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We study the capture of galactic dark matter by the solar system. The effect is due
to the gravitational three-body interaction between the sun, one of the planets, and a
dark matter particle. The analytical estimate for the capture cross-section is derived and
the upper and lower bounds for the total mass of the captured dark matter particles are
found. The estimates for their density are less reliable. The most optimistic of them gives
an enhancement of dark matter density by about three orders of magnitudes compared
to its value in our galaxy. However, even this optimistic value remains below the best
present observational upper limits by about two orders of magnitude.
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1. Introduction

The dark matter (DM) density in our galaxy is about (see e.g. Ref. 1)

ρg � 4 · 10−25 g/cm3
. (1)

However, only upper limits on the level of 10−19 g/cm3 (see below) are known for
the density of dark matter particles (DMPs) in the solar system (SS). Meanwhile,
information on their density is of great importance for the experiments aimed at
the detection of DM.

The question of capture of weakly interacting massive particles (WIMPs) or
DMP by the SS was initiated in Refs. 2 and 3. Very recently, these studies have
been pushed further by extensive numerical simulations performed in Refs. 4 and
5. Our interest in this problem was aroused by a recent paper,6 where an estimate
is given for the DM density in the SS, as resulting from the gravitational capture of
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galactic DMPs. According to the conclusions of Ref. 6, the density of the captured
DM, for instance at the earth orbit, is about 10−20 g/cm3, only about an order of
magnitude below the best upper limits on it.

In the present paper we perform a new analytical analysis of the gravitational
capture of galactic DMPs by the SS. According to our results, the increase in the
DM density in the SS due to this capture is small, certainly well below 10−20 g/cm3.

2. Dimensional Estimate for the Mass of Captured Dark Matter

The SS is immersed in the halo of DM and moves together with it around the
center of our galaxy. To simplify the estimates, we assume that the sun is at rest
with respect to the halo. The DM particles in the halo are assumed to have in the
reference frame, comoving with the halo, the Maxwell distribution7

f(v)dv =

√
54
π

v2dv

u3
exp

(
−3

2
v2

u2

)
, (2)

with the local rms velocity u � 220 km/s.
Let us elucidate what looks to be the most efficient mechanism of the DMP

capture. It was pointed out and partly analyzed (though for the capture of comets,
and not of DMPs) by Petrosky in Ref. 8 and Chirikov and Vecheslavov in Ref. 9.
Of course, a particle cannot be captured by the sun alone. The interaction with
a planet is necessary for that; this is essentially a three-body problem of the sun,
planet and DMPs. Obviously, the capture is dominated by the particles with orbits
close to parabolic ones with respect to the sun, and with the distances between
their perihelia and the sun comparable with the radius of planet orbit rp.

The capture can be effectively described by the so-called restricted three-body
problem (see for instance Refs. 10 and 11). In this approach the interaction between
two heavy bodies (the sun and a planet in our case) is treated exactly. Also treated
exactly is the motion of the third, light body (a DMP in our case) in the gravita-
tional field of the two heavy ones. One neglects, however, the back reaction of a light
particle upon the motion of the two heavy bodies. Obviously, this approximation is
fully legitimate for our purpose. Still, the restricted three-body problem is rather
complicated, and requires in the present case both subtle analytical treatment and
serious numerical calculations.8 Under certain conditions the dynamics of the light
particle (e.g. DMP) becomes chaotic.

However, the amount of DM captured by the SS can be found by means of
simple estimates. The total mass captured by the sun (its mass is M) together with
a planet with mass mp, during the lifetime

T � 4.5 · 109 years � 1017 s (3)

of the SS, can be written as follows:

∆mp = ρgT 〈σv〉. (4)
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Here σ is the capture cross-section. The product σv is averaged over the distribution
(2); with all typical velocities in the SS much smaller than u, this distribution
simplifies to

f(v)dv =

√
54
π

v2dv

u3
. (5)

To estimate the average value 〈σv〉, we resort to dimensional arguments, sup-
plemented by two rather obvious physical requirements: the masses mp and M of
the two heavy components of our restricted three-body problem should enter the
result symmetrically, and the mass md of the light component (DMP) should not
enter the result at all. Thus, we arrive at

〈σv〉 ∼ √
54π

k2mpM

u3
. (6)

Here k is the Newton gravitation constant; an extra power of π, inserted into this
expression, is perhaps inherent in σ. The final estimate for the captured mass is

∆mp ∼ ρgT
√

54π
k2mpM

u3
. (7)

Since the capture would be impossible if the planet were not bound to the sun, it is
only natural that the result is proportional to the corresponding effective “coupling
constant” kmpM .

