colli-
sions between particles become suppressed by orders of magnitude
so that the diffusion in the ring also becomes suppressed by or-
ders of magnitude. This leads to a maintenance of sharp edges
in a certain frequency range of ratios of epicycle frequency �

to the Mimas frequency ω. We note that the data of the Cassini
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mission show that the outer B ring edge has the frequency �B

which is very close to 2 : 1 resonance with Mimas frequency ω,
actually (�B − �S)/2ω = �B/2ω − 1 ∼ 10−5–10−4 that corre-
sponds to the accuracy in coordinate position of about 1 to 10 km.
Thus, �B is located directly in the middle of the synchronization
Arnold tongue where the synchronization effects are the strongest.
As a notable remark, we mention that it was Christiaan Huygens
who discovered both the Saturn’s rings (see e.g. references in book
Fridman & Gorkavyi 1999) and the synchronization phenomenon
(see e.g. references in book Pikovsky et al. 2001).

The paper is composed as follows: the SYNC model of dynamics
in the ring is described in Section 2 (with additional details given in
Appendix A, B); the numerical and analytical results are presented
in Section 3; the discussion of the results is given in Section 4.

2 D E S C R I P T I O N O F TH E S Y N C M O D E L
O F R I N G DY NA M I C S

The SYNC model of the ring dynamics is based on the four main
ingredients:

(i) the individual particle dynamics are given by the Hill equa-
tions and are considered in a local box as proposed by Wisdom
& Tremaine (1988), the particles are assumed to be identical, the
dynamics are considered only in the two-dimensional plane of the
ring;

(ii) the gravitational force of Mimas is considered as a sequence
of periodic kicks of fixed amplitude;

(iii) the collisions between particles are treated on the basis of
the mesoscopic multiparticle collision model proposed by Kapral
(see e.g. Malevanets & Kapral 2004) and

(iv) the total energy balance [the process where the injection of
energy provided by the shear flow (Wisdom & Tremaine 1988) and
the gravitational force of Mimas is equilibrated by dissipation] is
ensured via the Nosè–Hoover thermostat which is broadly used in
molecular dynamics simulations of large ensembles of interacting
particles (see e.g. Hoover 1999; Rateitschak, Klages & Hoover
2000; Hoover et al. 2004).

Let us now describe the elements of the model in more details.

(i) The Hill equations of motion inside a local box (Wisdom &
Tremaine 1988) are

ẋ = vx, ẏ = vy + Vs, v̇x = 2�vy + Fx(t)/mp,

v̇y = −�vx/2; Vs = −3�x/2, (1)

where � =
√

GMSaturn/a
3
0 is the Kepler frequency of a particle of

mass mp, Vs is the Kepler shear velocity, Fx(t) is the gravitational
force of Mimas along axis x directed to Saturn. Here, vx, vy are
velocities of local motion in the presence of the shear flow. With
GMSaturn = 3.79 × 1016 m3 s−2 and the radius a0 = 1.17 × 108 m,
we have at the edge of B ring � = �S = 1.52 × 10−4 s−1. We
normalize all velocities by a typical value of epicycle velocity vep =
0.005 m s−1 that gives us equations of motion in a dimensionless
form. After that, the distance is measured in units of a typical
epicycle radius rs = vep/�S = 32.7 m and time t is replaced by
�St . The local box has the periodic boundary conditions as those
used by Wisdom & Tremaine (1988). The size of the box is usually
taken as a square S = 5rs × 5rs. In presence of the Nosè–Hoover
thermostat [see (iv)] and the shear flow, we found convenient to
use the Hamiltonian form of the Hill equations as it is described by
Stewart (1991). In this formulation, the Hamiltonian of the epicycle

motion has the form Hep = �I = (v2
x + v2

y)/2 where I is the action
of the oscillator motion. More details are given in Appendix A.

(ii) The computation of the field strength Fx is described in
Appendix B. Because Mimas passes the local box rather fast, the
force in dimensionless units has a form of periodic delta function
f (t) = Fx(t)/(mpvep) = ε

∑
l δ(t − lτM) with the period τM defined

by the dimensionless orbital period of Mimas τM = 2π�S/ω and
dimensionless kick strength ε = 0.64 corresponding to the fixed
choice of the typical epicycle velocity vep = 0.005 m s−1. The force
in y-direction is neglected since it is much smaller compared to the
force in x-direction and gives a small change of vy compared to the
shear velocity.

