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Google matrix and dynamical attractors
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We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius
operator of the Chirikov typical map with dissipation. This simple dynamical model creates scale-
free directed networks with characteristics being rather similar to those of the World Wide Web.
The simple dynamical attractors play here the role of popular web sites with a strong concentration
of PageRank. A variation of the Google parameter α or other system parameters drives the system
to a delocalized phase with a strange attractor where the Google search becomes inefficient.

PACS numbers: 05.45.-a, 89.20.Hh, 05.45.Ac

The World Wide Web (WWW) continues its striking
expansion going beyond 1011 web pages. Information re-
trieval from such an enormous data base becomes the
main challenge for WWW users. An efficient solution,
known as the PageRank Algorithm (PRA) proposed by
Brin and Page in 1998 [1], forms the basis of the Google
search engine used by the majority of internautes in ev-
eryday life. The PRA is based on the construction of the
Google matrix which can be written as (see e.g. [2] for
details):

G = αS + (1 − α)E/N . (1)

Here the matrix S is constructed from the adjacency ma-
trix A of directed network links between N nodes so that
Sij = Aij/

∑
k Akj and the elements of columns with only

zero elements are replaced by 1/N . The second term in
r.h.s. of (1) describes a finite probability 1−α for WWW
surfer to jump at random at any node so that the ma-
trix elements Eij = 1. This term allows to stabilize the
convergence of PRA introducing a gap between the max-
imal eigenvalue λ = 1 and other eigenvalues λi. Usually
the Google search uses the value α = 0.85 [2]. By the
construction

∑
iGij = 1 so that the asymmetric matrix

G has a left eigenvector being a constant for λ = 1. The
right eigenvector at λ = 1 is the PageRank vector with
positive elements pj and

∑
j pj = 1. All WWW nodes

can be ordered by decreasing pj so that the PageRank
plays a primary role in the ordering of websites and in-
formation retrieval. By the construction the operator G

belongs to the class of Perron-Frobenius operators [2].
The studies of properties of G are usually done only for

the PageRank vector which can be find efficiently by the
PRA due to a relatively small average number of links in
WWW. It is established that for large WWW subsets pj

is satisfactory described by a scale-free algebraic decay
with pj ∼ 1/jβ where j is the PageRank ordering index
and β ≈ 0.9 [2, 3]. A first attempt to analyze the prop-
erties of right eigenvectors ψi (Gψi = λiψi) and complex
eigenvalues λi was done recently in [4]. The Google ma-
trix was constructed from a directed network generated

FIG. 1: (Color online) PageRank pj for the Google matrix
generated by the Chirikov typical map (2) at T = 10, k =
0.22, η = 0.99 (set T10, top row) and T = 20, k = 0.3,
η = 0.97 (set T20, bottom row) with α = 1, 0.95, 0.85 (left to
right). The phase space region 0 ≤ x < 2π;−π ≤ p < π is
divided on N = 3.6 ·105 cells; pj is zero for blue and maximal
for red.

by the Albert-Barabasi model and the WWW University
networks with randomization of links. It was shown that
at certain conditions a delocalization phase emerges for
the PageRank and states with complex λ. In spite of
a number of interesting results found in [4] a weak fea-
ture of models used there is a significant gap between
λ = 1 of PageRank vector and λi of other vectors. Thus
the PageRank was not very sensitive to α while for real
WWW (without randomization of links) it is know that
pj is rather sensitive to α due to existence of λi close
to 1 [2, 4]. In this work we use another approach and
construct the Google matrix from the Perron-Frobenius
operator generated by a dynamical system described by
the Chirikov typical map [5] with dissipation. This model
has many λi close to 1 and the PageRank becomes sensi-
tive to α (see Fig. 1). We find that it captures also other
specific properties of real Google matrix.