Thus obtained values for the masses of DM captured due to the planets of the
SS are presented in Table 1. We also quote therein the corresponding results of
Ref. 6 for these masses. The disagreement is huge for all planets, especially for the
light ones, where it exceeds two orders of magnitude. We cannot spot exactly its
origin, since the calculations of Ref. 6 involve rather complex numerical simulations
(it is possible that their assumption of capture radius rb ∼ rp(mp/M)1/3 does not
correspond to reality). On the other hand, we cannot see any reasonable possibility
for a serious increase of our results. Moreover, in a sense they can be considered
as upper limits for the amount of the captured DM, at least because we have
neglected here the inverse process, that of the ejection of a captured DMP due
to the same three-body gravitational interaction. The result (7) is given for the
three-body problem. The dynamical mechanism of capture is described below, in
the next section.

The total mass ∆mT of the DM captured by the planets is strongly dominated
by the heavy Jovian planets — Jupiter, Saturn, Uranus and Neptune — and consti-
tutes, according to Table 1, about ∆mT ∼ 1.5 ·1021 g. This value is small compared

Table 1. DM mass captured by planets (in g).

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

this work 0.22 · 1018 3.2 · 1018 3.9 · 1018 0.42 · 1018 1239 · 1018 372 · 1018 57 · 1018 67 · 1018

Ref. 6 0.42 · 1020 3.5 · 1020 3.8 · 1020 1.2 · 1020 49 · 1020 28 · 1020 12 · 1020 16 · 1020
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to the total mass, ∼ 1033 g, of the common matter in the SS. It is small even when
compared to the total noncaptured mass of the DM in the SS: this total mass,
calculated with the value (1) for the DM density, constitutes ∼ 1031 g (we assume
here that the effective radius of the SS is about 105 a.u.). However, it is an order
of magnitude larger than the DM mass of the density (1) inside the radius of the
Neptune orbit rN ≈ 30 a.u.

The contribution to the discussed effect of the diffuse (nondark) matter in the
SS should be significantly smaller, since in a homogeneous dust the gravitational
forces acting on DMPs are compensated for.

The dynamical mechanism of capture is described in the next section.

3. Dynamical Approach

For the restricted three-body problem, in a close similarity to the dynamics of
comets,8,9 the DMP dynamics can be described by a symplectic area-preserving
map:

w̄ = w + F (φ), φ̄ = φ + 2πw̄−3/2. (8)

Here w = −2Erp/kmdM is the energy of the DMP with mass md rescaled by its
gravitational energy at distance rp from the sun, φ is the phase of the planet on
its circular orbit at the moment when the DMP is at the perihelion, and F (φ) is
a certain periodic function of φ. Bars denote the new values of variables after one
rotation around the sun. The physical meaning of this dynamical map is rather
simple: the first equation gives the change of DMP energy after one passage near
the sun; the second equation gives the change of the planetary phase between two
passages of DMP, and is essentially determined by the Kepler law. The first equation
is valid also for scattering particles with positive energy (w < 0). Thus, the DMP
can be captured by the sun and the planet only if its rescaled energy |w| < Fmax.
After the capture, the DMP dynamics is described by the map (8) until ejection.
To compute the captured DM mass ∆mp we assume that, once captured, the DMP
remains captured for the whole lifetime T of the SS. In this way we obtain the
maximum bound for ∆mp.

The kick function F (φ) was computed in Ref. 8 for the case where a comet
(or DMP) and a planet move in one plane and where the perihelion distance
q > rp. In this case F (φ) = (mp/M)β(q/rp) sin φ and the function β(x) ≈
26 exp(−4x3/2/3

√
2)/x1/4 so that β(1) ≈ 10. Effectively, the function F is deter-

mined by the frequency Fourier component of the force between the planet and
the DMP; since the rotation of the planet is rapid compared to the rotation of the
DMP, the amplitude of the component is exponentially small for q � rp when the
DMP motion is smooth and analytical. In this case β is exponentially small and
there is practically no trapping of the DMP. For q ∼ rp the motion is not analytic
due to the close passage between the planet and the DMP, and β is relatively large.
In this case a DMP with rescaled energies −w < βmp/M can be captured by the
planet. It is interesting to note that the map (8) with F (φ) ∼ sin φ is known as
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the Kepler map. It describes the process of microwave ionization of Rydberg atoms
and chaotic autoionization of molecular Rydberg states (see Ref. 12 and references
therein).