(iii) The collisions of particles are performed according to the
Kapral algorithm (Malevanets & Kapral 2004). Namely, the whole
local box S is divided on Ncel cells. Usually, we use about 100 ×
100 cells with the total number of particles N = 1000 corresponding
to Nep = πr2

s N/S ≈ 125 particles inside one epicycle circle and
the particle density in a cell being 0.1. After a time τK, the relative
velocities (with respect to the motion of the centre of mass of
the cell) of all particles in a given cell are rotated by a random
angle. In this way, the total momentum and energy inside a given
cell are preserved while the directions of the velocities become
mixed. It is important to note that during the collision the velocities
inside the cell are taken as the total physical velocities of particles,
namely ẋ, ẏ including the shear velocity. Thus, due to a finite size of
the Kapral cells, the shear velocity always generates the appearance
of a spreading of local velocities vx, vy: even if vx and vy of two
particles coincide before the ‘collision’, this is not true for the
total velocities ẋ, ẏ, and random rotation of the latter leads to the
appearance of non-equal vx, vy. In a certain sense, the finite size
of Kapral cells physically acts as a finite size of colliding bodies.
Usually, we used τK = 0.5/�S but the variation of this parameter
did not affect the main results.

(iv) In the presence of collisions, the shear flow and the driving
Mimas force inject additional energy in the system, that is dissipated
via different mechanisms, including non-elasticity of collisions, in-
teractions with dust, etc. In our simplified model, to keep the energy
balance, we use the NosNosèe–Hoover thermostat which is com-
monly used for molecular dynamics simulations of interacting par-
ticles, also in presence of external fields (Hoover 1999; Rateitschak,
Klages & Hoover 2000; Hoover et al. 2004; Chepelianskii, Pikovsky
& Shepelyansky 2007). In this thermostat, which mimics a canoni-
cal ensemble, an additional friction force acts on a particle i accord-
ing to

ṗi = Fi − γ pi , q̇ i = pi , γ̇ = [〈 p2〉/(2mpT ) − 1]/τH
2, (2)

where pi and q i are the momentum and coordinate of particle i, Fi

is an effective ‘friction’ force acting on a particle due to collisions
and external fields, τH is the relaxation time in the NH thermostat
[usually, we used �SτH = 16 but we also checked that the vari-
ation of τH does not affect the synchronization phenomenon (see
examples below)] and 〈 p2〉 means the average over all N particles,
T = mpv2

ep/2 is a given temperature of the thermostat. One can
see that the ‘friction’ changes the sign with γ , and the variable γ

is driven by the deviations of the mean kinetic energy from that at
the given temperature T , in this way the system is kept near this
temperature as it should be for the canonical ensemble.

For the Hamiltonian form of the Hill equations, the friction acts
only on the action variable that gives in dimensionless variables
İi = −γ Ii, γ̇ = (〈I〉 − 1)/τH

2, where 〈I〉 means the averaging
over all N particles (see Appendix A). The physical origin of the
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appearance of such an effective friction can be attributed to an
average friction force acting on a relatively large particle as a result
of multiple collisions with a dust of small size particles.

In a ring with extended size distribution, the smaller particles have
in equilibrium generally larger dispersion velocities (Salo 1992).
Since the collisions are inelastic, the system does, however, not
assume a state of energy equipartition. Typically, the dispersion
velocity of the smallest particles is by a factor of several larger than
the one of the largest particles, depending mildly on the width of
the size distribution and the inelasticity of the particles.

At opposition, the perturbing moon induces an equal excess ve-
locity 	vx to all ring particles, regardless of their size. This means
that compared to collisional equilibrium the large particles have
now a higher excess in random kinetic energy than the small ones.
In this sense, the return to equilibrium, mediated by dissipative col-
lisions, affords a cooling of the large particles relative to the small
ones and, thus, an effective friction on large particles. This friction
vanishes in equilibrium like the Nosè–Hoover thermostat. Large
particles determine the dynamical properties of the ring.