The dynamical system is described by the Chirikov
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FIG. 2: (Color online) PageRank distribution pj for N = 104,
9 · 104, 3.6 · 105 and 1.44 · 106 shown by red, magenta, green
and blue curves, the dashed straight lines show fits pj ∼ 1/jβ

with β: 0.48 (b), 0.88 (e), 0.60 (f). Dashed lines in panels
(a),(d) show an exponential Boltzmann decay (see text, lines
are shifted in j for clarity). Other parameters and panel order
are as in Fig. 1. In panels (a),(d) the curves at large N become
superimposed. Here and below logarithms are decimal.

typical map introduced in 1969 for a description of con-
tinuous chaotic flows [5]:

p̄ = ηp+ k sin(x+ θt) , x̄ = x+ p̄ . (2)

Here the bars note the new values of variables and θt =
θt+T are T random phases periodically repeated in time
t. We consider the map in the region of Fig. 1 with
the periodic boundary conditions. The parameter 0 <
η ≤ 1 gives the global dissipation. The properties of
the symplectic map at η = 1 have been studied recently
in detail [6]. The dynamics is globally chaotic for k >
kc ≈ 2.5/T 3/2 and the Kolmogorov-Sinai entropy is h ≈
0.29k2/3.

The Google matrix for the map (2) is built in the fol-
lowing way: the whole phase space region is divided into
N = Nx ×Np cells (Nx = Np), Nc trajectories are prop-
agated from a cell j on T map iterations and the ele-
ments Sij are taken to be equal to a relative number
Ni of trajectories arrived at a cell i (Sij = Ni/Nc and∑

i Sij = 1). Thus S gives a coarse-grained approxima-
tion of the Perron-Frobenius operator for the map (2).
The Google matrix G of size N is constructed from S

according to Eq. (1). To construct Sij we usually use
Nc = 104 but the properties of S are not affected by
a variation of Nc in the interval 103 ≤ Nc ≤ 105. A
finite cell size corresponds physically to an addition of
noise of amplitude σ ∼ 2π/

√
N in r.h.s. of (2). Up

to N = 22500 we used exact diagonalization of G to
determine all eigenvalues λi and right eigenvectors ψi,
for larger N up to N = 1.44 · 106 we used the PRA to
determine the PageRank vector. The majority of data
are presented for two typical sets T 10, T 20 of parame-
ters of (2) shown in Fig. 1 with numerically computed
h = 0.085, 0.108 for T 10, T 20. For these sets the dy-
namics has a few fixed point attractors but it takes a
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FIG. 3: (Color online) Differential distribution of number of
nodes with ingoing Pin(κ) (blue) and outgoing Pout(κ) (red)
links κ for sets T10 (left) and T20 (right). The straight dashed
lines give the algebraic fit P (κ) ∼ κ−µ with the exponent µ =
1.86, 1.11 (T10, T20) for ingoing and µ = 1.91, 1.46 (T10, T20)
outgoing links. Here N = 1.44 · 106 and P (κ) gives a number
of nodes at a given integer number of links κ for this matrix
size. Blue point at κ = 0 shows that in the whole matrix
there is a significant number of nodes with zero ingoing links.

long time t ∼ 103 to reach them. During this time a
trajectory visits various regions of phase space. The dis-
tribution of ingoing Pin(κ) and outgoing Pout(κ) links
κ in S is satisfactory described by a scale-free algebraic
decay P ∼ 1/κµ with µ ≈ 1.86, 1.11 for ingoing and
1.91, 1.46 outgoing links at T 10, T 20 respectively and a
typical number of links per node κ ∼ 10 (see Fig. 3 and
Fig. 7 of Appendix). Such values are compatible with
the WWW data of scale-free type where µ ≈ 2.1, 2.7 for
ingoing, outgoing links [2, 3]. In our model a large num-
ber of links appears due to exponential stretching of one
cell after T map iterations that gives k ∼ exp(hT ).

