
Google matrix and Ulam networks of intermittency maps

L. Ermann and D. L. Shepelyansky
Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse–UPS, F-31062 Toulouse, France

and LPT (IRSAMC), CNRS, F-31062 Toulouse, France
�Received 19 November 2009; published 30 March 2010�

We study the properties of the Google matrix of an Ulam network generated by intermittency maps. This
network is created by the Ulam method which gives a matrix approximant for the Perron-Frobenius operator of
dynamical map. The spectral properties of eigenvalues and eigenvectors of this matrix are analyzed. We show
that the PageRank of the system is characterized by a power law decay with the exponent � dependent on map
parameters and the Google damping factor �. Under certain conditions the PageRank is completely delocalized
so that the Google search in such a situation becomes inefficient.
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I. INTRODUCTION

In the 1960s, Ulam proposed a method to construct a
matrix approximant for a Perron-Frobenius operator of dy-
namical systems, which is now known as the Ulam method
�1�. The Ulam conjecture was that, in the limit of small cell
discretization of the phase space, this method converges and
gives the correct description of the Perron-Frobenius opera-
tor of a system with continuous phase space. This conjecture
was shown to be true for hyperbolic maps of the interval �2�.
Various types of more generic maps of an interval were stud-
ied in �3–5�. Further mathematical results have been obtained
in �6–10� with extensions and prove of convergence for
hyperbolic maps in higher dimensions. The mathematical
analysis of nonuniformly expanding maps is now in progress
�11�. At the same time it is known that the Ulam method
applied to Hamiltonian systems with integrable islands of
motion destroys the invariant curves thus producing a strong
modification of properties of the Perron-Frobenius operator
of the system with continuous phase space �see e.g., �12��.

Recently it was shown that the Ulam method naturally
generates a class of directed networks, named Ulam net-
works, which properties have certain similarities with the
world wide web �WWW� networks �12�. Thus, the Google
matrix constructed for the Ulam networks built for the Chir-
ikov typical map has a number of interesting properties
showing a power law decay of the PageRank vector.

The classification of network nodes by the PageRank al-
gorithm �PRA� was proposed by Brin and Page in 1998 �13�
and became the core of the Google search engine used ev-
eryday by majority of internet users. The PRA is based on
the construction of the Google matrix which can be written
as �see e.g., �14� for details�:

G = �S + �1 − ��E/N . �1�

Here, the matrix S is constructed from the adjacency matrix
A of directed network links between N nodes so that Sij
=Aij /�kAkj and the elements of columns with only zero ele-
ments are replaced by 1 /N. The second term in r.h.s. of Eq.
�1� describes a finite probability 1−� for WWW surfer to
jump at random to any node so that the matrix elements
Eij =1. This term stabilizes the convergence of PRA introduc-
ing a gap between the maximal eigenvalue �=1 and other

eigenvalues �i. Usually the Google search uses the value �
=0.85 �14�. The factor � is also called the Google damping
factor. By the construction �iGij =1 so that the asymmetric
matrix G belongs to the class of Perron-Frobenius operators.
Such operators naturally appear in the ergodic theory �15�
and dynamical systems with Hamiltonian or dissipative dy-
namics �16,17�.

The right eigenvector at �=1 is the PageRank vector with
positive elements pj and � jpj =1, the components pj of this
vector are used for ordering and classification of nodes. The
PageRank can be efficiently obtained by a multiplication of a
random vector by G which is of low cost since in average
there are only about ten nonzero elements in a typical line of
G of WWW. This procedure converges rapidly to the Pag-
eRank. All WWW nodes can be ordered by decreasing
pj�pj � pj+1� so that the PageRank plays a significant role in
the ordering of websites and information retrieval. The clas-
sification of nodes in the decreasing order of pj values is
used to classify importance of network nodes as it is de-
scribed in more detail in �14�.

Due to a spectacular success of the Google search the
studies of PageRank properties became very active research
filed in the computer science community. A number of inter-
esting results in this field can be found in �18–20�. An over-
view of the field is available in �22�. It is established that for
large WWW subsets pj is satisfactory described by a scale-
free algebraic decay with pj �1 / j� where j is the PageRank
ordering index and ��0.9 �14,23�.