Another dissipative process could be an ongoing exchange of
ring matter between particles of all size groups due to a balance of
coagulation and fragmentation [dynamic ephemeral bodies (DEBs);
Davis et al. 1984] causing an effective dissipation, since the com-
position and destruction of agglomerates are irreversible processes.

It is interesting to note that the epicycle dynamics are rather
similar to the motion of charged particles in a magnetic field (Frid-
man & Gorkavyi 1999) and due to that there is a certain analogy
with the synchronization of the Larmor motion for two-dimensional
electron gas in magnetic and microwave fields as was discussed by
Chepelianskii et al. (2007). The main difference to the present prob-
lem is that for the electron gas there is no shear.

3 N U M E R I C A L R E S U LTS A N D T H E I R
INTERPRETATION

The results of numerical simulations for the particle density distri-
bution in the plane of local epicycle velocities (vx, vy) are shown
in Fig. 1 for two values of �/2ω ratio between the epicycle fre-
quency of particles � and the double frequency of Mimas 2ω. For

Figure 1. Density distribution of particles in the ring in the plane of local
epicycle velocities (−3 < vx/vep < 3; −3 < vy/vep < 3) obtained by the
numerical simulations with N = 1000 particles inside the spatial square
box S = 5rs × 5rs where rs is the epicycle radius; the particle density
is ρ = Np/S = 40/r2

s . The rotation frequency ratio is �/�s = �/2ω =
1.15 (left-hand panel) and 1 (right-hand panel, synchronized regime); the
dimensionless force amplitude of Mimas is ε = 0.64. The number of Kapral
cells is N cel = 100 × 100 = 104, the Kapral collisions are done after time
τK = 0.5/�s; the relaxation time of Nosè–Hoover dynamics is τH = 16/�s.
The data are averaged over time interval 0 ≤ t ≤ 104/�s. Density is pro-
portional to colour (red/grey for maximum, blue/black for minimum).

�/2ω = 1.15, the distribution of velocities is close to the Maxwell
distribution of elliptical form appearing due to shear and ellipticity
of motion given by the Hill equations (the distribution becomes
close to a symmetric one in rescaled velocities ṽy = 2vy, ṽx = vx).
The distribution is drastically changed for �/2ω = �S/2ω = 1:
almost all density is concentrated on a spiral in the velocity plane.
The physical meaning of this phenomenon is the following: for the
resonant ratio �/2ω = 1, the phases of the epicycle rotations be-
come synchronized with the phase of periodic Mimas kicks given
by f (t). While out of the resonance (e.g. �/2ω = 1.15) all epicycle
phases are random and independent, in the synchronization regime
they are all adjusted to the phase of Mimas. As a result, Mimas
gives a kick in vx, between kicks the particle velocity decreases
doing two rotations over the spiral, then again it is kicked by Mimas
in the same state as at previous kick and so on. Thus, the phases of
this rotational motion are equal to the phase of Mimas and equal
to each other. This means that the particles rotate in synchrony, at
each moment of time their rotational velocities are equal both in the
amplitude and in the direction. Therefore, the collisions between
them effectively disappear. There remains only a residual relative
velocity, related to the shear velocity and a finite size of the Kapral
cells (finite size of colliding bodies in the ring). In the absence of
shear flow, the synchronization can be completed for all particles as
has been discussed by Chepelianskii et al. (2007) for the problem
of two-dimensional electron gas in magnetic and microwave fields.

Since the collisions are significantly reduced for the synchro-
nization regime, the diffusion rate D = 〈x2〉/t is also reduced by
orders of magnitude compared to its typical value D0 = r2

s �S. This
is clearly seen in Fig. 2 which gives the dependence of D on � and
ε. The diffusion suppression takes place inside the Arnold tongue
where the epicycle rotation is synchronized with the Mimas phase.
According to the data of Fig. 2, the synchronization takes place

Figure 2. Dependence of the rescaled diffusion rate D/D̃0 shown by colour
on the rescaled frequency �/2ω (horizontal axis) and driving force strength ε

