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Google matrix, dynamical attractors and Ulam networks
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We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius
operator of the Chirikov typical map with dissipation. The finite size matrix approximant of this
operator is constructed by the Ulam method. This method applied to the simple dynamical model
creates the directed Ulam networks with approximate scale-free scaling and characteristics being
rather similar to those of the World Wide Web. The simple dynamical attractors play here the role
of popular web sites with a strong concentration of PageRank. A variation of the Google parameter
α or other parameters of the dynamical map can drive the PageRank of the Google matrix to a
delocalized phase with a strange attractor where the Google search becomes inefficient.

PACS numbers: 05.45.-a, 89.20.Hh, 05.45.Ac

I INTRODUCTION

The World Wide Web (WWW) continues its striking
expansion going beyond 1011 web pages. Information
retrieval from such an enormous database becomes the
main challenge for WWW users. An efficient solution,
known as the PageRank Algorithm (PRA) proposed by
Brin and Page in 1998 [1], forms the basis of the Google
search engine used by the majority of internautes in ev-
eryday life. The PRA is based on the construction of the
Google matrix which can be written as (see e.g. [2] for
details):

G = αS + (1 − α)E/N . (1)

Here the matrix S is constructed from the adjacency ma-
trix A of directed network links between N nodes so that
Sij = Aij/

∑
k Akj and the elements of columns with only

zero elements are replaced by 1/N . The second term in
r.h.s. of (1) describes a finite probability 1−α for WWW
surfer to jump at random to any node so that the ma-
trix elements Eij = 1. This term allows to stabilize the
convergence of PRA introducing a gap between the max-
imal eigenvalue λ = 1 and other eigenvalues λi. Usually
the Google search uses the value α = 0.85 [2]. By the
construction

∑
iGij = 1 so that the asymmetric matrix

G has a left eigenvector being a homogeneous constant
for λ = 1. The right eigenvector at λ = 1 is the PageR-
ank vector with positive elements pj and

∑
j pj = 1. All

WWW nodes can be ordered by decreasing pj so that the
PageRank plays a primary role in the ordering of websites
and information retrieval. The classification of nodes in
the decreasing order of pj values is used by the Google
search to classify importance of web nodes. The informa-
tion retrieval and ordering is based on this classification
and we also use it in the following.

It is interesting and important to note that by the con-
struction the operator G belongs to the class of Perron-
Frobenius operators [2]. Such type of operators naturally

appear in the ergodic theory [3] and in the description of
dynamical systems with Hamiltonian or dissipative dy-
namics [4, 5].

The studies of properties of G are usually done only for
the PageRank vector which can be find efficiently by the
PRA due to a relatively small average number of links
in WWW. At present Google succeeds to operate with
PageRank vectors of size of the whole WWW being of the
order of 1011. It is established that for large WWW sub-
sets pj is satisfactory described by a scale-free algebraic
decay with pj ∼ 1/jβ where j is the PageRank order-
ing index and β ≈ 0.9 [2, 6]. The studies of PageRank
properties are now very active in the computer science
community being presented in a number of interesting
publications (see e.g. [7, 8, 9] and an overview of the
field in [10]).

While the properties of the PageRank are of primary
importance it is also interesting to analyze the properties
of the Google matrix G as a whole large matrix. Such an
analysis can help to establish links between the Google
matrix and other fields of physics where large matrices
play an important role. Among such fields we can men-
tion the Random matrix theory [11] which finds applica-
tions for a description of spectra in complex many-body
quantum systems and the Anderson localization which is
an important physical phenomenon for an electron trans-
port in disordered systems (see e.g. [12]). A transition
from localized to delocalized eigenstates also can take
place in networks of small world type (see [13, 14]). How-
ever, in the physical systems considered in [11, 12, 13, 14]
all matrices are Hermitian with real eigenvalues while the
Perron-Frobenius matrices have generally complex eigen-
values.

A first attempt to analyze the properties of right
eigenvectors ψi (Gψi = λiψi) and complex eigenvalues
λi was done recently in [15]. The Google matrix was
constructed from a directed network generated by the
Albert-Barabasi model and the WWW University net-
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FIG. 1: (Color online) PageRank pj for the Google matrix
generated by the Chirikov typical map (2) at T = 10, k =
0.22, η = 0.99 (set T10, top row) and T = 20, k = 0.3,
η = 0.97 (set T20, bottom row) with α = 1, 0.95, 0.85 (left to
right). The phase space region 0 ≤ x < 2π;−π ≤ p < π is
divided on N = 3.6 ·105 cells; pj is zero for blue and maximal
for red.

works with randomization of links. The Google matrix
was considered mainly for the value α = 0.85. It was
shown that at certain conditions a delocalization phase
emerges for the PageRank and states with complex λ.
In spite of a number of interesting results found in [15]
a weak feature of models used there is a significant gap
between λ = 1 of PageRank vector and |λi| ≤ 0.4 of
other vectors. We note that according to [15] the Uni-
versity networks have |λi| close to 1 but after random-
ization of links a large gap emerges in the spectrum of
λ. This gap in |λ| was rather large and was not sensi-
tive to a variation of α in the interval 0.85 ≤ α ≤ 1.
Hence, the PageRank vector also was not very sensitive
to α while for real WWW it is know that pj is rather
sensitive to α due to existence of |λi| close to 1 [2, 15].
Thus the results obtained in [15] show that even if the
Google matrix is constructed on the basis of typical mod-
els of scale-free networks it is quite possible that its spec-
trum may have a large gap for 0.85 ≤ α ≤ 1 thus being
rather far from spectral properties of the Google matrices
of WWW. Therefore it is rather desirable to have other
simple models which generate a directed network with
Google matrix properties being close to those of WWW.