We note that the energy change of the DMP given by F (φ) results from the inte-
gration over the whole orbit rotation of the DMP around the sun, which includes
many orbital periods of the planet. Thus, this energy change appears from long-
range interaction and has a qualitatively different origin compared to local close
collisions between DMP and planet, which were assumed to give the main contri-
bution for DMP energy change in Refs. 2, 3 and 6.

Let us now estimate the capture cross-section σ assuming that for all DMPs the
dynamics is described by the Kepler map with fixed β ∼ 1. Then only DMPs with
energies |w| = v2rp/kmpM = v2/v2

p < βmp/M are captured under the condition
that q < rp (here vp is the velocity of the planet). The value of q can be expressed
via the DMP parameters at infinity, where its velocity is v and its impact parameter
is rd, and hence q = (vrd)2/2kM .13 Since q ∼ rp we obtain the cross-section

σ ∼ πr2
d ∼ 2πkMrp

v2
∼ 2πr2

p

(vp

v

)2

∼ 2πr2
pM

βmp
, (9)

where the last relation is taken for those typical velocities, v2 ∼ βv2
pmp/M , at which

the capture of DMPs takes place (for q ≈ 1.4rp we have β ≈ 5). Then Eqs. (4) and
(9) give the captured mass ∆mp of (7) with an additional numerical factor β ∼ 1.

According to the above estimates, DMPs captured by Jupiter have typical veloc-
ities at infinity v ∼ (βmp/M)1/2vp ∼ 1 km/s for typical β ∼ 5 and mp/M ≈ 10−3,
vp ≈ 13 km/s. This value of v is in good agreement with the numerical simulations
of Ref. 5, which give typical captured DMP velocities for Jupiter of 1 km/s.

Another interesting feature of the analytical expression for the cross-section of
captured particles σ (9) is that it is much larger than the area of the planet orbit.
In fact, σ diverges at small velocities as σ ∼ 1/v2 but this divergence is weaker
than that of the Rutherford cross-section. In our case of the restricted three-body
problem the divergence appears due to the property of the Kepler motion where the
DMP distance at perihelion is proportional to the square of the orbital momentum,
which in turn is proportional to the product of the velocity v and the impact
parameter rd at infinity. In addition, it is important to use the value of the typical
DMP velocity captured by the planet for a perihelion distance of the order of
rp. This leads to the analytical equation (9) for the capture cross-section in the
restricted three-body problem.

4. Density of Dark Matter

While the total masses ∆mp of the captured DM can be (hopefully) described
by the simple dimensional estimate (7), the situation for the corresponding DM
densities ∆ρp is more subtle. The reason is as follows. The captured DMPs had
initial trajectories predominantly close to parabolas with respect to the sun, and
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the velocities of these DMPs change only slightly as a result of scattering. There-
fore, it is quite natural that the final, elliptical trajectories of these DMPs have
large semimajor axes.

Indeed, DMPs captured into an elliptic trajectory had initially a hyperbolic
trajectory, focused at the sun and close to a parabolic one. As a result of the
capture, the eccentricity e of the trajectory changes from e = 1 + ε1 to e = 1 − ε2,
with ε = ε1 + ε2 � 1. It is quite natural that the final, elliptical trajectories of the
captured DMPs have large semimajor axes.

To estimate their typical values, we recall13 that the radius-vector r of a captured
DMP (counted off the sun) is related to the azimuthal angle φ as follows:

r =
p

1 + e cosφ
, (10)

where p is the so-called orbit parameter (its value is irrelevant to our line of rea-
soning). Obviously, the maximal rmax and minimal distance rmin from the sun
correspond to cosφ = ±1, so that their ratio is

rmax

rmin
=

1 + e

1 − e
. (11)

In the numerator of this ratio, we can safely put with our accuracy 1 + e � 2, as it
was done previously in Ref. 14 for the problem of accretion on massive black holes.
For the denominator of the ratio, we recall that the difference 1−e is related to the
gravitational perturbation for planet, and therefore is proportional to mp. Thus,
for dimensional reasons,

rmax

rmin
∼ M

mp
. (12)

The minimal distance between DMPs and the Sun, rmin, should be on the same
order of magnitude as the radius rp of the planet orbit. Therefore, the semimajor
axis a of the resulting ellipse is huge:

rmax ∼ rp

(
M

mp

)
. (13)

In particular, in the case of Jupiter our estimate gives ra ∼ 103rp. A similar numer-
ical factor appears in Ref. 8.