(vertical axis) for the range 0.85 ≤ �/2ω ≤ 1.15 and 0 ≤ ε ≤ 0.7. The colour
is proportional to D/D̃0 with red/grey for maximum value (D/D̃0 = 1.26)
and blue/black for minimum (D/D̃0 = 4 × 10−4), here D̃0 is the diffusion
rate at ε = 0, � = �s (also D/D0 = 1.7 × 10−5 with D0 = r3

s �s). Data
are obtained for time t ≤ 104/�s, N = 1000, N cel = 200 × 200, other
parameters are as in Fig. 1.
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Figure 3. Dependence of the rescaled diffusion rate D/D0 on the rescaled
frequency �/2ω. The full curves are for ε = 0.64 with N cel = 50 × 50,
100 × 100, 200 × 200 from top to bottom; the dashed curve is for ε = 0
and N cel = 100 × 100. Data are obtained for time t ≤ 104/�s, N = 1000.
Logarithms are decimal.

inside the frequency range

|�/2ω − 1| ≤ sε (3)

with the numerical value of the constant s ≈ 0.08. According to the
synchronization theory (Pikovsky et al. 2001), the synchronization
region is given by the dimensionless amplitude of the driving force
which is 2ε/[4π max(vx)] that gives s ≈ 0.08 since we have max(vx)
≈ 2 (see Fig. 1). Thus, the numerical dependence is in agreement
with the analytical synchronization theory. The variation of � is
related to the position of particle inside the ring. For example,
�/2ω = 1.05 corresponds to the distance 	x ≈ 3a0(�/2ω −
1)/2 ≈ 9000 km from the outer B edge in direction to Saturn. It
is interesting to note that this is of the order of the size of Cassini
division.

An interesting property of the relation (2) is its independence of
the relaxation time-scale τH. Physically, this means that τH only
determines the time-scale on which the synchronization is reached
but it does not affect the domain of synchronization. This is in
agreement with our numerical checks which show that at the Mimas
value of ε = 0.64 the synchronization window shows less than
10 per cent variation when (�SτH)2 varies from 0.1 to 10−5. For
(�SτH)2 = 1, this window is increased by about 30 per cent.

The variation of the diffusion rate D(�) when the number of
Kapral cells Ncel is changed is shown in Fig. 3. For N cel = 50 ×
50, the collisions happen rather often and there are no signs of
synchronization. For N cel = 100 × 100, the synchronization sets
in and the diffusion drops inside the synchronization window. A
further increase up to N cel = 200 × 200 gives much stronger drop
of the diffusion inside the synchronization window while its size is
only slightly increased. Outside of this window, the diffusion scales
as D ∝ 1/N cel. This is rather natural since D is proportional to the
density of particles inside the cell so that D ∼ r2

s � ∼ r2
s N/(N cel

τK) where � is the effective collision rate. We note that in the non-
synchronized regime the diffusion rate per orbital period is rather
large being 2πD/(r2

s �S) ≈ 3 (at N cel = 100 × 100) and 1 (at N cel =
200 × 200). These values approximately correspond to the typical
conditions for particles inside B ring.

0.90 1.00 1.10
-4

-3

-2

-1

0
logS

Figure 4. Dependence of the synchronization parameter S on the rescaled
frequency �/2ω. Parameters are the same as in Fig. 3. Logarithms are
decimal.

Another signature of synchronization can be expressed via the
synchronization parameter S = ∑

i<j (vi − vj )2/(N 2v2
ep/2). Its de-

pendence on frequency is shown in Fig. 4. Inside the synchro-
nization regime, S drops by almost four orders of magnitude. This
means that due to synchronization the relative collision velocities
of particles are very small and therefore the diffusion is also very
small. At the same time, the velocity difference remains finite due
to finite size of the cells (collision bodies) and the shear flow. In
absence of the shear flow, the collisions disappear completely (see
also Chepelianskii et al. 2007).

For the chosen value vep = 0.005 m s−1, we have ε = 0.64 (see
Appendix B). Then, according to (3), and the numerical data of
Figs 2–4, we have the synchronization border at �/2ω ≈ 1.05.
This corresponds approximately to xS = 9000 km distance from
the exact resonance 2 : 1. The observations give this distance to
be about xB ≈ 1–10 km, which is significantly smaller than the
synchronization border. Of course, the value of vep is not known
exactly and may be a factor of 2–10 different from the value chosen
above. However, even if the actual value were 10 times larger, then
still xS would still be, by 2 orders of magnitude, larger than the
observed B edge position xB.

