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Abstract. We study effects of weak nonlinearity on localization of waves in disordered Stark ladder
corresponding to propagation in presence of disorder and a static field. Our numerical results show that
nonlinearity leads to delocalization with subdiffusive spreading along the ladder. The exponent of spreading
remains close to its value in absence of the static field. The delocalization implies the existence of statistical
entanglement between far away parts of the spreading wave packet indicating importance of long-range
effects.

PACS. 05.45.-a Nonlinear dynamics and chaos – 63.50.-x Vibrational states in disordered systems –
03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow

Anderson localization leads to suppression of diffusive
propagation of linear waves in systems with disorder [1].
In one and two dimensions all states are exponentially lo-
calized [2,3]. For classical waves nonlinearity is naturally
present and it is important to understand how it affects
localization in a random media [4]. At first glance it seems
that a spreading in space leads to an effective decrease of
nonlinearity and hence persistence of localization [5]. On
the other hand it was argued that nonlinear resonances
remain overlapped and localization is destroyed by a mod-
erate nonlinearity which leads to a subdiffusive spreading
in space at asymptotically large times [6].

Recent experimental progress with nonlinear photonic
lattices [7,8] and Bose-Einstein condensates (BECs) in
optical lattices [9,10] with disorder generated a renewal
of significant theoretical interest to this problem (see
e.g. [11–18] and references therein). Even if for BECs
in [9,10] the interactions are weak, it is possible to have
experimental situations with strong interactions between
atoms (see e.g. [19,20]) where the nonlinear effects start to
play an important role. Nonlinear effects can also play an
important role for BEC dynamics in kicked optical lattices
with a dynamical localization of quantum chaos realized
in experiments [21,22]. Thus the investigations of effects
of nonlinearity on localized states is timely and opens new
interesting problems of nonlinear dynamics. Similar type
of problems appear also for energy propagation in dis-
ordered molecular chains [13,23] that enlarge a field of
possible applications. In addition the problem of interplay

a URL:http://www.quantware.ups-tlse.fr/dima

of localization and nonlinearity represents an interesting
mathematical problem of stability of pure point spectrum
with respect to nonlinear perturbations which led to re-
cent mathematical studies [24,25]. Finally, we note that
there are also studies of wave packet spreading on the
nonlinear Stark ladder without disorder reported in the
literature [26,27]. However, we are interested in the case
of relatively weak or moderate nonlinearity and static field
and in this case the presence of disorder gives a qualita-
tively different situation.

The numerical studies are mainly done for the discrete
Anderson nonlinear Schrödinger equation (DANSE) show-
ing that the wave packet width Δn spreads at large times t
in a subdiffusive way with (Δn)2 ∝ tα and an exponent
α ≈ 0.3− 0.4 for system dimension d = 1 [6,14,17,18] and
α ≈ 0.25 for d = 2 [18]. The theoretical estimates give
α = 2/5 [6] and α = 1/4 [18] respectively. A noticeable dif-
ference between the theory estimates and numerical value
α ≈ 0.3 for d = 1 is argued to be related with a specific
properties of 1d Anderson model [18] but further clarifica-
tions of this point are required (see e.g. [17,18]). Indeed,
for the 1d DANSE model the numerical data give values
α ≈ 0.33, but the 1d kicked nonlinear rotator model gives
α ≈ 0.4.

In this work we address a new type of question for the
DANSE model: how a static field force affects the prop-
erties of nonlinear delocalization? Such a force is experi-
enced by BECs in a gravitational field or effectively in a
magnetic field gradient. It can be also effectively created
by an acceleration of the optical lattice as a whole. This
creates an effective Stark ladder which already has been
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Fig. 1. Dependence of the second moment (Δn)2 of probability
distribution on time t for various values of static field f and one
fixed disorder realisation. Curves from top to bottom at t = 108

are for f = 0., 0.1, 0.25, 0.5, 1., 2. and β = 1,W = 4, N =
256, Δt = 0.1. Inset shows data for f = 0.5 obtained with
integration steps Δt = 0.1 (solid curve) and Δt = 0.01 (dotted
curve). To suppress fluctuations time average was made on
logarithmic scale inside intervals Δ(log10 t) = 0.1. Initial state
is one lattice site n = 0 with energy in the middle of the band.

realized in experiments with cold atoms [28]. In absence
of nonlinearity a weak static field does not significantly af-
fect the localization while at strong fields the localization
length is significantly reduced since less states are energet-
ically available for hopping over the ladder (see e.g. recent
studies [29] and references therein). It is not so obvious
what are the effects of nonlinearity in such a system since
the nonlinear term is local and is small compared to an
energy variation for large displacements along the ladder.