In this work we analyze the properties of Google
matrix constructed from Ulam networks generated by one-
dimensional �1D� intermittency maps. Such maps were intro-
duced in �24� and studied in dynamical systems with
intermittency properties �see e.g., �25–28��. A number of
mathematical results on the measure distribution and slow
mixing in such maps can be found in �29,30� �see also ref-
erences therein�. The mathematical properties of conver-
gence of the Ulam method in such intermittency maps are
discussed in a recent work �11�. The analysis of such 1D
maps is simpler compared to the two-dimensional �2D� map
considered in �12�: for example the PageRank at �=1 is
described by the invariant measure of the map which can be
find analytically as a function of map parameters. Following
the approach discussed in �12,31� we study not only the
PageRank but also the spectrum and the eigenstates of the
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Google matrix generated by the intermittency maps. Indeed,
the right eigenvectors �i and eigenvalues �i of the Google
matrix �G�i=�i�i� are generally complex and their proper-
ties should be studied in detail to understand the behavior of
the PageRank. We show that under certain conditions the
properties of the PageRank can be drastically changed by
parameter variation.

The results are presented in a following way: in Sec. II,
we describe the class of intermittency maps and the distribu-
tion of links in the corresponding Ulam network, the spectral

properties of the Google matrix and PageRank are consid-
ered in Secs. III and IV, the discussion of the results is pre-
sented in Sec. IV.

II. INTERMITTENCY MAPS

The intermittency maps of the interval considered in this
paper are described by the two map functions depending on
parameters and defined for the first model as:

f1�x� = �x + �2x�z1/2, for 0 � x � 1/2
�2x − 1 − �1 − x�z2 + 1/2z2�/�1 + 1/2z2� , for 1/2 � x � 1

	 , �2�

and for the second model as

f2�x� = �x + �2x�z1/2, for 0 � x � 1/2
a sin���x − 1/2�� , for 1/2 � x � 1

	 . �3�

The parameters z1 ,z2 ,a are positive numbers. The dynamics
is given by the map x̄= f1�x� and x̄= f2�x�. The map functions
f1,2�x� are shown in Fig. 1.

According to the usual theory of intermittency maps and
ergodicity theory �24–26,29,30,32,33� in the case of chaotic
dynamics the steady state invariant distribution g�x� of the
map is proportional to a time t�x� spent by a trajectory at
point x which is proportional to t�1 /x1−z1 so that one has a
power-law distribution at small values of x:

g�x� 	 1/xz1−1. �4�

For f1 map the dynamics is fully chaotic while for f2 map a
fixed point attractor appears for a
0.945 when f2�x�=x.

The Ulam networks generated by the intermittency maps
Eqs. �2� and �3� are constructed in a way similar to one
described in �1,12�: the whole interval 0�x�1 is divided on
N equal cells and Nc trajectories �randomly distributed inside
cell� are iterated on one map iteration from cell j to obtain
matrix elements for transitions to cell i: Sij =Ni�j� /Nc where
Ni�j� is a number of trajectories arrived from cell j to cell i.
The image of the density of Google matrix elements is
shown in Fig. 2 for the first model. The structure of the
matrix repeats the form of the map function f1�x�. We used
from 104 to 106 cell trajectories Nc, the obtained results are
not sensitive to Nc variation in this interval.

The differential distribution of number of nodes NL���
with ingoing or outgoing links � is shown in Fig. 3. The first
model shows a sharp drop of ingoing links and a power law
decay of outgoing links. For the second model the situation
is inverted. These properties can be understood from the fol-
lowing arguments. For the first model, the number of outgo-
ing links is �=dx̄ /dx=df1�x� /dx, the derivative is diverging
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FIG. 1. �Color online� Two types of intermittency map of the
interval given by the map functions f1�x� and f2�x�, the functions
are identical for 0�x�1 /2 but have different branches at 1 /2
�x�1 with f1�x� �red/gray� and f2�x� �blue/black�; map functions
are shown at z1=2 and at different values of parameters z2 and a;
the straight light gray line shows f�x�=x.