We explain this disagreement in the following way. Taking the
value ε = 0.64, we assume that the particles appear initially in
the non-synchronized part of the ring, lets say with �/2ω ≈ 1.2.
Due to collisions, these particles diffuse closer and closer to the
synchronization border at �/2ω ≈ 1.05. Behind this border, the
diffusion rate drops D(�) drastically due to the synchronization
phenomenon described above. This sharp drop of D creates a dif-
fusive shock wave which continues to propagate slowly inside
the synchronization region since there the diffusion remains finite
due to the shear flow (see Figs 2 and 3). The edge size of this dif-
fusive shock wave should be of the size of a few epicycle radius
rs since as soon as the distance between particles becomes larger
than rs the collisions between them completely disappear due to
the frozen nature of epicycle motion (in a close similarities with
particles in a magnetic field; see e.g. Fridman & Gorkavyi 1999). In
this way, the gradient of density slowly moves inside the synchro-
nization domain keeping the sharpness of the edge of a few epicycle
radius rs. In the synchronization domain, the diffusion is minimal
at the exact resonance �/2ω = 1 since the synchronization effect
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Figure 5. Dependence of density of particles (in arbitrary units) on time
�St (vertical axis) and position in the ring x/rS (horizontal axis) for ε =
0.6, �/2ω = 1.1 and zero frequency gradient g = 0. There are N cel =
1200 × 120 in the whole space box S = 50 rS × 5rS; τK = 0.5/�s,
τH = 4.5/�S. Initially, there are N = 60 particles in the left box S = 5 rS ×
5 rS and this number is kept constant during the computations till the finite
moment of time �St = 6.28 × 104 when there are 305 particles in total.

Figure 6. Dependence of density of particles (in arbitrary units) on time
�St (vertical axis in logarithmic scale) and position in the ring x/rS (hori-
zontal axis) for ε = 0.6, the frequency gradient in space is g = 0.002 with
�/2ω = 1.05 at x = 0 and �/2ω = 1 at x/rS = 25 corresponding to the
outer B ring edge. There are N cel = 1200 × 120 in the whole space box
S = 50rS × 5rS (only half is shown); τK = 0.5/�s, τH = 4.5/�S. Initially,
there are N = 60 particles in the left box S = 5rS × 5rS and this num-
ber is kept constant during the computations till the finite moment of time
�St = 6.28 × 105 when there are 305 particles in total.

is the most strong there (see Figs 2–4). Therefore, the edge of syn-
chronized particles spends the most of the time at that place with the
minimum of diffusion. This is actually the place where the outer B
ring edge is observed now.

To give more justification to the above picture, we performed
extensive numerical simulations of the front propagation of particles
in the SYNC model. With this aim, we introduced a gradient of the
frequency � with the distance x so that �(x) = �0 − gx where
�0 ≈ 1.1 is some initial value and g ∼ 0.002 is the frequency
gradient per unit of epicycle radius in dimensionless units. Examples
of the numerical simulations are shown in Figs 5 and 6. In the
absence of the gradient, in the non-synchronized regime there is
a diffusive spreading along x as it is clearly seen in Fig. 5. The
typical diffusive profile x ∝ √

t is clearly seen. The computations
are done at the fixed constant particle density ρ in the left space box
5rS × 5rS of the total longitudinal space box S = 50rS × 5rS with
the number of Kapral cells N cel = 1200 × 120. This is reached by
adding new particles inside the left space box during the diffusive

0 10 20 30 40 50

0.0156

0.0313

0.0625

0.1250

0.2500

position S

de
ns

it
y

Figure 7. Dependence of density of particles (arbitrary units in logarithmic
scale) on position in the ring x/rS for ε = 0.6 at the final time �s t = 6.28
× 104 (red/grey for parameters of Fig. 5) and �st = 6.28 × 105 (blue/black
for parameters of Fig. 6).

spreading. At such a density ρr2
S = 60/25 and such a value Ncel,

the local diffusion rate at �/2ω ≈ 1.1 is D/D0 ≈ 0.01 and during
the time �St = 6.28 × 104 the diffusion propagates at a distance
x ≈ √

Dt ≈ 25rS that is in a good agreement with the data of
Fig. 5.

