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Dynamical Thermalization of Disordered Nonlinear Lattices
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We study numerically how the energy spreads over a finite disordered nonlinear one-dimensional
lattice, where all linear modes are exponentially localized by disorder. We establish emergence
of dynamical thermalization, characterized as an ergodic chaotic dynamical state with a Gibbs
distribution over the modes. Our results show that the fraction of thermalizing modes is finite and
grows with the nonlinearity strength.

PACS numbers: 05.45.-a, 63.50.-x, 63.70.+h

The studies of ergodicity and dynamical thermaliza-
tion in regular nonlinear lattices have a long history ini-
tiated by the Fermi-Pasta-Ulam problem [1] but they are
still far from being complete (see, e.g., [2] for thermal
transport in nonlinear chains and [3] for thermalization
in a Bose-Hubbard model). In this Letter we study how
the dynamical thermalization appears in nonlinear dis-

ordered chains where all linear modes are exponentially
localized. Such modes appear due to the Anderson local-
ization, studied since fifty years in the context of electron
transport in disordered solids [4]. Such a localization is
a general phenomenon describing various physical situa-
tions [5, 6]. Examples beyond the initial Anderson for-
mulation are wave propagation in a random medium [7],
localization of a Bose-Einstein condensate [8] and quan-
tum chaos [9]. In simple terms, localization means that
in a linear disordered system in one and two dimensions,
for almost all random realizations of the potential the
eigenstates are exponentially localized and the spectrum
is pointlike [5]. It manifests itself as a vanishing mobil-
ity of electrons, an exponentially small transparency of
a random layer for waves, and a suppression of classical
diffusion for quantum chaos.

Effects of nonlinearity on localization properties have
attracted large interest recently. Indeed, nonlinearity
naturally appears for localization of a Bose-Einstein con-
densate, as its evolution is described by the nonlinear
Gross-Pitaevskii equation [10]. An interplay of disorder,
localization, and nonlinearity is also important in other
physical systems like wave propagation in nonlinear dis-
ordered media [11, 12] and chains of nonlinear oscillators
with randomly distributed frequencies [13].

The main question here is whether the localization is
destroyed by nonlinearity. It has been addressed recently
using two physical setups. In refs. [14, 15]it has been
demonstrated that an initially concentrated wavepacket
spreads apparently indefinitely, although subdiffusively,
in a disordered nonlinear lattice, provided the nonlinear-
ity is strong enough. Also at consideration of a trans-
mission through a nonlinear disordered layer [16, 17] it
has been demonstrated that chaotic destruction leads to

a drastically enhanced transparency.

Here we study thermalization properties of the dynam-
ics of a nonlinear disordered lattice – discrete Anderson
nonlinear Schrödinger equation (DANSE). We describe in
details the features of the evolution, in a finite lattice, of
an initially localized excitation toward a statistical equi-
librium. We demonstrate that already this equilibrium
is nontrivial due to existence of two conserved quanti-
ties, the energy and the total probability. Moreover, we
find non-thermalizing modes and characterize their de-
pendence on the nonlinearity and the lattice length.

We model a nonlinear disordered medium by DANSE
model:

i
∂ψn

∂t
= Enψn + β| ψn |

2
ψn + ψn+1 + ψn−1 , (1)

where β characterizes nonlinearity, and the on-site en-
ergies En (or frequencies) are independent random vari-
ables distributed uniformly in the range −W/2 < En <
W/2 (they are shifted in such a way that E = 0 corre-
sponds to the central energy of the band). We consider
a finite lattice 1 ≤ n ≤ N with periodic boundary condi-
tions. Then DANSE is a classical dynamical system with
the Hamilton function

H =
∑

n

En|ψn|
2 + ψn−1ψ

∗

n + ψ∗

n−1ψn +
β

2
|ψn|

4 . (2)

It exactly describes recent experiments with one-
dimensional nonlinear photonic lattices (cf. Eq. (1) in
[12]), and also serves as a paradigmatic model for a wide
class of physical problems where interplay of nonlinearity
and disorder is important.