With an aim to have more realistic models we develop
in this work another approach and construct the Google
matrix from the Perron-Frobenius operator generated by
a certain dynamical system. The probability flow in these
models has rich and nontrivial features of general impor-
tance like simple and strange attractors with localized
and delocalized dynamics governed by simple dynamical
rules. Such objects are generic for nonlinear dissipative
dynamics and hence can have relevance for actual WWW
structure. Thus these objects can find some reflections in

the PageRank properties. The dynamical system is de-
scribed by the Chirikov typical map [16] with dissipation,
the properties of this simple model has been analyzed in
detail in a recent work [17]. We find that the Google
matrix generated by this dynamical model has many λi

close to 1 and the PageRank becomes sensitive to α (see
Fig. 1). This model captures also other specific prop-
erties of WWW Google matrices. To construct a net-
work of nodes from a continuous two-dimensional phase
space we divide the space of dynamical variables (x, y)
on N = Nx ×Ny cells (we use Nx = Ny). Then Nc tra-
jectories are propagated from a cell j on the whole period
of the dynamical map and the elements Sij are taken to
be equal to a relative number Ni of trajectories arrived
at a cell i (Sij = Ni/Nc and

∑
i Sij = 1). Thus S gives

a coarse-grained approximation of the Perron-Frobenius
operator for the dynamical map. The Google matrix G

of size N is constructed from S according to Eq. (1). We
use a sufficiently large values of Nc so that the properties
of G become not sensitive to Nc.

Such a discrete approximation of the Perron-Frobenius
operator is known in dynamical systems as the Ulam
method [18]. Indeed, Ulam conjectured that such
a matrix approximant correctly describes the Perron-
Frobenius operator of continuous phase space. For hy-
perbolic maps the Ulam conjecture was proven in [19].
Various types of more generic one-dimensional maps have
been studied in [20, 21, 22]. Further mathematical re-
sults have been reported in [23, 24, 25, 26] with exten-
sions and prove of convergence for hyperbolic maps in
higher dimensions. However, the studies of more generic
two-dimensional maps remain rather restricted (see e.g.
[27]) and non-systematic. In principle the construction
of directed graphs on the basis of dynamical systems is
a known mathematical approach (see e.g. [5]) but the
spectral properties of the Google matrix built on such
graphs were not studied till now.

In this paper we show that the Ulam method applied
to two-dimensional dissipative dynamical maps gener-
ates a new type of directed networks which we call the
Ulam networks. We present here numerical and analyti-
cal studies of certain properties of the Google matrix of
such networks.

The paper is organized as follows: in Section II we give
the description the Chirikov typical map and the way the
Ulam network is constructed on the basis of this map
with the corresponding Google matrix, the properties of
the map and the network are described here; in Section
III the properties of the eigenvalues and eigenstates of
the Google matrix are analyzed in detail including the
delocalization transition for the PageRank, fractal Weyl
law and the global contraction properties; the summary
of the results is presented in Section IV.
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II ULAM NETWORKS OF DYNAMICAL MAPS

Chirikov typical map

To construct an Ulam network and a generated by it
Google matrix we use a dynamical two-dimensional dis-
sipative map. The dynamical system is described by the
Chirikov typical map introduced in 1969 for a description
of continuous chaotic flows [16]:

yt+1 = ηyt + k sin(xt + θt) , xt+1 = xt + yt+1 . (2)

Here the dynamical variables x, y are taken at integer mo-
ments of time t. Also x has a meaning of phase variable
and y is a conjugated momentum or action. The phases
θt = θt+T are T random phases periodically repeated
along time t. We stress that their T values are chosen and
fixed once and they are not changed during the dynami-
cal evolution of x, y. We consider the map in the region
of Fig. 1 (0 ≤ x < 2π,−π ≤ y < π) with the 2π-periodic
boundary conditions. The parameter 0 < η ≤ 1 gives the
global dissipation. The properties of the symplectic map
at η = 1 have been studied recently in detail [17]. The
dynamics is globally chaotic for k > kc ≈ 2.5/T 3/2 and
the Kolmogorov-Sinai entropy is h ≈ 0.29k2/3 (more de-
tails about chaotic dynamics and the Kolmogorov-Sinai
entropy can be found in [3, 4, 28, 29]).

In this study we use two random sets of phases θt with
T = 10 and T = 20. Their values are given in the Ap-
pendix. We also fixed the dissipation parameter η = 0.99
for T = 10 and η = 0.97 for T = 20. We call these two
sets of parameters as T 10 and T 20 sets respectively. The
majority of data are obtained at k = 0.22 for the set T 10
and at k = 0.3 for the set T 20 (see Fig. 1). These are
two main working points for this work.

For the set T 10 (k = 0.22, η = 0.99) we have the
theoretical value of the Kolmogorov-Sinai entropy h =
0.29k2/3 = 0.105 for the symplectic map at η = 1 [17].
The actual value at η = 1 is determined numerically by
the computation of the Lyapunov exponent and has a
value h = 0.0851. For η = 0.99 we also have the global
dissipation rate γc = −T ln η = 0.1005 after the map
period (which is equal to T iterations). The global con-
traction factor is Γc = ηT = exp(−γc) = 0.9043. For a
weak dissipation the fractal dimension d of the limiting
set can be approximately estimated in a usual way (see
e.g. [29]) as d = 2 − γc/(Th) = 1.882.

In a similar way for the set T 20 (k = 0.3, η = 0.97) we
have the theoretical value h = 0.29k2/3 = 0.1299, while
the actual numerical value is h = 0.1081. Also here γc =
−T ln η = 0.609, Γc = 0.5437 and the estimated fractal
dimension of the limiting set is d = 2− γc/(Th) = 1.718.

The bifurcation diagrams for the sets T 10 and T 20
are shown in Fig. 2 and Fig. 3 respectively. On large
time scales we clearly see parameter k regions with simple
and chaotic attractors. For a shorter time scales a dis-
tinction between two regimes becomes less pronounced.

FIG. 2: Bifurcation diagram showing values of y vs. map
parameter k for the set T10 of the Chirikov typical map (2).
The values of y, obtained from 10 trajectories with initial
random positions in the phase space region, are shown for
integer moments of time 100 < t/T ≤ 110 (left panel) and
104 < t/T ≤ 104 + 100 (right panel).

FIG. 3: Same as in Fig. 2 for the set T20.

This means that during a long time a trajectory moves
between few simple attractors (which are clearly seen in
Fig. 1 in the left column) before a final convergence is
reached.