According to the numerical calculations of Ref. 8, in the case of Jupiter the values
of the semimajor axes ra for the resulting trajectories belong to the interval 103–104

au for q/rp = 4–6. The fact that it is comets that are considered in Ref. 8, and not
DMPs, is obviously of no importance to this conclusion. The minimum value of ra

is defined by the maximum wch ∼ rp/ra value which can be reached by an injected
DMP during its chaotic motion. In fact, wch is the chaos border and according
to the Chirikov resonance overlap criterion15 we have wch ≈ (3πβ(mp/M))2/5, as
was shown in Ref. 8. For Jupiter mp/M ≈ 10−3 and at β ≈ 5 corresponding to
q ≈ 1.4rp we have ra/rp ≈ 1/wch ≈ 3. We note that this value of β gives the
maximum Fmax ≈ 0.005, corresponding to the similar value found for Halley’s
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comet.9 In fact, the data presented in Ref. 9 show that Halley’s comet has the
chaos border around wch ≈ rp/ra ≈ 0.3 (see Fig. 3 of Ref. 9).

Of course, the values of ra linked to the chaos border in w are the minimum
ones since during its chaotic dynamics DMPs have also 0 < w � wch with larger ra.
However, we are interested in orbits captured for very large times T (3). Such times
are two orders of magnitude larger than the typical diffusive lifetime of Halley’s
comet, found to be of the order of 107 years.9 It is known that chaotic trajectories
may be sticking to boundaries of integrable islands for very long times (see Ref. 16
and references therein) and hence we can expect that those orbits will be somewhere
in the vicinity of the chaos border around wch ∼ 1 with ra ∼ rp. In fact, for the
case where the inclination angle between the planes of DMP and planet θi > 0 and
where q < rp, the function F (φ) contains higher harmonics of φ (see the case of
Halley’s comet in Ref. 9). This leads to easier emergence of chaos so that even for
light planets one may have the chaos border wch ∼ 1.

Therefore, we can make an assumption resulting in the most optimistic predic-
tion for the “partial” DM densities ∆ρp. We assume that each of the total masses
∆mp of the captured DM occupies the volume (4π/3)r3

p, where rp is the orbit radius
of the corresponding planet. We do not claim that this assumption is correct, but
believe that comparison of its (almost certainly overoptimistic) results with the
observational limits will be instructive. The corresponding values of the “partial”
DM densities ∆ρp = ∆mp/(4πr2

p/3) (in g/cm3) are presented in Table 2. We omit
from it the densities due to Uranus and Neptune, tiny even at the discussed scale.
Then, in accordance with the accepted model, the total DM density ρDM at a given
radius does not coincide with the corresponding ∆ρp. It includes, in line with it, the
sum of the contributions to the density due to all the planets, outer with respect
to the given one.

5. Ergodic Time Scale

The estimates given above neglect ejection of DMPs from the SS. Such an assump-
tion is not justified if the DMP dynamics in the SS becomes completely ergodic
on a time scale Te � T . Then after the time Te the detailed balance principle
becomes valid and the density of the captured DMP becomes its galactic density,
as was argued in Ref. 2 (see also the discussion in Refs. 3–5). However, the esti-
mate of Te has certain subtle points. In the frame of the map (8) it is given by the
diffusion time from w = 0 to w = wch. For the Kepler map the diffusion coefficient
is D ≈ β2(mp/M)2/2 and hence Te ∼ 2(Mwch/βmp)2Td, where Td is an average

Table 2. Density of DM for planets (in g/cm3).