The variation of PageRank pj with α is shown in Fig. 1
for two sets. At α = 1 pj is concentrated only on a few
local spots corresponding to fixed point attractors. Phys-
ically this happens due to presence of σ noise, induced
by cell discretization, which leads to transitions between
various fixed points. With the decrease of α the PageR-
ank starts to spread over a strange attractor set. The
properties of strange attractors in dynamical dissipative
systems are described in [7]. In the map (2) the strange
attractor appears at larger values of k (namely k > 0.5
for T 10, k > 0.34 for T 20, see Figs. 8, 9 of Appendix)
but a presence of effective noise induced by σ and 1 − α
terms leads to an earlier emergence of strange attractor.
Below a certain value α < αc the PageRank becomes
completely delocalized over the strange attractor as it is
clearly seen in Fig. 1 for the set T 10.

The dependence of pj on j is shown in more detail in
Fig. 2. For α = 1 PageRank shows a rapid drop with
j that can be fitted by an exponential Boltzmann type
distribution pj ∼ exp(−bγcj/Dσ) where b is a numeri-
cal constant (b ≈ 1.4; 2.1 for T 10;T 20), γc = −T ln η is
the global dissipation rate and Dσ = σ2N ≈ (2π)2 is σ
noise diffusion (dashed lines in Fig. 2a,d). Such an ex-
ponential decay results from the Fokker-Planck descrip-
tion of map (2) in the presence of σ noise term which
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FIG. 4: (Color online) (a) Dependence of gap 1−|λ| on Google
matrix size N for few eigenstates with |λ| most close to 1, set
T10, α = 1; (b) dependence of PAR ξ on γ = −2 ln |λ| for
N = 2500, 5625, 8100, 104, 14400 for set T10, α = 1 (curves
from top to bottom: red, magenta, green, blue, black); (c)
complex plane of eigenvalues λ for set T10 with their PAR
ξ values shown by grayness (black/blue for minimal ξ ≈ 4,
gray/light magenta for maximal ξ ≈ 300; here α = 1, N =
1.44 · 104); (d) same as (c) but for set T20.

gives diffusive transitions on nearby cells. For α < 1
random surfer transitions introduced by Google give a
significant modification of PageRank which shows an al-
gebraic decay pj ∼ 1/jβ with the exponent β dependent
on α (Fig. 2b,e,f); for the set T 20 at α = 0.95 we obtain
β ≈ 0.88 being close to the numerical value found for the
WWW [2]. However, β decreases with the decrease of α
and for T 10 set a delocalization takes place for α = 0.85
so that pj spreads homogeneously over the strange attrac-
tor (see Fig. 1 top right panel and Fig. 2c). For T 20 set
pj ∼ ψi=1(j) remains localized at α = 0.85 so that a PAr-
ticipation Ratio (PAR) ξ =

∑
j(|ψi(j)|2)2/

∑
j(|ψi(j)|4

for the PageRank remains finite at large N .

To understand the origin of the delocalization transi-
tion in α we analyze in Fig. 4 the properties of all eigen-
values λi and eigenvectors ψi with their PAR ξ. Due to σ
noise activation transitions take place between these fixed
points leading to states with λi being exponentially close
to λ = 1 (Fig. 4a). The distribution of λi in the com-
plex plan is shown in Fig. 4c,d: there are λi approaching
λ = 1 mainly along the real axis but a majority of λi are
distributed inside a circle of finite radius around λ = 0;
this radius decreases with the increase of global dissipa-
tion from γc = 0.10 for set T 10 to γc = 0.61 for T 20.
The PAR values for states inside the circle have typical
values 4 ≤ ξ ≤ 300 shown by grayness. The dependence
of ξ on γ = −2 ln |λ| and N shows that the eigenstates
inside the circle remain localized at large N (Fig. 4b).
We attribute this to the fact that at large N the diffu-

0.5

1.0

0 4 8 12
.....

....
...
................................................