Network construction and distribution of links

The Ulam network for the Chirikov typical map (2)
is constructed in the following way. The whole phase
space region 2π × 2π is divided into N = Nx × Ny cells
(Nx = Ny) and Nc trajectories are propagated from each
given cell j during T map iterations which form the pe-
riod of the map. After that the elements of matrix Sij

are computed as Sij = Ni/Nc(j) where Ni is a num-
ber of trajectories arrived from a cell j to cell i. In this
way we have by a definition

∑
i Sij = 1. Such S gives

a coarse-grained approximation of the Perron-Frobenius
operator for the map (2). The Google matrix G of size
N is constructed from S according to Eq. (1). To con-
struct Sij we usually use Nc = 104 but the properties
of S are not affected by a variation of Nc in the interval
103 ≤ Nc ≤ 105. Since the cell size is very small it is
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FIG. 4: (Color online) Differential distribution of number of
nodes with ingoing Pin(κ) (blue) and outgoing Pout(κ) (red)
links κ for sets T10 (left) and T20 (right). The straight dashed
lines give the algebraic fit P (κ) ∼ κ−µ with the exponent µ =
1.86, 1.11 (T10, T20) for ingoing and µ = 1.91, 1.46 (T10, T20)
outgoing links. Here N = 1.44 · 106 and P (κ) gives a number
of nodes at a given integer number of links κ for this matrix
size. Blue point at κ = 0 shows that in the whole matrix
there is a significant number of nodes with zero ingoing links.

unimportant in what way Nc trajectories are distributed
inside the cell. Up to statistical fluctuations, the val-
ues of Sij remains the same for homogeneous or random
distribution of Nc trajectories inside a cell.

Up to N = 22500 we used exact diagonalization of G

to determine all eigenvalues λi and right eigenvectors ψi,
for larger N up to N = 1.44 · 106 we used the PRA to
determine the PageRank vector. The majority of data
are presented for two typical sets T 10, T 20 of parameters
of the map (2) and the PageRanks for various values of α
are shown in Fig. 1. For these sets the dynamics has a few
fixed point attractors but it takes a long time t ∼ 103 to
reach them. During this time a trajectory visits various
regions of phase space.

It is important to note that the discreteness of phase
space linked to a finite cell size produces an important
physical effect which is absent in the original continu-
ous map (2): effectively it introduces an additional noise
which amplitude σ is approximately σ ∼ 2π/

√
N . This

becomes especially clear for the symplectic case at η = 1
and at small values of k at T = 1 (all θt are the same).
In this case the map is reduced to the Chirikov standard
map [28] and the continuous map dynamics is bounded by
the invariant Kolmogorov-Arnold-Moser (KAM) curves.
However, the discreteness of phase space allows to jump
from one cell to another and thus to jump from one curve
to another. This leads to a diffusion in y direction and
appearance of a homogeneous ergodic state at λ = 1.
A direct analysis also shows that at any finite cell size
the operator S has a homogeneous ergodic state with
λ = 1, we also checked this via numerical diagonaliza-
tion of matrix sizes N ≈ 20000. This example shows
that the Ulam conjecture is not valid for quasi-integrable
symplectic maps in the KAM regime.

The physical origin of the difference between the con-
tinuous map and the finite size cell approximation is due
to introduction of an effective noise term σt in r.h.s. of
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FIG. 5: (Color online) Same as in Fig. 3 for the set T10 at
k = 0.22 (left) (same as Fig. 4 left) and k = 0.6 (right) and
N = 3.6 · 105. The fit gives the exponent µ = 1.87, 1.92 for
ingoing (blue), outgoing (red) links at k = 0.22 (left) and µ =
1.70, 1.83 for ingoing (blue), outgoing (red) links at k = 0.6
(right).

(2) induced by a finite cell size. Due to this noise the
trajectories diffuse over all region −π < y < π after a
diffusive time scale tD ∼ π2/σ2 even if the continuous
map is in the KAM regime with bounded dynamics in
y. Hence, here σ ∼ 2π/

√
N is an effective amplitude of

noise introduced by cell discreetness.
Even if this σ-noise leads to a drastic change of dynam-

ics for quasi-integrable regime its effects are not very im-
portant in the case of chaotic dynamics where noise gives
only a small additional variation as compared to strong
dynamical variations induced by dynamical chaos. With
such a physical understanding of discreetness effects we
continue to investigate the properties of the Ulam net-
works. However, we stress that the σ-noise is local in the
phase space and hence it is qualitatively different from
the Google term α which generates stochastic jumps over
all sites.

In Figs. 4,5 we show the distributions of ingoing Pin(κ)
and outgoing Pout(κ) links κ in the Ulam network pre-
sented by S matrix generated by the map (2) as described
above. These distributions are satisfactory described by
a scale-free algebraic decay P ∼ 1/κµ with µ ≈ 1.86, 1.11
for ingoing and 1.91, 1.46 outgoing links at T 10, T 20 re-
spectively and a typical number of links per node κ ∼ 10
(see Fig. 4 and Fig. 5). Such values are compatible with
the WWW data of scale-free type where µ ≈ 2.1, 2.7 for
ingoing, outgoing links [2, 6]. However, we may also note
an appearance of certain deviations at large values of κ.
Indeed, for a dynamical system a large number of links
appears due to exponential stretching of one cell after
T map iterations that gives a typical number of links
k ∼ exp(hT ). It is possible that during the dynamical
evolution much larger values of stretching can appear.
Indeed, the comparison of two cases at k = 0.22 and
k = 0.6 for the set T 10 in Fig. 5 shows that for larger k
the scale-free distribution continues to much larger values
of κ > 200 while for smaller k the scale-free type decay
stops around κ ≈ 50. For the set T 20 the stretching is
stronger and the scale-free decay continues up to larger
values of κ.
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It is clear that for the Ulam networks discussed here
one has a rapid exponential decay of links distribution at
asymptotically large link number κ. However, due to an
exponential growth of typical κ ∼ exp(hT ) a scale-free
type decay can be realized up to very large κ by increas-
ing T . In these studies we stay at the chosen working
points where a scale-free decay remains dominant for ma-
trix sizes of the order of N ∼ 105 − 106.