FIG. 2. �Color online� Google matrix at �=1 generated by the
intermittency map f1�x� at z1=2, z2=0.2, N=50, and Nc=106 �am-
plitude of matrix elements is changing from zero �black/blue� to 1
�red/gray��.
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near x=1 where we have ��1 / �1−x��1−z2�. The number of
nodes with � links is Nn��1−x��1 /�1/�1−z2� and the differ-
ential distribution of nodes

NL
out � dNn/d� � 1/��, � = �2 − z2�/�1 − z2� . �5�

For the data of Fig. 3 �top panel� at z2=0.2 this estimate
gives �=9 /4 in a good agreement with the numerical
data. For the second model df2�x� /dx is always finite and we
have a sharp drop for outgoing links distribution. The num-
ber of ingoing links is �=dx /dx̄�1 / x̄1−1/2 since we have
x̄��1−x�2 near x=1 �in our case =1 but we consider here
a general case�. Hence, the number of nodes with � links is
Nn� x̄�1 /�2/�2−1� and

NL
in � dNn/d� � 1/��, � = �4 − 1�/�2 − 1� . �6�

For our case with =1 we have �=3. This value is in a good
agreement with the data of Fig. 3. For the first model dx /dx̄
is always finite and we have a sharp drop of ingoing links
distribution.

This analysis allows understanding the origin of power
law distributions of links in the Ulam networks generated by
1d maps.

III. SPECTRAL PROPERTIES OF THE GOOGLE MATRIX

The distribution of the eigenvalues of the Google matrix
at �=1 constructed from the Ulam network described above
is shown in Fig. 4 for two models Eqs. �2� and �3�. As in
�12,31� we characterize an eigenstate �i by a participation
ratio �PAR� defined as �i= �� j
�i�j�
2�2 /� j
�i�j�
4. In fact
PAR gives an effective number of nodes populated by a
given eigenstate, it is broadly used in systems with disorder
and Anderson localization. The states �i�j� are normalized by
the condition � j
�i�j�
2=1. For the PageRank pj proportional
to �1�j�, ordered in the decreasing order of probability, we
use also probability normalization � jpj =1.

There are few main features of the spectrum of � in Fig. 4
visible for two models: there are states with 
�
 close to 1
which have relatively small values of �; there is a circle like
structure of eigenvalues and the maximum PAR are in the
middle ring around the center. The large circle is present for
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FIG. 5. �Color online� Dependence of density of states W��� on
� shown for different values of N for the first �at z1=2, z2=0.2,
top panel� and second �at z1=2, a=0.9, bottom panel� models; G
matrix is taken at �=1.
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FIG. 3. �Color online� Distribution of links between nodes of the
Ulam network of N=106 size for the first model with z1=2, z2

=0.2 �top panel� and the second model with z1=2, a=0.9 �bottom
panel�. Here, Nn��� gives the number of nodes which have � out-
going �black points� or ingoing �red/gray squares� links, respec-
tively. Insets show data for small � values in linear scale. The
straight line shows the theoretical slope for outgoing links �NL���
	1 /�9/4 first model, top panel� and for ingoing links �NL���
	1 /�3 second model, bottom panel�.

FIG. 4. �Color online� Distribution of eigenvalues � in the com-
plex plain for the Google matrix at �=1 for the first �z1=2, z2

=0.2, left panel� and second �z1=2, a=0.9, right panel� models at
N=12000. Color �grayscale� of small squares is determined by the
value of PAR � associated with the corresponding eigenvector �i as
show in the palette �the values of � are averaged over the states
inside of the square size�.
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both maps f1�x� and f2�x�. This means that it appears due to
the left branch of the map corresponding to intermittent mo-
tion near x=0. The density distributions W���=dN� /d� in
the decay rate defined as �=−2 ln
�
 are shown in Fig. 5
�here dN� is a number of states in the interval d��. It is clear
that in the limit of large matrix size N we have a convergence
to a limiting distribution, which has a characteristic peak at
��2.

Examples of few eigenstates ��i� with values of �m
=−2 ln
�m
 equal and close to zero are shown in Fig. 6 �the
index 1� i�N gives the cell position xi= �i−1� /N, index m
orders �m from zero to maximum ��. The first state �1�i�
with �1=1 is the steady state distribution generated by the
map f1�x� �the states for the map f2�x� have similar structure
and we do not show them here�. We have �1�i�	1 / i� with
�=1 for z1=2 is agreement with the theoretical expression
�4� �the numerical fit gives �=0.97�. The state �1�i� is mono-
tonic in i so that it coincides with the PageRank pj up to a

constant factor. Eigenstates with next values of � are charac-
terized by the same decay at large i with additional minima
at certain values of i similar to few nodes of eigenstates in
quantum mechanics.

The structure of eigenstates is changed when the value of
� is increased. Typical states are shown in Fig. 7. The states
on the first circle of 
�
 have peaked structure at certain i
with a plateau at large i. For � values at the maximum of
W��� �see Fig. 5� the eigenstates are delocalized over the
whole interval of 1� i�N.