For β = 0 all eigenstates are exponentially localized
with the localization length l ≈ 96W−2 (for weak dis-
order) at the center of the energy band [6]. Below we
mainly focus on the case of moderate disorder W = 4,
for which l ∼ 6 at the center of the band and l ≈ 2.5
at E = ±2. For each particular realization of disorder a
set of eigenergies ǫm and of corresponding eigenmodes
ϕnm can be found. In this eigenmode representation
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ψn =
∑
Cmϕnm the Hamiltonian reads

H =
∑

m

ǫm|Cm|2 + β
∑

klji

VkljiCkClC
∗

jC
∗

i , (3)

with
∑

m |Cm|2 = 1, and Vmm′m1m′

1
∼ l−3/2 are the tran-

sition matrix elements [18]. This representation is mostly
suitable to characterize the spreading of the field over the
lattice, since in this basis the transitions take place only
due to nonlinearity. Moreover, in the mode representa-
tion one can see that the nonlinear contribution to the
energy is in fact small even if β is of order of one: as it
follows from (3), this contribution is ∼ β/l if only one
mode is excited.

To study the dynamical thermalization in a lattice, we
performed direct numerical simulation of DANSE (1), us-
ing mainly two methods: the unitary Crank-Nicholson
operator splitting scheme with step ∆t = 0.1 as described
in [15], and a 8-order Runge-Kutta integration with step
∆t = 0.02; in both cases the total energy and the nor-
malization have been preserved with high accuracy. We
started with two types of localized initial states: (A) one
site seeded, i.e. |ψn(0)|2 = δn,j and (B) one mode ini-
tially excited, i.e. |Cm(0)|2 = δm,k. For different realiza-
tions of disorder, we seeded different possible sites/modes
and followed the evolution of the field solving (1) up to
times (in selected runs) ∼ 108. The level of spreading is
characterized by the entropy of the mode distribution

S = −
∑

m

ρm ln ρm , ρm = |Cm|2 , (4)

where overline means time averaging. For one excited
mode S = 0 while S = lnN for a uniform distribution
over all modes in a lattice of lengthN . To give an impres-
sion of a time evolution of the thermalization process we
show in Fig. 1 several time dependencies of the entropy
(4). The time averaging has been performed over dou-
bling time intervals (i.e. over the time intervals between
successive markers in this figure which are periodic on a
logarithmic time scale). One can see that for the setup
(B) some modes remain localized for all times (cf. [19]),
while other after some transient time evolve to a state
with large entropy. For the setup (A), in all situations
the entropy grows and saturates at a certain level. In our
discussion below we focus therefore on the setup (B) as
on mostly nontrivial one.

The crucial issue is that, because of the conservation of
the total energy and of the total probability, the thermal-
ization generally cannot lead to an equipartition between
all modes. To derive an approximate expression for the
statistically stationary distribution ρm, we mention that
it should satisfy

∑
ρm = 1 and E =

∑
ρmǫm, where, in

view of discussion above, we have neglected the nonlinear
contribution to the energy. Then the condition of maxi-
mal entropy (4) leads, after a standard calculation, to a
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FIG. 1: (color online) Time evolution of entropy S (4) in
DANSE (1) with N = 32 and β = 1, for a particular re-
alization of disorder and different initial states: bold black
curves with markers – single-mode initial states (B) with en-
ergies E = −0.34, 0.76,−0.29, 3.36,−0.5 (curves from top to
bottom at t = 108, two bottom cases are very close), solid
red/gray curves – single-site initial states (A, ten randomly
chosen states). The dashed line shows the level S = ln 32.