Finally we note that the models of the Google ma-
trix generated by the Ulam networks are most interest-
ing for dissipative maps. Indeed, by construction the left
eigenvector of the Google matrix ψ+

i G = ψ+
i at λ = 1

is a homogeneous vector ψ+
i = const. As a result for

symplectic maps the right vector of PageRank pj is also
homogeneous. Only dissipation term generates an inho-
mogeneous decay of pj .

III PROPERTIES OF EIGENVALUES AND
EIGENSTATES

Delocalization transition for PageRank with α

The variation of PageRank pj with α is shown in Fig. 1
for two sets T 10 and T 20. The distribution pj is plotted
for each cell of the phase space (x, y), the numbering
of cells is done by the integer grid nx × ny which has a
certain correspondence with the index j which numerates
the values of pj in the decreasing order with j. At α = 1
the distribution pj is concentrated only on a few local
spots corresponding to fixed point attractors. Physically
this happens due to presence of σ noise, induced by cell
discretization, which leads to transitions between various
fixed points. With the decrease of α the PageRank starts
to spread over a strange attractor set. The properties of
strange attractors in dynamical dissipative systems are
described in [29]. In the map (2) the strange attractor
appears at larger values of k (namely k > 0.5 for T 10,
k > 0.34 for T 20, see Figs. 2, 3) but a presence of effective
noise induced by σ and 1 − α terms leads to an earlier
emergence of strange attractor. Below a certain value
α < αc the PageRank becomes completely delocalized
over the strange attractor as it is clearly seen in Fig. 1
for the set T 10.

The dependence of pj on j is shown in more detail in
Fig. 6. For α = 1 PageRank shows a rapid drop with
j that can be fitted by an exponential Boltzmann type
distribution pj ∼ exp(−bγcj/Dσ) where b is a numeri-
cal constant (b ≈ 1.4; 2.1 for T 10;T 20), γc = −T ln η is
the global dissipation rate and Dσ = σ2N ≈ (2π)2 is σ
noise diffusion (dashed lines in Fig. 6a,d). Such an ex-
ponential decay results from the Fokker-Planck descrip-
tion of map (2) in the presence of σ noise term which
gives diffusive transitions on nearby cells. For α < 1
random surfer transitions introduced by Google give a
significant modification of PageRank which shows an al-
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FIG. 6: (Color online) PageRank distribution pj for N = 104,
9 · 104, 3.6 · 105 and 1.44 · 106 shown by red, magenta, green
and blue curves, the dashed straight lines show fits pj ∼ 1/jβ

with β: 0.48 (b), 0.88 (e), 0.60 (f). Dashed lines in panels
(a),(d) show an exponential Boltzmann decay (see text, lines
are shifted in j for clarity). Other parameters, including the
values of α, and panel order are as in Fig. 1. In panels (a),(d)
the curves at large N become superimposed. Here and below
logarithms are decimal.

gebraic decay pj ∼ 1/jβ with the exponent β dependent
on α (Fig. 6b,e,f); for the set T 20 at α = 0.95 we obtain
β ≈ 0.88 being close to the numerical value found for the
WWW [2]. However, β decreases with the decrease of α
and for T 10 set a delocalization takes place for α = 0.85
so that pj spreads homogeneously over the strange attrac-
tor (see Fig. 1 top right panel and Fig. 6c). For T 20 set
pj ∼ ψi=1(j) remains localized at α = 0.85 so that a PAr-
ticipation Ratio (PAR) ξ =

∑
j(|ψi(j)|2)2/

∑
j(|ψi(j)|4

for the PageRank remains finite at large N . We use this
definion of PAR ξ for all eigenvectors ψi(j).

Properties of other eigenvectors

To understand the origin of the delocalization transi-
tion in α we analyze in Fig. 7 the properties of all eigen-
values λi and eigenvectors ψi with their PAR ξ. Due
to σ noise activation transitions take place between the
attractor fixed points leading to states with λi being ex-
ponentially close to λ = 1 (Fig. 7a). The convergence
to |λ| = 1 is exponential in N for certain states and
may lead to numerical problems at very large N . How-
ever, the standard numerical diagonalization methods re-
mained stable for the values of N used in our studies.

The distribution of λi in the complex plane is shown in
Fig. 7c,d: there are λi approaching λ = 1 mainly along
the real axis but a majority of λi are distributed inside a
circle of finite radius around λ = 0; this radius decreases
with the increase of global dissipation from γc = 0.10 for
set T 10 to γc = 0.61 for T 20. The PAR values for states
inside the circle have typical values 4 ≤ ξ ≤ 300 shown
by grayness. The dependence of ξ on γ = −2 ln |λ| and
N shows that the eigenstates inside the circle remain lo-
calized at large N (Fig. 7b). We attribute this to the fact



6

-6
-5
-4
-3
-2
-1
0

0 1 2

.. . . .
.

.. . . . .

.. . . . .

.. . . . .

.. . . . ... . . . ... . . . ... . . . .(a)

100

200

300

0 2 4 6

(b)

-0.8

0.0

0.8

..

.

.

.

.

.

..

.
.

.

.

.

.
.

.

.

.

.

.

.

. .

. .

..

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.
.
.

.

.
.

.

..
.

..

.

.

.

.

.

.

..

.

.

. .
.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

. .

.
...

.

.
.

.

..

.
.

.
.
..

.

.

.
.

.

.

.

.
..

.

. .

.

.
.

.

.

.

.

... ..
.

.

.

.

.

.
.

.
.

..
.

.

.

.. ... .... .

. ...
.

.
...

.

.
....

.

.
.. ... .

.....
.
.

...
. ...

.

.
. ..... .........

.

..

.

.

. .
.

..........
.
.

. .....
. .. .. ...

.

.
..
.... ..
.
..

.

.
.. ...

.

.
.... .. ..... .... ....
.

.
..... ... ..
.

.
. .........

.
.. .. . ....

.
.. ..
.

.

.

.
...

.

. .
....
.

.

.
. ..
..
..

.
.

..

.

.... ...
.
..

.......
.

.
.

..

..
.. .

.

.

.

.
.

. ..

.

.

. .

.

.

...
. ..

.
..

.

.
.
.

. .
.
. .