The situation is drastically different in the presence of the fre-
quency gradient g = 0.002 when the particles enter inside the syn-
chronization window �/2ω − 1 < 0.05 as shown in Fig. 6. Even
if the total computation time here is 10 times larger than in Fig. 5
the front propagation becomes very slow around x/rS ≈ 17 since
diffusion drops strongly inside the synchronization window going
down to very small by finite value D/D0 ≈ 3 × 10−6 inside the left
space box 5rS × 5rS with 60 particles.

Of course, the value of the gradient chosen here is much larger
than its real value g ∼ 3 rS/2xs ∼ 15 m/1.17 × 105 km ∼ 10−7.
Such small values of the gradient are not accessible for nowadays
computer simulations. However, a more smooth, adiabatic variation
of the orbital frequency � on a scale of an epicycle radius should
make the picture of the diffusive shock wave moving inside the
synchronization domain to be even better justified.

The density ρ(x) dependence on x at a final moment of time
(averaged over 1 per cent of total time) is shown in Fig. 7, for
the cases of Figs 5 and 6. In the case of synchronization (Fig. 6),
there is a sharp drop of density on a scale of 2 epicycle radius rS.
In the non-synchronized case (Fig. 5), the decrease of density goes
in a more smooth way (on a scale of about 10rS). The difference of
scales in two cases is not so large since in both cases the diffusion
is zero in the region without particles. However, the most important
difference is that the rapid diffusive propagation goes unlimitedly in
the non-synchronized case while inside the synchronization window
the propagation front moves very slowly with the formation of sharp
density drop on a scale of about 2rS. The front stays the longest time
at the place where the diffusion is minimal that corresponds to the
centre of the synchronization window at � = 2ω. For the value of
rS ∝ 1/vep ≈ 36 m given above, this gives the size of the edge
	xe ≈ 2rS ≈ 70 m. This value is in a good agreement with the
observation data which give 	xe ≈ 10 m especially if we take into
account that the average value vep is known only by an order of
magnitude.

4 D ISCUSSION

Our studies based on the SYNC model of dynamics in the rings of
Saturn show the emergence of synchronization in the vicinity of the
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outer B ring edge. Like the Maxwell demon, this synchronization
makes the epicycle motion of particles to be synchronous that prac-
tically eliminates collisions between them. This gives a suppression
of diffusion by orders of magnitude and a formation of a diffusive
shock wave slowly propagating inside the synchronization domain.
The size of this front or the edge of the ring is of the order of a few
epicycle radius being of about of a few tens of meters. This is in
agreement with the present observation data which give its size to
be about 10 m. The size of the synchronization domain created by
Mimas is of the order of 4000 km (remarkably, the total number of
synchronized particles, which can be estimated as >1012, is huge).
The front moves most slowly in the centre of the synchronization
domain, so that it is most probable to observe it at the place where
the ring edge frequency and the frequency of Mimas are in exact
resonance 2:1. The observations show that the actual position is
close to this value with a relative accuracy of 10−4−10−5.

Similar synchronization effects should exist at other resonances
with other satellites. Our preliminary data give a similar picture
for the outer A ring edge which is closely located to the 7:6 reso-
nance with Janus (here, the dimensionless kick strength is ε ≈ 1.19
but the relative frequency size of the synchronization window is
approximately twice smaller due to higher order of the resonance).

The synchronization mechanism proposed here can also be re-
sponsible for existence of very narrow planetary rings. Indeed, if
initially particles are distributed inside the resonance then those
which are inside the synchronization window will remain there
practically forever since the collision-induced diffusion is switched
off, while those outside of the window will diffuse away leaving a
narrow ring of particles inside the synchronization window.