Planet Mercury Venus Earth Mars Jupiter Saturn

∆ρp 2.7 · 10−22 6.0 · 10−22 2.7 · 10−22 8.4 · 10−24 6.2 · 10−22 3.0 · 10−23

ρDM 1.8 · 10−21 1.5 · 10−21 9.3 · 10−22 6.6 · 10−22 6.5 · 10−22 3.0 · 10−23
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period of the DMP. For the case of Jupiter such an estimate gives a satisfactory
value of Te ∼ 107 years for the case of Halley’s comet, as is discussed in Ref. 9.
However, β sharply decreases with the increase in the perihelion distance q ∝ �2,
where � is the orbital momentum of the DMP. As a result, a growth of � can give
a sharp increase of Te which can become comparable with T . The effects linked
to variations of � were not considered in Ref. 9. They are properly treated in the
numerical simulations of Refs. 4 and 5 but there only the effect of Jupiter is con-
sidered. Other planets and fluctuating galactic fields can give stronger growth of �

with a significant increase of Te. Indeed, from the studies of Rydberg atoms in a
microwave field it is known that time-oscillating space homogeneous fields can pro-
duce strong variation of the eccentricity of orbits (see Ref. 17 and Fig. 11 there).
Also, it is known that noise generates penetration of chaotic trajectories inside inte-
grable islands and very slow decay of Poincaré recurrences with diverging trapping
time.18 In addition to that, recent large scale numerical simulations of Ref. 19 show
significant changes in the eccentricity of planets on a time scale of the order of
T . Therefore, the question of the Te value for DMPs captured by the SS requires
further study. One does not rule out the possibility that it is comparable to or even
larger than T . In such a situation the upper bound (7) will be close to the real
value of the total captured mass.

In any case it is clear that there are practically no ejections of captured particles
on a time scale of the DMP orbital period Tc. A typical captured DMP rescaled
energy is wc ∼ βmp/M , corresponding to one iteration of the map (8), which gives
a change of w from negative to positive values. The rotation period of such DMPs
is rather large compared to the period Tp of the planet: Tc/Tp ∼ (βmp/M)−3/2.
For the case of Jupiter Tp ≈ 11 years and at β ∼ 1 we have Tc ∼ 3 · 104Tp ∼ 3 · 105

years. This is a factor of 104 shorter than the SS lifetime T . This gives the lower
bound of the captured DM mass, which is obtained with replacing T with Tc in
Eq. (7).

6. Observational Upper Limit on the Density of Dark Matter

Lastly, let us consider the observational data on the DM in the SS. The most reliable
and accurate information on it follows from the studies of the perihelion precession
of Venus, Earth and Mars. Under the assumptions that the DM density ρDM is
distributed in a spherically symmetric manner with respect to the sun and that the
eccentricity of the planetary orbit is small, the corresponding relative shift of the
perihelion per period is (see Ref. 20 and references therein)

δφ

2π
= −2πρDMr3

M
, (14)

where r is the radius of the orbit. This relation becomes almost obvious (up to an
overall numerical factor) if one recalls that, in virtue of the Gauss theorem, for a
spherically symmetric density ρ(r) the action of the DM inside the orbit reduces to
that of a pointlike mass, and therefore does not induce the perihelion precession.
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Table 3. Angle of perihelion precession (in seconds per century).

Planet Venus Earth Mars

δφth 8.6248 3.8388 1.3510
δφobs 8.6247 ± 0.0002 3.8390 ± 0.0003 1.3512 ± 0.0003

On the other hand, for such a density ρ(r), the DM outside the orbit does not
influence at all the motion of a planet.

The recent, most precise observational data21 on the precession of perihelia are
presented in Table 3 (therein the theoretical values δφth of the perihelion rotation
and the results of observations δφobs are given in angular seconds per century).
With these data, one arrives at the upper limits on the DM density at the distances
from the sun, corresponding to the orbit radii of Venus, Earth and Mars, on the
level of

ρDM < 2 · 10−19 g/cm3. (15)

This observational upper limit exceeds by about two orders of magnitude the results
(almost certainly overestimated) presented in Table 2.

7. Summary

Our results do not mean, however, that the searches for the dark matter in the solar
system are senseless. Of course, the capture of the galactic DM analyzed here is not
the only conceivable source of the DM in the SS. It is quite possible in particular
that the SS itself has arisen due to a local high-density fluctuation of the DM.

Now, on the related theoretical problems. To obtain more firm results for the
captured DM mass and density, one needs to take into account the fact that the
kick function F (φ) in the map (8) depends on an inclination angle between planes
of DMPs and planet orbits and also on the DMP perihelion distance. However, a
typical case of Halley’s comet analyzed by Chirikov and Vecheslavov in Ref. 9 gives
the map function of a form similar to that discussed here, so that the estimates
presented should also be applicable for such more general DMP orbits. Further
analytical and numerical studies are required for a better understanding of DMP
dynamics inside the solar system.
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