.
.
..
. .

....
.
.
.
. .

.

.
.
.

.

.
.

.

.
.
.......

.
.
.

.

.

.

.. .
.

...
.
.

.
.

.

. .

.
... .. .

.
.

.

.

.
.

..

.

.

.

.

...

.
...
.
.
..

.

.
.
.. .

.

.

..
.
. ... ..

.

..

.
.

.

.
.
.

..

.

.
.
.
..

. ...
.
.

...
.

.
.. ....
.

.
.
..

...
.

..
..

.
..

..
.
...

.

.. .
.. ..

.
.
. .

.

.
..

.

.
.

..

. .
.

.
.
.

.

.

.....
.
. ......

.
...
.

..

.
..

.

.
.

.

.
. .

.
.

.
.
.

.

.

....
.

.
.. .

.

..
.

.

.
..

.

.

.

.
.
..

. .
.

.

.
.

.

.
..

.

.

.

.

. .
.

.

.
..

. .
.

.

.

.
.

. ..
.. ........

.
.
.

.
.. ...

.

.
. ..... .

.

. .
. .... .....

.

.

.
.
.
.. .. .. ..

.

.

.

.
.

. ....
. .. .

..
.

..
.

.
..

.

.

..

..
..
.

.
.

.

.
.
..
..
.

.

.
. .

.

.

.
..

.

.
. .. ..
.

..
.

.

.
.
.

.

.

. .

.

. .

.

. .
.
.
.. ...

.

.
.....

. .

..

.
.
.

.

.
. ...
.
.

.

.

.
.
.

.

.
.

..
.
. .

.

..

.

.

. .
.

.

.
..
..

.
.
..

.
. . ... .

...
.
..

.
... .
..

.
.

.

.
.
.. .

..
..
..

. ..
.

. ..... .
.. .. ...

..

.
.

.

.
..

.

.
...
.

...

..
. .

.

.
. .
..

. ..
.

.
.
.

.

.

.
.
.

. .
.

.

.
. ...

.

..

.
... .
.
.
....

.
.
.

.

.
. .
. .
.

.

. .

.

.

.

.
.
.

.
.
..

.
.. .

.

.
.
. . . ...

.

.

.
.
.

. .
..

.
. ..
.

. .
...

.

.

.

.

.

.
.

.
.

.

.
.
.
.

.

.
.

.

.

..
..
. ..

.

.
.

...
.
.
. . .

.
.

.
. ...
..
.. .

.

.
.
..

..

.
..

.
. .. ...
.
. .

..
. ..

.

. . .
.

.
.. .

.
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.
. .

..
.

.

..
.

.

.

..

..
.
.
. ..

.

.
..

.
.
..
.
.

..
.

....

.

..
.

.

.
.
. .

.

..

.
.. .

.

... .. .
..

.

.
.

.

. .

.
.
.
.
.

.

.

... .

. .

.

.
.
. .

.

.

.

.

.

.

.

.

.
.

..

.

.. . .
.

.

.
.
..
...

.
.

.
.

.
.

.
.
... ..
.
.

.

. . ...
.

.

.
..

.

..

..

.
..

.
....
.

. .
... ..

.

.
....

. .
.

.
.
.

.

.
.

.

.
..

.
.

..
.

.

.. .. .
.

.
.

.

.

.

.

.

.
.

.

..
... ..
.
.
. ..

.
.

.
.

.

.
..

.

.. .
.. ...

.
.

.
..

.
..

. . .
.

. ...
.

.. .

.

.

.
..
.
.

. ..

.

.

. .

.

.

.
.
.

.
.

.

.

.
.

. .
...

.
. ..
.

.

.
.

.
.

.. ...

.

. ...
.
.

. ...
.
.
.

..
.

.
.
.

.

.
.

.
..

.

..

.
. . ......

.
..

.

.

.

..

.
..

.

..

.
. .

.. .. ..
.

..
. .

.
...

. .
.

.
.

.
.
.. ..

.

.
.

.

.

.. ..
..

..
.

.
.
.

.

.

.

.
. .

.

.
.

.

.
.
.

.
.
..
. .

.

.

.
. .

..
.
..

.

.

.

.......
.

.
.
. .

..

..

. .

.

.

...
.

.

.

.

.

..
. .

.

..

..

.
.... .. .

.

..

.

..
.

.

.

.
..
.

..
.
..

.
.
.

.

.
.. .

.

.
.

.
...

.

.
.

.

.

.

.

.

. .. .. ..
.

.
..

. .

. .
..

.

.

.

..
.
.

.

.

.
.
.

.
.
.

.

.

.

.

.

.
..

.

..

.
...

.
..

.

. ...
.

. . .
.

.
.

.
.

.

.

....
.

.
.
.

... .. .
.

.

.

.
..

.

.

.
.

..
.

.
...... .

..
.

.
.
.

.

. .
.

.
.

..
. .

..
.

.

..
. .

.

.
...

. .
.

.

.

. ..
.

.
.
.

.

.
... .. .
.

.

.
.
.

.
..

.
.

. ..
...

.

. . ..
.
.
.

.

..
. .

.. .
... .

.

.

.
..

.
..
.....

. .. ..
. ..
.

. ..
..
....... ... .
.
.....

.
..
.
..

.

.
.

.

.

.
.

.

.
.

.
... .
.

.

...
.

.
.

.
.
.

.... .

.

.
..

.

..

..

.

.
.

.

.

.

.. .
.

.

.
... .. ...
.

.

.

.
.
..........

.

.. .
. .

..
... .... ..

.
. ......

.
.

.
. .

.

.
.

.

.
... ....
.

.

.
.
.

.
..

.

.
..

.
.. ..... ..... .

.
.
. ...... .

.

. .
..

. .

. .
.

..
.
.

.

.
.

.

.

.

.
.
..

. ..
..... .

.

.
. ...

... .
.

.

.

.

.

. ..
.

.
.
.

...
. ..

.

.
. .
..
.

. .

.

. .

. .

..
. ...

.
.
. ..

.

...... . .... .
...

.
....

.
.
.

.. .
.
.. ...
.

.
.
.

.
..
.

.
. ... ...
.

..
. .