Gibbs distribution

ρm = Z−1 exp(−ǫm/T ), Z =
∑

m

exp(−ǫm/T ). (5)

Here T is an effective “temperature” of the system, in-
duced by dynamical chaos. The entropy and the energy
are related to each other via usual expressions [20]

E = T 2∂ lnZ/∂T , S = E/T + lnZ . (6)

This value of entropy yields the maximal possible
equipartition for the given initial energy, and the values
of Fig. 1 obtained via a numerical simulation of the dis-
ordered nonlinear lattice, should be compared with the
values from the Gibbs distribution. Because we have any-
how neglected the effects of nonlinearity in the theoretical
value of the entropy, we adopt other simplifications: ap-
proximate the density of states of the disordered system
as a constant in an interval −∆ < ǫ < ∆ and consider the
eigenenergies ǫm in a particular realization of disorder as
independent random variables distributed according to
this density. Also we assume the variations of the par-
tition sum to be small and use 〈lnZ〉 ≈ ln〈Z〉, where
brackets denote averaging over disorder realizations. In
this approximation we obtain

〈lnZ〉 ≈ lnN + ln sinh(∆/T ) − ln(∆/T ). (7)

At W = 4 we have ∆ ≈ 3 (see Figs. 3,5 below) and this
theory gives the dependence S(E) within a few percent
accuracy compared to S averaged over disorder within
Gibbs computations with exact numerical values ǫm. We
note that T = +0,±∞,−0 correspond to E = −∆, 0,+∆
respectively (as in the standard two-level problem, see
related discussion in [20]).

We compare in Fig. 2 the Gibbs distribution (5) with
the results of direct numerical simulations of DANSE us-
ing Nd disorder realizations. Here we present the values
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FIG. 2: (color online) Left: time and disorder averaged prob-

ability 〈ρm(m′)〉 in mode m for initial state in mode m′.
Right: theoretical values according to the Gibbs distribution
(5). Here N = 32, β = 1, Nd = 15.
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FIG. 3: (color online) Left panel: Final entropies (4) after
an evolution during time interval 107, averaged over a time
interval of 106. The states evolving from initial modes in the
middle of the band (see text) are marked with circles, and
those at the edges of the band by pluses; the curve shows the
approximate theory (7). Right panel: Lyapunov exponents
(averaged over a time interval 106) vs. entropy for the same
sets. Here N = 32, β = 1, Nd = 7.

〈ρm〉 averaged over time and over different realization of
disorder, in dependence of the number of initially seeded
mode m′. The modes have been ordered according to
their energy, so that m = 1 corresponds to the maximal
energy. One can see a good correspondence between the
numerics and the simple theory (5) with one crucial dis-
crepancy: the peaks on the diagonal m = m′ indicate
that there are cases when there is no thermalization and
the energy remains in the initially seeded mode.

To characterize thermalized and non-thermalized cases
quantitatively, we compare in Fig. 3 numerical values
for the entropy according to Eq. (4) with the theoreti-
cal Gibbs computation given by Eqs.(5,6,7). Clearly, the
Gibbs theory gives a satisfactory global description of
numerical data. The nonthermalized modes in this pre-
sentation are those at the bottom of the graph; these
states are absent for the setup (A) where initial sites are
seeded.

It appears appropriate to discuss the dynamics of the
modes in the middle of the energy band and at the edges
separately. Roughly, one can attribute modes with ener-
gies −2 < ǫm < 2 to the former and modes with |ǫm| > 2
to the latter class. For the modes in the middle of the en-
ergy band the maximal entropy according to (6) is close
to lnN , and one clearly distinguishes the thermalized
modes and those that remain localized, as those reach-
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FIG. 4: (color online) Average probability of the mode m = 1
vs. the coupling matrix element V1222; only the mode m = 2
is excited initially. Here N = 32, β = 1. The blue box shows
the cases of thermalization, where the mode m = 1 reaches
energy comparable with that of m = 2. In all other cases the
energy in the mode m = 1 is exponentially small. The dashed
red line |V1222|

2 gives the lower bound.

ing the maximal entropy and those remaining at the level
S . 1, correspondingly.Thermalization is associated with
the chaotic dynamics of the DANSE lattice. To demon-
strate this, we calculated the largest Lyapunov exponents
λ shown in Fig. 3 (right panel) for the states with en-
tropies shown on left panel. One can see that all modes
with S < 1, i.e. those that do not thermalize, have nearly
vanishing λ, while in the thermalized states (S > 2) the
positive values of λ clearly indicate for chaos.