The SYNC model used in this paper is based on several signif-
icant simplifications of the real particle dynamics. The use of the
mesoscopic Kapral method for incorporating the collisions appears
to imply no additional physical mechanisms, but the basic physics
of the collisions remain hidden inside the parameters of the Kapral
method – the number of the cells and the frequency of the reshuffling
of velocities. To make the calculations more realistic, one needs to
incorporate realistic collision models with reasonable mechanical
properties of the particles, to include a distribution of the sizes, etc.
Such an extension goes far beyond the scope of our preliminary
study. Thus, we can hardly make direct predictions, in particular,
compare properties of A and B ring edges.

Moreover, it appears that another simplification of our compu-
tational model – the use of the Nosè–Hoover thermostat – is less
‘repairable’ and requires a further justification. Indeed, if there is
some average dissipation due to particle collisions, this justifies the
use of the thermostat for modelling the saturation of the energy
pumped to the system due to shear. On the other hand, in our setup
in the synchronized state collisions are rare so at the first glance
there is no mechanism for energy saturation. Here, it is important
to mention that we restricted our analysis to an ensemble of iden-
tical particles. For a particular situation in the outer B ring, this
means that we consider only large particles that have low charac-
teristic epicyclic velocities. If there is a whole range of particles
of different sizes, they are all subject to resonant kicks by Mimas,
but because their characteristic epicyclic velocities are different the
effect of the kicks is also different. If we assume rough equiparti-
tion of epicylic kinetic energies, then smaller particles have larger
velocities, therefore for them the effective forcing parameter ε is
smaller, and as a result they only weakly synchronize or not syn-
chronize (if they lie near the bottom of Fig. 2). Collisions with these
randomly moving particles may provide an additional dissipation
that justifies the use of the Nosè–Hoover thermostat. Further inves-

tigations (which, however, go far beyond the scope of this paper)
of different dissipation effects influencing the energy balance are
needed to clarify this issue.

Another simplification made – a consideration of a relatively
small box of particles – is also crucial. Indeed, parts of the ring
at different angular coordinates are statistically equivalent, but the
dynamical equivalence is broken by the influence of Mimas, as the
latter kicks the particles at different phases. Thus, the synchrony
of the velocities may be only local, i.e. the velocities of particles
are synchronized with the local phase of the Mimas, but this phase
changes gradually along the ring angular coordinate. Because of the
differential rotation, the particles synchronized at different phases
will mix, but this effect is not taken into account in the box model,
it has to be addressed in future studies.

In this respect, the important issue is that of how the synchro-
nization of particles’ velocities could be tested experimentally.
Indeed, the theory above predicts a drastic narrowing of the width
of the velocities distribution, cf. Fig. 1. However, because the
velocities themselves are very small, there is not much hope
to observe the distribution of them directly, e.g. by Doppler
measurements or image analysis. Thus, one has to rely on
implicit observations. For example, one may expect that the
adjustment of velocities influences other dynamical features
recently observed in the rings, like propeller structures (Spahn
& Schmidt 2006; Sremcevic et al. 2007). However, for such
an implicit test one has to find such structures quite near to
the sharp edges described above. Remarkably, near the outer
edge of ring B a scrambled pattern is observed in recent Cassini
images (see http://saturn.jpl.nasa.gov/photos/imagedetails/ \
index.cfm?imageId=2984) that is probably due to a gravitational
clumping of particle (cf. simulations by Lewis & Stewart 2005 of
a similar structure at the Encke gap). We can speculate that the
synchronization of large particles would generally enhance their
ability to clump due to gravitational and adhesive forces, because
their relative collision velocities become rather small. On the other
hand, if smaller, non-synchronized particles leave the ring and
enter the gap, where large particles are missing, their diffusion will
be reduced as well, because the collisions between small particles
are rare. The observation of such a gradient in the size distribution
of particles near the edge may also be interpreted as an implicit
confirmation of the suggested mechanism.