.. .... .
......
.

.
....

..
. .

.

.
....

.. ..

.

.
.
.
.

.
.
. . ... ..

.
.
.

. .
.

.

.
... ..... . .
.
..

...
.
... .
.

....
.
..
. ..
.
..

.
.

.. .. .
.
.

.... .. .
..
.

..
..

..
... .

. .
.. ...

. .
.
.

..
... .. ....
. .

.
.
.

. .
.
.
.

. .
.

..

. ...... .
.

.

.
.

.

.
.
... ...

.

..
.

.
..

.

...
.

.

.. ...
.

..
.

..
. .... ..

. .
. .

...
.
..
....
.
.
.

. ... ....
.
. .
.
.

.

.
.. ..

.

.
... .... .. . .. .. .. ..

.

...

.
. ...

..
.

.
.

.
.
. ..

.. .. ..
.
..... .
..

. .
.
.
.
..

. .
...
.
.... .... ..
.
..
... ...
...

.
.
.

..
...
....
.
..

.
.
.

.

.

..
.

.

...
. .

..
.

.. .. ....
.... .
.
..

.
..
.
.
.

... ...
.
. ..

.
.. . ...

.

.
.
.
.

..
.
.

.
..

.

.
.

.. ..
.
..

.
.. ....

.
...

.
.
...

.

.

.

..
.

..
..

...
.. ..... .

.

.

.

.
.
.

.
. .

..
.
...
.
.
.

.
..
.

.
.
.
.
.

.

.. .
. .

.

.

.

.
... .

..
...

.
.... .

.
. ... . .
. .
.

..

.

..
.
..

....
.
..
.
...

.

..
..
.

.. ...
.. .
..
.
.

..
.
.

.

.
...
.
. .. .

.

.
... ..

.

.
.
.
. ..

.

...
.
..
.
..

.
.

.

.

...
.

.

.. ... ... .. .
..

.
.

.
..... ..
.

.

.
...
.

.

.

.
..
.
.

.
.
.

.

.

.
.
.

.. .

.
..

... ..
.
..

.
...

..
.. .

.
.

.

.
.
.
....
.
..
..

.

..
..
.
. ... ..

.

..
.

.

..
.
..

. ...
..

.

.

.

.
... ... .

.... .

..
.
.
.

...
. ... .

.

.

.
.
. .

..
.

.

.
.

.
.. . ..

.

.
..

.

.

.
.. .

.

.

.

....
.

..
.

.. .. .
.

.
..

.

.

.

.
.. .

.
.. .

.

.

.

.
.
.
.
.

..
.

.
. ..

.

..

.
... .

.

.
.
... .
.
.
.

.

.

.

.

.
....
.

.
.

.

..

.
. ... . .

..
..
.

.
.

..

.
.....
.

.

.

.

..
.
.
.

...
.

.
. ...

.
.

.
.
.
.
.
.

.
..

.

..
.
.

.

.

.
.
.

.

.

.

.

..

.
...

.

.
.. ...

.

.

.

..
.
.
.
.
..

.

.

.
...

.

.
..

.

.
.

.

..

..

.
...

.

.

.
.

.
.. ....... ..... .. .. ... ..... .. .. .... . . ....... . ..... .... .....

(c)

-0.8

0.0

0.8

-1 0 1

. .
.

.

..

.

.

..
.

.

.
.
.
.
..

..
. .

.
.
.
.
.

.

.
.
. .

..

. .
.

.

.
.
.
.
..

.
.. ..

.

.
.... .

.
.
. .

.

.

.

.

.
.
.. .
.
.
.
.
. ..
.

.

.

.
..

.

..
.
.
.

.

.
.. .. .

.
.
. ..

..
. ....
.

.
.
..

.
.. .

.
.
.
..

. ..
..
.

.

....
........... ..
.
.

.. ...
..

.

. ..
.

.

.....
.....

. .
.
.

..
..

.
.

.

.

.

.. ...
. ......
.
....
.
. ..
.
..
.
.
.
.
.
.
.
.

.

.
..
.

.

..
.....
.
........ ....
.
.
..

. .
... ..

.

.
.. .
.......
.
....
.
..
.
.

.
. ...... ..

.

.........
..

.

.
...

.....
.

. .

.
.. .
..
.

.

. .
.

.

.
....... ..

.

..
..

. .... .......
.

.
....

.
..

.

..
. ......
.

.

.
..
.

.
..

.

...
...... .

.....
.
.

...

.

.

.
.
..

. .... .......
..
. .... ...

.
.
..

. ......
.

.

. ...
.
..
.
.
..

...
.

.

.
...

.

.. ..
....
.
.
..

.
.
...
.

.
.....
.
. ..... .
.

.

.
..

.

.
..........
.
....

.
.......
.
...

... .
...
....... .....

. .. .......
.
..
... .. ... .

........................
.
.
.
.....

.

....
. ... .

....... ...
... .. .. .. ....
..
. ...

.
. .
. ..............
...
.

.
.... .

... ..... . ........ ....... ....

.....
.
...
.
.
.. ...
. .
.
..... ........
.......
.
.

.. .. ...........
.
.
.......

.

. .
........
.
.. .... ....
.

.
..
.
.....
.
.

.
....... ....
............

.

..

..... ..
.
...
...........
.....

.
.... ......... . ......

.

.....

..... ...
... .......... ... ...
... .......................
...........
.
..

..... .....
.........
....

. .
.. ..
...

......
.
..

. ..
..........
.
..
.
.
.
... ......

.............. ... ..........
...
.
.
.
.
.
. .......... ... ...

.

........
.. ... .
.
.

.

.......
.
..
.
.
........ ......
.
..
............ .. .........
. ...........
.
..
.

.
.

...

.

.. ...... ...... ..... ....
.
.
.
..
......... .. .. .................. .. ............
.

..... .......... ..
.... .. ...
.... ........... .

. .

...
..
....
.......... ...
.
.
.
......................
.

..
.
.
.... .
. ......
.. .

.....
...
.

.
.......
.
..
..

. ................... .............. .................. .. ....
......... .................... ................................. .................. ...

..

... .....................
.

.
..... ....... .............. . .. ...........
.
...
..................