To answer the above question we study numerically
the Stark DANSE model described by the equation

i�
∂ψn

∂t
= (fn+En)ψn+β| ψn |2ψn+V (ψn+1+ψn−1), (1)

where f is the strength of the Stark field. At f = 0 the
model is reduced to the usual DANSE studied recently
in [13,14,16,17]. We fix the units as V = � = 1 and choose
a typical set of parameters used here as W = 4, β = 1.
On-site energies En are randomly and homogeneously dis-
tributed in the interval −W/2 < En < W/2. Then the
localization length in the middle of energy band is � ≈ 6
at f = 0. The numerical integration was done by the split
operator scheme described in [18]. Such a symplectic in-
tegration with an integration time step Δt = 0.1 and 0.01
gives the energy conservation with accuracy 3% and 1%
for t ≤ 107 in a presence of strong field f ≤ 2. The total
number of states was fixed at N = 256, we used averag-
ing over Nd = 15 disorder realisations. The finite value of
Δt generates high frequency equidistant harmonics with
frequency spacing 2π/Δt. At f = 0 these frequencies are
located outside of energy band while at f > 0 they, in prin-
ciple, may give resonant transitions. However, at small Δt
the distance between such resonant states is much larger
than the localization length � and the matrix elements in
such cases are exponentially small and do not affect the
behavior of the system with variation of Δt (see Fig. 1,
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Fig. 2. Probability distribution wn = |ψn|2 over ladder site
n at time t = 108 for f = 0., 0.1, 0.25, 0.5, 1., 2. (curves from
small (inside) to large (outside) values of |n|). Parameters are
the same as in Figure 1.

inset). The integration scheme conserves exactly the total
probability.

A typical dependence of the second moment (Δn)2 of
probability distribution wn on time t is shown in Figure 1
for various values of f . The distribution of on-site prob-
abilities wn at a final time t = 108 is shown in Figure 2.
The fits of data of Figure 1 show an unlimited subdiffusive
growth (Δn)2 ∝ tα with the exponent α = 0.275 ± 0.006,
0.291 ± 0.005, 0.276 ± 0.006, 0.272 ± 0.004, 0.269 ± 0.016
for f = 0., 0.1, 0.25, 0.5.1. respectively. The fits are done
in the interval 5 ≤ log10 t ≤ 8 for the last case and
3 ≤ log10 t ≤ 8 for all other cases. The data show no
significant variation of α with f even if one realization
at finite time may have noticeable fluctuations of α being
larger than a formal statistical error (see below). At large
values of f = 1., 2. the localization length � becomes rather
small (it can be estimated as � ≈ √

(Δn(t = 1000))2) and
during a long time interval there is not spreading over the
ladder. For f = 1. the growth appears at t ≥ 105. There
is no visible growth for all computational times for f = 2.
We interpret this as very low transition rates over local-
ized states in the case of small localization length � ≈ 1
at f = 2. It remains unclear if localization persists or
disappears for such small � at very large times. For the
cases with clear delocalization at f = 0., 0.1, 0.25, 0.5 the
distribution of wn over n have a form of homogeneous
“chapeau” centered near the initial state n = 0; its width
grows with time, approximately in agreement with the
second moment growth (see Fig. 2).

To obtain more statistics we perform averaging over
Nd disorder realisations. The data are presented in Fig-
ure 3 for the second moment and in Figure 4 for the prob-
ability distribution for β = 0; 1. At f = 0 we obtain the
exponent α = 0.302 which is comparable with the values
α ≈ 0.33 found in previous studies [14,17,18]. The value
of α decreases by about 10% when the static field is in-
creased up to f = 0.5. This decrease is well visible even
if it is not very large and is comparable to the statistical
variations of α at f = 0 discussed above. We also com-
puted the dependence on time for the participation ratio
ξ = 1/〈∑n w

2
n〉. It can be characterized by the dependence
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Fig. 3. (Color online) Dependence of the second moment
(Δn)2 on time t, average is done over Nd = 15 disorder re-
alisations. The curves from top to bottom at t = 108 are for
f = 0., 0.25, 0.5 at β = 1 and f = 0.5 at β = 0. The fits,
shown by thin straight lines, give the exponent of growth at
β = 1: α = 0.302 ± 0.001(f = 0), 0.262 ± 0.001(f = 0.25),
0.241 ± 0.002(f = 0.5). Inset shows the dependence of par-
ticipation ratio ξ on time for β = 1, f = 0.5 (thick curve),
the straight line shows the fit dependence with the exponent
ν = 0.120 ± 0.001. Other parameters are as in Figure 1.

Fig. 4. (Color online) Averaged probability distribution wn as
a function of the lattice site n for the cases of Figure 3 at f =
0.5 (average is done over the same 15 disorder realisations). Top
panel is for β = 0 and bottom panel is for β = 1. Curves are
drown from inside (small |n|) to outside (large |n|) for t = 102

(magenta), 104 (blue), 106 (red) and 108 (black). For β = 0
(top panel) the state is almost the same for all times from
t = 102 to t = 108.