An effective number of sites contributing to an eigenstate
can be characterized by the PAR �. For the PageRank
the value of � is independent of the matrix size N as it is
clearly shown in Fig. 8. This is due to the power law decay
of the PageRank pj �1 / j which corresponds to an algebraic
localization. The dependence of � on � is shown in Fig. 9.
For small � it can be fitted by a power-law growth ���1.2.
The origin of the exponent of this growth requires further
analysis.

Finally we note that we also determined the dependence
of number of states N� with values of �
5 on the matrix
size N. Our data �not shown� are well described by the de-
pendence N��N so that in contract to the results presented
in �12� there are no singes of the fractal Weyl law. We at-
tribute this to the fact that in contrast to the dissipative map
with a global contraction studied in �12� in the intermittency
maps all dynamics takes place on the whole one-dimensional
interval with inhomogeneous distribution of measure but
without fractality.
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FIG. 7. Same as in Fig. 6 for the eigenstates with �51�0.78
+ i0.42 �a state in a large circle, top panel�, �61�0.56+ i0.68 �a state
in a large circle, middle panel� and �1010�−0.36+ i0.35 �a state in
the dense part of the spectrum, bottom panel�; the corresponding
PARs are ��1231,1482,4367, respectively.

FIG. 6. �Color online� Absolute value of three eigenstates ��i�
for the first model f1�x� with z1=2, z2=0.2 and N=12 000. The
eigenstates correspond to the eigenvalues �1=1.0 �black circles�,
�2�0.9998 �red/gray squares� and �4�0.9983 �green/light gray
diamonds� �see Fig. 4, left panel�; this order of curves with symbols
changes from top to bottom at i=2. The corresponding PAR values
are �1�2.54, �2�1.21 and �4�9.00, respectively.
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FIG. 8. �Color online� Dependence of PAR � of the PageRank
on matrix size N: the circles �black� are for the first model f1�x�
with z1=2, z2=0.2 and the squares �red/gray� are for the second
model f2�x� with z1=2, a=0.9.

FIG. 9. �Color online� Dependence of PAR � on � for the first
model with z1=2, z2=0.2, and N=104. Inset show data in log-log
scale �points� with growth of ���1.2 at small values of � shown by
the straight solid blue/gray line.
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IV. PROPERTIES OF THE PAGERANK

The spectral gap between �1=1 equilibrium state and the
next state with maximum 
�2
 has very small gap �12=1
− 
�2
 which goes to zero with the increase of N like �12
�3 /N �see Fig. 10�. This happens due to the dynamical
properties of the maps Eqs. �2� and �3� where the time spent
at small x�1 /N is of the order tx�1 /xz1−1 �see, e.g.,
�24,32,33��, so that the corresponding �12�1 / tx�1 /Nz1−1

that gives the exponent 1 for z1=2.
Due to such decrease of �12 with N the PRA has bad

convergence at �=1 for large values of N. Up to N
�14000 we use the direct diagonalization of G matrix which
gives an algebraic decay pj �1 / j� with �=1 �see Fig. 6�. For
larger value of N we used the continuous map obtaining pj
from an equilibrium distribution over the cells of size 1 /N
after a larger number of map iterations ti�109 and large
number of trajectories Ntr�10. This distribution converges
to a limiting one at large values of ti �see Fig. 11�. Both
methods give the same result for N�2·104. The numerical
data for the exponent � are in good agreement with the the-
oretical dependence Eq. �4� �=z1−1 as it is shown in Fig. 12
�we attribute small deviations from the theoretical values to
finite size effects of N�.

For ��1 the PRA, described in the Introduction, is stable
and converges rapidly to the PageRank. It gives the same
results as the exact diagonalization for N�2·104. The de-
pendence of PageRank on � is shown in Fig. 11 �top panel�.
A small decrease down to �=0.999 modifies pj at j�100
making pj very flat in this region. For �=0.875 the PageR-
ank becomes completely delocalized over the whole system
size N.

For the second model the PageRank depends strongly on
the value of a. For a�0.945 when the dynamics is chaotic
and the steady-state distribution is given by Eq. �4� the prop-
erties of the PageRank are similar to those of the first model
described above, e.g., we have �=1 being independent of a
for �=1, z1=2 �see Fig. 13, bottom panel�. However, for
a
0.945 the map has a fixed point attractor and the Page
Rank becomes localized practically on one site at �=1. In
this regime with fixed point attractor, the PageRank is very
sensitive to � variation: at ��1 we have pj �1 / j� with the
fit values ��0.79 at �=0.98, ��0.60 at �=0.9, ��0.42 at
�=0.8 and ��0.32 at �=0.7.