. ........................
................................ .............. ...... ...
.

.
....

. .................. ..... .......................... ....
.

.
.......................... .................................................. ................... .... ...............................
.
........... ........... ................. .... ...............
.
...
.............

.

.

...... ............
.
..
.
..... ....... .... ....
.

..
.
............................. .. .............. ....

.

.
..........................
.
.

.

. ....................................................... .......................... ........
.

.
.............

. ...................................
.
.
........
.

.
..................
.

.

......................................... ...

(d)

lo
g(

1
−
|λ
|)

(N/104)

ξ

γ
FIG. 7: (Color online) (a) Dependence of gap 1−|λ| on Google
matrix size N for few eigenstates with |λ| most close to 1, set
T10, α = 1; (b) dependence of PAR ξ on γ = −2 ln |λ| for
N = 2500, 5625, 8100, 104, 14400 for set T10, α = 1 (curves
from top to bottom: red, magenta, green, blue, black); (c)
complex plane of eigenvalues λ for set T10 with their PAR
ξ values shown by grayness (black/blue for minimal ξ ≈ 4,
gray/light magenta for maximal ξ ≈ 300; here α = 1, N =
1.44 · 104); (d) same as (c) but for set T20.

that at large N the diffusion due to σ noise in presence of
dissipation leads to spreading only over a finite number
of cells and thus ξ remains bounded. This ξ(γ,N) depen-
dence is different from one obtained in [15] for the Albert-
Barabasi model, the comparison with data from WWW
University networks is less conclusive due to strong fluc-
tuations from one network to another (see Fig. 4 in [15]):
an average growth of ξ is visible there even if at N ∼ 104

the values of ξ are comparable with those of Fig. 7b.
Globally our data of Fig. 7 show that the diffusive modes
at |λi| < 1 remain localized on a number of nodes ξ ≪ N .

We also stress an important property of eigenvalues
and eigenvectors with 0 < |λi| < 1. In agreement with
the known theorems [2] our numerical data show that
for the states with 0 < |λi| < 1 their ξi are indepen-
dent of α (λi are simply rescaled by a factor (1 − α)
according to [2]). This happens due to a specific prop-
erty of (1−α)E/N term in G, which is constructed from
a homogeneous vector with rank equal to unity. Right
eigenvectors are orthogonal to the homogeneous left vec-
tor and hence (1−α) term affects only the PageRank but
not other eigenvectors.

Fractal Weyl law for Google matrix

Another interesting characteristic of G is the density
distribution dW (γ)/dγ over γ. The data presented in
Fig. 8 show that its form becomes size independent in the

0.5

1.0

0 4 8 12
.....

....
...
................................................

2

3

4

3.0 3.5 4.0

d
W

/d
γ

γ

lo
g
N

γ

log N

FIG. 8: Probability distribution dW (γ)/dγ for set T10, α =
1 at N = 2.5 · 103(×), 104(+), 1.44 · 104 (dots); W (γ) is
normalized by the number of states Nγ = 0.55N0.85 with
γ < 6. Inset: dependence of number of states Nγ with γ < γb

on N for sets T10 (circles, γb = 6) and T20 (triangles, γb = 3);
dashed lines show the fit Nγ = ANν with A = 0.55, ν = 0.85
and A = 0.97, ν = 0.61 respectively.

limit of large N . At small γ < 3 the density decreases
approximately linearly with γ without any large gap. We
find rather interesting that the total number of states Nγ

with finite γ < γb ≈ 5 grows algebraically as Nγ = ANν

with ν < 1 (Fig. 8 inset). We interpret this result on the
basis of the fractal Weyl law established recently for non-
unitary matrices with fractal eigenstates (see e.g. [30, 31]
and Refs. therein). According to this law the exponent ν
is ν = d−1 where d is the fractal dimension of the system.
Approximately we have d − 1 ≈ 1 − γc/(Th) [29, 31]
that gives ν = 0.88, 0.72 for the sets T 10, T 20 with the
numerical values of γc, h given above. These values are
in a good agreement with the fit data ν = 0.85, 0.61 of
Fig. 8 inset. The fact that ν < 1 implies that almost all
states have λ = 0 in the limit of large N (in this work we
do not discuss the properties of these degenerate states
with large ξ ∼ N).

It is interesting to note that the fractal Weyl law is
usually discussed for the open quantum chaos systems
(see [30, 31] and Refs. therein). There the matrix size
is inversely proportional to an effective Planck constant
N ∝ 1/h̄. For the Ulam networks generated by dynam-
ical attractors a cell size in the phase space places the
role of effective h̄. This opens interesting parallels be-
tween quantum chaotic scattering and discrete matrix
representation of the Perron-Frobenius operators of dy-
namical systems.
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PageRank delocalization again

The dependence of PAR ξ of the PageRank on α and
N is shown in Fig. 9. It permits to determine the crit-
ical value αc below which the PageRank becomes delo-
calized showing ξ growing with N . According to this
definition we have ξ independent of large N for α > αc

while for α < αc the PAR ξ grows with N . The obtained
data give αc ≈ 0.95, 0.8 for T 10, T 20. Further investi-
gations are needed to understand the dependence of αc

on system parameters. Here we make a conjecture that
1 − αc ≈ Cγc ≪ 1 with a numerical constant C ≈ 0.3.
Indeed, for larger dissipation rate γc = −T ln η a radius
of a circle with large density of λi in the complex plane
λ becomes smaller (see Fig. 7c,d) and thus larger values
of 1 − α are required to have a significant contribution
of these excited relaxation modes to the PageRank. Also
the data of [31] for systems with absorption rate γc show
a low density of states at γ < γc so that it is natural to
expect that one should have 1 − αc ∼ γc to get a signifi-
cant contribution of delocalized relaxation modes from a
strange attractor set to the PageRank. It is quite prob-
able that C depends in addition on system parameters.
Indeed, even at fixed γc and α = 0.99 being rather close
to 1 it is possible to have a transition from localized to
delocalized PageRank by increasing k in the map (2) (see
Fig. 9 inset and Fig. 10). This transition in k takes place
approximately at k ≈ 0.55 when fixed point attractors
merge into a strange attractor (see the bifurcation dia-
gram in Fig. 2). A peak in ξ around k ≈ 0.38 is related
to birth and disappearance of a strange attractor in a
narrow interval of k at k ≈ 0.38. At the same time an
increase of k from 0.22 to 0.6 practically does not affect
the link distributions P (κ) changing the value of µ only
by 10% (see Fig 5). This shows that the correlations in-
side the directed network generated by the map (2) play
a very important role.