The above distinction between thermalized and non-
thermalized states is less evident for modes at the band
edges (shown by red/gray pluses in Fig. 3). Here already
the theoretical value of entropy given by Eqs. (5,6,7) is
rather small. Hence, the spreading can go only over a few
“available” modes only. Nevertheless, also here one can
see from Fig. 3 a clear correlation between the entropy
and the Lyapunov exponent. Moreover, in several cases
the Lyapunov exponent at the edge of the spectrum is
definitely larger than in the middle. This happens be-
cause the energy spreads over a small number of modes,
the effective nonlinearity is larger because the amplitude
of each mode is large, and therefore chaos is stronger.

In the discussion above we did not account for a spatial
organization of the mode structure. The latter is less im-
portant for the modes in the middle of the band, where
one can expect always to find neighbors with a close en-
ergy. Contrary to this, for the energies at the edges the
issue of spatial distance becomes essential. Indeed, since
here the thermalization is possible only over a few modes,
it is important whether these modes are spatially sepa-
rated or not. For the eigenmodes m and m′ at β = 0 the
natural measure of this separation is the coupling ma-
trix element Vm′m′m′m according to (3). This coupling
is exponentially small for spatially separated modes due
of their localization. One can expect, that a mode at
the edge of the spectrum will be thermalized only if the
distance to other few modes in the lattice with a close
energy is small (i.e. if V is large). To check this, we have
performed the following computation: for different real-



4

izations of disorder, we seeded the mode with the second
lowest energy in the spectrum, and looked if in course of
the dynamical evolution the mode with the lowest energy
will be excited. These two modes are close in energy, but
may have large spatial separation resulting in the small
coupling constant. The results of this analysis are pre-
sented in Fig. 4. One can see that the first mode is not
excited unless the coupling constant to the second mode
is large enough. But even in this case, an effective exci-
tation occurs only in a small fraction of realizations (40
out of 256).
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FIG. 5: (color online) Dependence of entropy S on energy
E as in Fig. 2 but for N = 64, Nd = 18, and two values of
nonlinearity: (a) β = 0.5, (b) β = 2. Averaging have been
performed over the time interval 106 after an initial evolution
during time 106; for small β still longer times are needed to
reach thermalized state with maximal S at given E.
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FIG. 6: (color online) A fraction of thermalized (after time
106) modes fth from the middle of the band as a function of
nonlinearity β for N = 16 (circles), 32 (bold line), and 64
(pluses). Several values for time 107 and N = 32 are shown
with diamonds.

Finally, we discuss how the thermalization properties
depend on the nonlinearity constant β. In Fig. 5 we show
the dependence S(E) for different nonlinearities β. For
β = 0.5 a large portion of the initial states remains non-
thermalized, while for β = 2 all states are thermalized
(at least in the sense that their entropy is close to the
maximal possible one, as discussed above this is a good
criterion in the middle of the band). To determine how
the fraction of thermalized states depends on nonlinearity
β we use the following procedure. For the initial modes
in the middle of the band (i.e. for |E| < 2) we clas-
sified those that reach the entropy more than the half
of the maximal value (i.e. the level ln(N)/2) as ther-

malized, and those that remain below this level as non-
thermalized. The fraction fth of the thermalized modes,
shown in Fig. 6, monotonously increases with β. At fixed
β the numerical data indicate saturation of fth at large
N , but more detailed checks at longe sizes and longer
times are required. For example, recent results on self-
induced transparency of a disordered nonlinear layer [17]
show decrease of critical β with lattice size for N ≤ 32.

Our main conclusion is that the maximally thermalized
state, that emerges as a result of chaotic dynamics, is de-
scribed by the Gibbs distribution over the linear modes,
with some effective temperature, depending on the ini-
tial excitation. Not all modes lead to thermalization,
some fraction of them remains localized, but this frac-
tion decreases with nonlinearity. Further studies are still
required to establish the properties of this thermaliza-
tion, in dependence on the nonlinearity strength, on the
disorder properties, and on the lattice size.
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