The delocalization of the PageRank from the fixed point
attractor state is also clearly seen in the variation of PAR
��a ,�� shown in Fig. 14. This shows that even if at �=1 the
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FIG. 10. �Color online� Dependence of gap �12=1− 
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tween the first eigenstate with �1=1 and next one with maximum
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 on N for the first f1�x� �z1=2, z2=0.2� and second f2�x� �z1

=2, a=0.9� models. The straight dashed line shows the depen-
dence �12	1 /N.
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FIG. 11. �Color online� Dependence of the PageRank pj on j for
the first model at different values of � �z1=2, z2=0.2, top panel�
and different values of z1 �z2=0.2, �=1, bottom panel�. The data
are obtained from the continuous map �see text� for �=1 and the
PageRank algorithm at ��1, the number of nodes is N=105.
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10
-6

10
-4

10
-2

1 α=1.0
α=0.98
α=0.9
α=0.8
α=0.7

10
0

10
1

10
2

10
3

10
4

10
5

j

10
-6

10
-4

10
-2

1p j

a=0.96
a=0.93
a=0.9
a=0.8

FIG. 13. �Color online� Dependence of the PageRank pj on j for
the second model at different values of � �z1=2, a=0.96, top
panel� and different values of a �z1=2, �=1, bottom panel�. The
data are obtained from the continuous map �see text� for �=1 and
the PageRank algorithm at ��1, the number of nodes is N=105.
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PageRank is dominated only by one node a decrease of �
allows obtaining weighted contribution of other nodes.

We also note that in the phase of fixed point attractor the
spectrum of eigenvalues � has globally a structure rather
similar to one at a=0.9�0.945 �see Fig. 4, right panel�.
However, the PAR values of all eigenstates at a
0.945 be-
come rather close to unity showing that almost all eigenstates
are strongly localized in this phase. For example, for a
=0.96, we have almost all �i in the range from 1 to 4 for
N=104, it is interesting that about 53% of the states have

�
�e−10 �for a=0.9 this circle in � contains 23% of states,
see Fig. 4 right panel�.

V. DISCUSSION

The present studies allowed establishing a number of in-
teresting properties of the Google matrix constructed for the
Ulam network generated by intermittency maps. A general
property of such networks is the existence of states with
eigenvalues 
�
 being very close to unity. The PageRank of
such networks at �=1 is characterized by a power law decay

with an exponent determined by the parameters of the map.
It is interesting to note that usually for WWW it is observed
that the decay of the PageRank follows the decay law of
ingoing links distribution NL

in��� �see, e.g., �21��. In our case
the decay of PageRank is independent of NL

in��� decay as it is
clearly shown by Eqs. �5� and �6� and the data of Figs. 3, 11,
and 13. In fact a map with singularities of both maps f1�x�
and f2�x� �e.g., f3�x� which behaves like x+xz1 at small x,
like �1 /2−x�z1 at x�1 /2 close to 1/2 and like �1−x� near
x=1� will have the asymptotic decay of links distribution
given by Eqs. �5� and �6� but the decay of the PageRank will
be given by �=z1−1, hence, being independent of the decay
of links distribution.

Our results also show that while at � close to unity the
decay of the PageRank has the exponent ��1 but at smaller
values ��0.9 the PageRank becomes completely delocal-
ized �see Fig. 11�. In this delocalized phase the PAR � grows
with the system size approximately as �	N. The delocaliza-
tion of the PageRank can also take place at �=1 due to
variation of the parameters of the map �e.g., for z1→1�. It is
rather clear that the delocalization of the PageRank makes
the Google search inefficient.

We hope that the properties of Ulam networks generated
by simple maps will be useful for future studies of real di-
rected networks including WWW. Indeed, the whole world
will go blind if one day the Google search will become in-
efficient. The investigations of the Ulam networks can help
to understand the properties of directed networks in a better
way that can help to prevent such a dangerous situation.
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FIG. 14. �Color online� Dependence of PAR � of the PageRank
�� values are shown in the corresponding palettes� on parameters �
and a for the second model at z1=2; N=105; arrow marks the re-
gion with higher resolution shown on the right panel.
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