Global contraction

As discussed above a nontrivial decay of the PageRank
pj in our Ulam network appears due to a dissipative na-
ture of the map (2). Indeed, since η < 1 there is a global
contraction of the phase space area by a factor Γc = ηT

after T iterations of the map (after its period). Such a
property is very natural for the continuous map but it is
more difficult to see its signature from the matrix form
of the Perron-Frobenius operator after the introduction
of discreteness of the phase space.

Nevertheless this contraction can be extracted from the
matrix G taken at α = 1. To extract it we apply G with

α = 1 to a homogeneous vector p
(h)
j = 1/N getting the

new vector p̄(h) = Gp(h) and count the number of nodes
NΓ where p̄(h) > q/N and 0 < q < 1 is some positive

0

2

4

6

0.4 0.6 0.8 1.0

1

3

5

0.2 0.4 0.6

lo
g
ξ

α

k

log ξ

FIG. 9: (Color online) Dependence of PageRank ξ on α for
set T10 at N = 5625 (dotted magenta), 1.44 · 104 (dotted
red), 9 · 104 (dashed red), 6.4 · 105 (full red) and for T20 at
N = 1.44 · 104 (dotted blue), 9 · 104 (dashed blue), 6.4 · 105

(full blue). Inset shows dependence of ξ on k for set T10 at
α = 0.99 with N = 1.44 · 104 (dotted red), 9 · 104 (dashed
red), 3.6 · 105 (full red).

FIG. 10: (Color online) Same as Fig. 1 for the set T10 at
α = 0.99, N = 3.6 · 105 at k = 0.22 (left) and k = 0.6 (right);
PAR ξ are the same as in the inset of Fig. 9.

number characterizing the level of the distribution. Then
the contraction of the network is defined as a fraction of
such states: Γ = NΓ/N .

The result of computation of the contraction factor for
the Ulam network of map (2) for the sets T 10, T 20 is
shown in Fig. 11. The network contraction parameter Γ
is independent of q in a large interval 10−4 ≤ q ≤ 0.1 and
it converges to the contraction value Γc of a continuous
map in the limit of large matrix size N .

We think that the Google matrix of WWW networks
can be also characterized by a global contraction factor
and it would be interesting to study its properties in more
detail. However, this remains a task for future studies.
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FIG. 11: (Color online) Dependence of the network contrac-
tion factor Γ on the level q of probability distribution over the
network nodes (see text). Left panel shows data for the set
T10 at k = 0.22, right panel shows data for the set T20 at
k = 0.3 for the Ulam network of map (2). The size of the net-
work is N = 104, 4 ·104, 16 ·104 (curves from top to bottom at
q = 0.01). The dashed curves show the contraction Γc = ηT

of the continuous map (2) corresponding to the network with
N = ∞.

IV SUMMARY

In summary, we demonstrated that the Perron-
Frobenius operator built from a simple dissipative map
with dynamical attractors generates a scale-free directed
network with properties being rather similar to the
WWW. The networks and their Google matrices are
obtained on the basis of the Ulam method for coarse-
graining of the Perron-Frobenius operator and thus can
be viewed as the Ulam networks or Ulam graphs. The
Google matrix of such Ulam networks reproduces many
properties of real networks with an algebraic decay of
the PageRank and quasi-degeneracy of eigenvalues near
unity for the Google parameter α = 1. In this formula-
tion the popular websites correspond to dynamical fixed
point attractors which help to generate global scale-free
properties of the network. The PageRank of the system
becomes delocalized for α smaller than a certain criti-
cal value, such a delocalization is linked to emergence
of a strange attractor. Even for α very close to unity
a moderate change of system parameters can drive the
system to a strange attractor regime with a complete de-
localization of the PageRank making the Google search
inefficient. In view of a great importance of the Google
search for WWW [2, 6] and its new emerging applica-
tions [32] it may be rather useful to study in more detail
the properties of the Google matrix generated by simple
dynamical maps.

Of course, it is quite possible that at the present state
the Google matrix of WWW is more stable in respect
to variation of α (indications for that can be found e.g.
in [8, 9, 10]). However, WWW evolves with time and
may become more sensitive to changes of α. Also the
Google search can be applied to a large variety of other
important networks (see e.g. [10, 32]) which may be more
sensitive to various parameter variations. It is quite pos-
sible that the Ulam networks discussed here only par-

tially simulate the properties of the WWW. However, the
Ulam networks are easy to generate and at the same time
they show a large variety of rich interesting properties.
The parallels between the Ulam networks and the actual
WWW can be instructive for deeper understanding of
both. Therefore, we think that their further studies will
give us better understanding of the Google matrix prop-
erties. The studies of the Ulam networks will also lead
to a better understanding of intricate spectral properties
of the Perron-Frobenius operators. The application of
the thermodynamical formalism [33, 34] to the spectra
of such operators can help to understand their properties
in a better way.
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APPENDIX

The Chirikov typical map (2) is studied here for the
following random phases θt/2π for the set T 10 :

0.562579, 0.279666, 0.864585, 0.654365, 0.821395,
0.981145, 0.478149, 0.834115, 0.180307, 0.15902

and for the set T 20:

0.415733267627, 0.310795551489, 0.632094907846,
0.749488203411, 0.924301928270, 0.635937571045,
0.118768635110, 0.647524548037, 0.651928927275,
0.952312529146, 0.370553510280, 0.810837257644,
0.814808044380, 0.834758628241, 0.993694010264,
0.702057578688, 0.828693568678, 0.855421638697,
0.278538720979, 0.653773338142.

The numbers are ordered in the serpentine order for
t = 1, 2, ...T .

After each T iterations the values of y are reduced
inside the interval (−π, π) corresponding to the periodic
boundary conditions.