We note that in the literature several mechanisms for the expla-
nation of sharp edges of rings have been discussed. One process
to form and maintain a sharpness is a shear reversal induced by
a strong gravitational perturbation near a resonance with a moon.
In the unperturbed ring, Keplerian shear leads to an outward vis-
cous transport of angular momentum. The distortions induced by a
perturber may locally reverse the shear and, when integrating over
the azimuth, may lead to a net angular momentum transport that is
directed radially inward (Borderis et al. 1982; Borderis, Goldreich
& Tremaine 1983, 1989; Mosqueira 1996). This process can lead
to an inward migration of material from the close vicinity of the
resonance location with the moon, and in this way clear a gap at this
radial position in the ring. Recently, Lewis et al. reported on a ‘neg-
ative diffusion’ mechanism, where the particles migrate to areas of
high density (Leezer & Lewis 2006). In their calculations, however,
only a single pass by the moon was simulated, so no resonant ef-
fects, like those we focus on in this study, were possible. Probably,
further observations, together with further extensive numerical sim-
ulations, will allow one to test which mechanism is responsible for
the sharp edges of the rings. It appears highly desirable to compare
various setups in numerical simulations as well.
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Finally, we note that, as discussed by Chepelianskii et al. (2007),
the elimination of collisional diffusion may appear also for charged
particles in a magnetic field like two-dimensional electron gas (see
Mani et al. 2002; Zudov et al. 2003) and electron and ion clouds in
a Paul trap (see, e.g. Mortenson et al. 2006). Due to that, it can be
rather interesting to try to make laboratory experiments with traps
(see e.g. Major, Gheorghe & Werth 2005) which would allow us to
model rings of Saturn in laboratory experiments with cold ions.
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A P P E N D I X A : TH E H A M I LTO N I A N FO R M O F
THE H I LL EQUATI ONS

Here, we describe the Hamiltonian form of the Hill equations. Ac-
cording to Stewart (1991), the Hill equations (1) can be viewed as
a Hamiltonian system with

H = 1

2
[(px + �y)2 + (py − �x)2] − 3

2
�2x2 − xFx(t)/mp. (A1)

For the simulation and the analysis, another representation, also
given by Stewart (1991), where the epicyclic and shear motion are
effectively separated is more convenient. One introduces canonical
variables I , φ, P , Q according to

x = 2

�
P −

√
2I

�
cos φ, y = Q + 2

√
2I

�
sin φ (A2)

ẋ = �

√
2I

�
sin φ, ẏ = −3P + 2�

√
2I

�
cos φ. (A3)

In these variables, the Hamilton function reads

H = �I − 3

2
P 2 −

(
2

�
P −

√
2I

�
cos φ

)
Fx(t)/mp. (A4)

Canonically conjugated variables I , φ are the action-angle variables
for the epicyclic motion. When introducing the Nosè–Hoover ther-
mostat, we adjust variable I only, modelling in this way the balance
of this part of the total energy. Canonically conjugated variables
P , Q describe the shear, the conserved quantity P corresponds to
the conservation of the angular momentum. Note that according to
(A2), variables P and Q can be viewed as ‘centre of mass’ coordi-
nates for the rotating particle, it is especially convenient to calculate
the diffusion rate in x-direction in terms of the diffusion constant
for P, because in the absence of collisions this quantity is exactly
conserved.

APPENDIX B: D ERIVATION O F MIMAS’S
K I C K F O R C E

Here, we derive the strength of kick force produced by Mimas on
the epicycle motion of particles inside the Saturn ring B. Consider
the effect of a gravitational action of the Mimas having mass mm

and semimajor axis am on a particle having axis a (both orbits are
nearly circular). In a frame fixed with the particle, the gravitational
acceleration in the outer direction is v̇x = GMmd−2 cos ψ where d
and ψ is the distance and the angle from the particle to the Mimas.
Denoting the angle from Saturn to Mimas as φ = (� − �m)t ,
where �m and � are Kepler frequencies, we can write cos ψ =
d−1(am cos φ − a) and d2 = (am sin φ)2 + (am cos φ − a)2. The
total change of the velocity component vx due to the force by Mimas
is given by the integral

∫
dt v̇x . We attribute this change to a ‘kick’,

because the force is non-zero only when Mimas is close to the
particle. The resulting expression is

	vx = Gmm

(� − �m)a2

∫ π

−π

r2(cos φ − r) dφ

(1 + r2 − 2r cos φ)3/2
. (B1)

This calculation gives 	vx ≈ 3.2 × 10−3 m s −1. When normalizing
by a typical epicycle velocity 5 × 10−3 m s −1, we get a numerical
value of our parameter ε ≈ 0.64.
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