2

3

4

3.0 3.5 4.0

d
W

/d
γ

γ

lo
g
N

γ

log N

FIG. 5: Probability distribution dW (γ)/dγ for set T10, α =
1 at N = 2.5 · 103(×), 104(+), 1.44 · 104 (dots); W (γ) is
normalized by the number of states Nγ = 0.55N0.85 with
γ < 6. Inset: dependence of number of states Nγ with γ < γb

on N for sets T10 (circles, γb = 6) and T20 (triangles, γb = 3);
dashed lines show the fit Nγ = ANν with A = 0.55, ν = 0.85
and A = 0.97, ν = 0.61 respectively.

sion due to σ noise in presence of dissipation leads to
spreading only over a finite number of cells and thus ξ
remains bounded. This ξ(γ,N) dependence is different
from one obtained in [4] for the Albert-Barabasi model,
the comparison with data from WWW University net-
works is less conclusive due to strong fluctuations from
one network to another (see Fig. 4 in [4]): an average
growth of ξ is visible there even if at N ∼ 104 the values
of ξ are comparable with those of Fig. 4b. Globally our
data of Fig. 4 show that the diffusive modes at |λi| < 1
remain localized on a number of nodes ξ ≪ N . In agree-
ment with the known theorems [2] our numerical data
show that for the states with 0 < |λi| < 1 their ξi are
independent of α.

Another interesting characteristic of G is the density
distribution dW (γ)/dγ over γ. The data presented in
Fig. 5 show that it becomes size independent in the limit
of large N . At small γ < 3 the density decreases ap-
proximately linearly with γ without any large gap. We
find rather interesting that the total number of states Nγ

with finite γ < γb ≈ 5 grows algebraically as Nγ = ANν

with ν < 1 (Fig. 5 inset). We interpret this result on
the basis of the fractal Weyl law established recently for
matrices with fractal eigenstates (see e.g. [8] and Refs.
therein). According to this law the exponent ν = d − 1
where d is the fractal dimension of the system. Approx-
imately we have d − 1 ≈ 1 − γc/(Th) [7, 8] that gives
ν = 0.88, 0.72 for the sets T 10, T 20 with the numerical
values of γc, h given above. These values are in a good
agreement with the fit data ν = 0.85, 0.61 of Fig. 5 inset.
The fact that ν < 1 implies that almost all states have
λ = 0 in the limit of large N (in this work we do not dis-
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FIG. 6: (Color online) Dependence of PageRank ξ on α for
set T10 at N = 5625 (dotted magenta), 1.44 · 104 (dotted
red), 9 · 104 (dashed red), 6.4 · 105 (full red) and for T20 at
N = 1.44 · 104 (dotted blue), 9 · 104 (dashed blue), 6.4 · 105

(full blue). Inset shows dependence of ξ on k for set T10 at
α = 0.99 with N = 1.44 · 104 (dotted red), 9 · 104 (dashed
red), 3.6 · 105 (full red).

cuss the properties of these degenerate states with large
ξ ∼ N).

The dependence of PAR ξ of the PageRank on α andN
is shown in Fig. 6. It allows to determine the critical value
αc below which the PageRank becomes delocalized show-
ing ξ growing with N . The obtained data give αc ≈ 0.95,
0.8 for T 10, T 20. Further investigations are needed to
understand the dependence of αc on system parameters.
Here we make a conjecture that 1 − αc ≈ Cγc ≪ 1 with
a numerical constant C ≈ 0.3. Indeed, for larger dissi-
pation rate γc = −T ln η a radius of a circle with large
density of λi in the complex plane λ becomes smaller (see
Fig. 4c,d) and thus larger values of 1−α are required to
get a significant contribution of these excited relaxation
modes to the PageRank. Also the data of [8] for systems
with absorption rate γc show a low density of states at
γ < γc so that it is natural to expect that one should
have 1−αc ∼ γc to have a significant contribution of de-
localized relaxation modes from a strange attractor set
to the PageRank. It is quite probable that C depends in
addition on system parameters. Indeed, even at fixed γc

and α = 0.99 being rather close to 1 it is possible to have
a transition from localized to delocalized PageRank by
increasing k in the map (2) (see Fig. 6 inset and Fig. 10
of Appendix). This transition in k takes place approx-
imately at k ≈ 0.55 when fixed point attractors merge
into a strange attractor (see the bifurcation diagram in
Figs. 8 of Appendix). A peak in ξ around k ≈ 0.38 is re-
lated to birth and disappearance of a strange attractor in
a narrow interval of k at k ≈ 0.38. At the same time an
increase of k from 0.22 to 0.6 practically does not affect
the distributions P (κ) changing the value of µ only by

10%. This shows that the correlations inside the directed
network generated by the map (2) play a very important
role.