ξ ∝ tν with the exponent ν = 0.120 ± 0.001(f = 0.5),
0.131 ± 0.001(f = 0.25), 0.159 ± 0.002(f = 0). These val-
ues are compatible with the usual relation ν = α/2.

The averaged probability distributions for the cases of
Figure 3 at f = 0.5 are shown in Figure 4 at different mo-
ments of time. For β = 0 the distribution is localized being

frozen in time. It drops faster than exponential due to the
presence of static field showing a qualitative difference be-
tween Stark localization and usual exponential Anderson
localization. For β = 1 the probability spreads over the
whole lattice forming a homogeneous plateau in the center.
The interesting property of this distribution is its approx-
imate symmetry with respect to the initial state n = 0.
It is clear that the conservation of energy imposes such a
symmetric spreading. Indeed, the width of the plateau is
approximately δn ≈ 80 and the energy variation on such a
distance is δE ≈ fδn ≈ 40 that is much larger than the en-
ergy band B ≈ 6 at f = 0. Due to energy conservation at
|f | > 0 the spreading can continue unlimitedly only in ap-
proximately symmetric way. This excludes the possibility
of a compact packet which moves over a lattice on larger
and larger distances in some stochastic way (as discussed
in [13]). Indeed, since such a packet is compact (its size ξp
composed of finite number of populated sites), its displace-
ment on a distance rp � ξp from the origin is forbidden
by the total energy conservation at |f | > 0. Hence, such a
packet cannot move diffusively along the lattice. A quasi-
symmetric spreading seen in Figure 4 looks rather natural
in view of total energy conservation at |f | > 0. However,
it raises an interesting problem of statistical entanglement
of probabilities wn on opposite ends of the plateau. In-
deed, on such a distance the probabilities seems to be un-
correlated since they are separated by many localization
lengths � of the linear problem. Nevertheless the propaga-
tion on these far ends goes in a correlated way since the
total energy Etot ≈

∑
n fnwn is exactly conserved.

In [6,14,18] it was argued that an infinite spreading is
possible since the nonlinear frequency shift δω ∼ β/Δn re-
mains comparable with the frequency spacing Δω ∼ 1/Δn
between frequencies of excited Δn modes. On the Stark
ladder this condition seems to be violated at large Δn
since Δω ∼ f � δω ∼ β/Δn. However, the situation is
more subtle. Indeed, we can write DANSE (1) in the basis
of linear eigenmodes. The time evolution amplitudes Cm

in this basis is described by equation (see e.g. [6,18]):

i
∂Cm

∂t
= (fm+ εm)Cm +β

∑

m′m1m′
1

Vmm′m1m′
1
Cm′C∗

m1
Cm′

1

(2)
where m marks the center of eigenmode inside the lad-
der and eigenenergies εm are randomly distributed inside
the energy band width of approximately the same size
B ∼ 6 as at f = 0; fm + εm are eigenvalues of the lin-
ear problem. The transition matrix elements induced by
nonlinearity are of the order of Vmm′m1m′

1
∼ l−3/2 (see a

derivation given in [6,18]). From this equation it is clear
that 4-waves resonance conditions are satisfied if the fre-
quency detuning Δω4 of these 4-waves remains small:

Δω4 = f(m+m1−m′−m′
1)+ εm + εm1 − εm′ − εm′

1
< δω.

(3)
Thus the spreading over the ladder can proceed only over
such modes where m + m1 − m′ − m′

1 = 0 and thus
Δω4 = εm + εm1 − εm′ − εm′

1
. Since all εm are inside the

frequency band B it is possible to have Δω4 ∼ 1/Δn so
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that the resonant detunings will remain small compared
to nonlinear shift δω ∼ β/Δn even at large Δn values.

The rate of spreading is still determined by the same
estimates as in [6,14,18] since we still have dC/dt ∼ βC3

and the theoretical exponent is α = 2/5 being independent
of f if f� < 1 so that the local transition rates remain the
same as at f = 0. The numerical results presented here
show weak dependence of α on f for f < 1/� being in a
satisfactory agreement with this theoretical estimate. The
deviation of α ≈ 0.3 from the theoretical value 2/5 still
should be better clarified both for f = 0 and |f | > 0.

In summary, we demonstrated that, in presence of a
static field applied to a lattice with disorder, a nonlin-
earity still produces complete delocalization with a sub-
diffusive spreading over the ladder. The exponent of the
spreading remains close to the value without the force.
The spreading forms a homogeneous distribution of prob-
ability inside a certain plateau. Due to the conservation
of total probability and energy the far away parts of this
plateau remain statistically entangled even being a large
distance apart from each other. The obtained results can
be tested in experiments with nonlinear photonic lattices
and BEC atoms in optical lattices with a static field.

We thank A.S. Pikovsky for useful discussions. This research
is supported in part by the ANR PNANO France project
NANOTERRA.
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