In summary, we demonstrated that the Perron-
Frobenius operator built from a simple dissipative map
with dynamical attractors generates a scale-free directed
network with properties being rather similar to the
WWW. The Google matrix of this dynamical system re-
produces many properties of real networks with an al-
gebraic decay of the PageRank and quasi-degeneracy of
eigenvalues near unity for the Google parameter α = 1.
In this formulation the popular websites correspond to
dynamical fixed point attractors which help to generate
global scale-free properties of the network. The PageR-
ank of the system becomes delocalized for α smaller than
a certain critical value, such a delocalization is linked to
emergence of a strange attractor. Even for α very close to
unity a moderate change of system parameters can drive
the system to a strange attractor regime with a complete
delocalization of the PageRank making the Google search
inefficient. In view of a great importance of the Google
search for WWW [2, 3] and its new emerging applica-
tions [9] it may be rather useful to study in more detail
the properties of the Google matrix generated by simple
dynamical maps.
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FIG. 7: (Color online) Same as in Fig. 3 for the set T10 at
k = 0.22 (left) and k = 0.6 (right) and N = 3.6 · 105. The fit
gives the exponent µ = 1.87, 1.92 for ingoing (blue), outgoing
(red) links at k = 0.22 (left) and µ = 1.70, 1.83 for ingoing
(blue), outgoing (red) links at k = 0.6 (right).

APPENDIX

The Chirikov typical map (2) is studied here for the
following random phases θt/2π for the set T 10 :
0.562579, 0.279666, 0.864585, 0.654365, 0.821395,
0.981145, 0.478149, 0.834115, 0.180307, 0.15902
and for the set T 20:
0.415733267627, 0.310795551489, 0.632094907846,
0.749488203411, 0.924301928270, 0.635937571045,

0.118768635110, 0.647524548037, 0.651928927275,
0.952312529146, 0.370553510280, 0.810837257644,
0.814808044380, 0.834758628241, 0.993694010264,
0.702057578688, 0.828693568678, 0.855421638697,
0.278538720979, 0.653773338142.

After each T iterations the values of p are reduced
inside the interval (−π, π) corresponding to the periodic
boundary conditions.

For the set T 10 (k = 0.22, η = 0.99) we have the
theoretical value of the Kolmogorov-Sinai entropy h =
0.29k2/3 = 0.105 for the symplectic map at η = 1 [6],
the actual value determined numerically is h = 0.0851.
For η = 0.99 we also have γc = −T ln η = 0.1005; the
theoretical value of the fractal exponent for data in Fig. 5
inset is ν = 1 − γc/(Th) = 1 − 0.118 = 0.882 while the
numerical fit gives ν = 0.85.

For the set T 20 (k = 0.3, η = 0.97) we have h =
0.29k2/3 = 0.1299, the actual numerical value is h =
0.1081, γc = −T ln η = 0.609; the theoretical fractal ex-
ponent for data in Fig. 5 inset is ν = 1 − γc/(Th) =
1 − 0.282 = 0.718 while the numerical fit gives ν = 0.61.

Figs. 7-10 presented in Appendix give more informa-
tion for the main part of the paper.
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FIG. 8: (Color online) Bifurcation diagram showing values
of p vs. map parameter k for the set T10. The values of p,
obtained from 10 trajectories with initial random positions in
the phase space region, are shown for integer moments of time
100 < t/T ≤ 110 (left) and 104 < t/T ≤ 104 + 100 (right).

FIG. 9: (Color online) Same as in Fig. 8 for the set T20.

FIG. 10: (Color online) Same as Fig. 1 for the set T10 at
α = 0.99, N = 3.6 · 105 at k = 0.22 (left) and k = 0.6 (right);
PAR ξ are the same as in the inset of Fig. 6.


