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Abstract. We use the Ulam method to study spectral properties of the Perron-Frobenius operators of
dynamical maps in a chaotic regime. For maps with absorption we show that the spectrum is characterized
by the fractal Weyl law recently established for nonunitary operators describing poles of quantum chaotic
scattering with the Weyl exponent ν = d−1, where d is the fractal dimension of corresponding strange set
of trajectories nonescaping in future times. In contrast, for dissipative maps we find the Weyl exponent
ν = d/2 where d is the fractal dimension of strange attractor. The Weyl exponent can be also expressed via
the relation ν = d0/2 where d0 is the fractal dimension of the invariant sets. We also discuss the properties
of eigenvalues and eigenvectors of such operators characterized by the fractal Weyl law.

1 Introduction

The Weyl law gives a fundamental relation between a
number of quantum states in a given classical phase space
volume and an effective Planck constant ~ for Hermitian
operators [1]. Recently, this relation has been extended
to nonunitary quantum operators which describe complex
spectrum of open systems or poles of scattering problem.
In this case the fractal Weyl law determines a number of
Gamow eigenstates in a complex plane of eigenvalues with
finite decay rates γ via a fractal dimension d of a classical
fractal set of nonescaping orbits. The Gamow eigenstates
find applications in various types of physical problems in-
cluding decay of radioactive nuclei [2], quantum chemistry
reactions [3], chaotic scattering [4] and chaotic microlasers
[5]. It is interesting that the fractal Weyl law was first in-
troduced by mathematicians via rigorous mathematical
bounds [6]. Later, numerical simulations for systems with
quantum chaotic scattering and open quantum maps con-
firmed the mathematical bounds and determined a num-
ber of interesting properties of such nonunitary quantum
operators [7,8,9,10,11]. Open quantum maps with absorp-
tion, e.g. the Chirikov standard map [12], are very con-
venient for numerical studies that allowed to establish a
number of intriguing properties of decay rates and quan-
tum fractal eigenstates in the limit of large matrix size
and small scale quantum resolution [13,10].

The fractal Weyl law gives the following scaling for the
number of Gamow states Nγ with the decay rate in a finite
band width 0 ≤ γ ≤ γb:

Nγ ∝ Nν , N = V/~ , ν = d− 1 , (1)

where N is a matrix size given by a number of quantum
states in a volume V and the exponent ν is determined by
a fractal dimension d of classical set formed by classical
trajectories nonescaping in future times (see Fig.1).

In view of the result (1) it is natural to assume that
the fractal Weyl law should also work for other type of
nonunitary matrix operators. An important type of such
matrices is generated by the Ulam method [14] applied
to the Perron-Frobenius operators of dynamical systems
[15]. The method is based on discretization of the phase
space and construction of a Markov chain based on prob-
ability transitions between such discrete cells given by the
dynamics. It is proven that for hyperbolic maps in one
and higher dimensions the Ulam method converges to the
spectrum of continuous system [16]. While the spectrum
of such Ulam matrix approximant of continuous operator
has been studied numerically for various dynamical maps
(see e.g [17] and Refs. therein) the validity of the fractal
Weyl law has not been investigated. Mathematical results
for the Selberg zeta function [19] indicate that the law
(1) should remain valid but, as we show here, for certain
dynamical systems the exponent ν starts to depend on
fractal dimension d in a different way.

It is known that in certain cases the Ulam method gives
significant modifications of the spectrum compared to the
case of the continuous Perron-Frobenius operators [16]. In
fact discretization by phase-space cells effectively intro-
duces small noise added to dynamical equations of mo-
tion. For Hamiltonian systems with divided phase space
this noise destroys the invariant curves and drastically
changes the eigenstate of the Perron-Frobenius operator
(see e.g. discussion in [18]). However, for homogeneously
chaotic systems the effect of this noise is rather weak com-
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Fig. 1. (Color online) Phase space representation of eiges-
tates ψi of the Ulam matrix approximant S of the Perron-
Frobenius operator for models 1 and 2 at N = 110× 110
(color is proportional to |ψi| with red/gray for maximum
and blue/black for zero). Left column shows eigenstates
for the model 1 at K = 7, a = 2 for maximum λ1 = 0.756
(top panel) and λ3 = −0.01 + ı0.513 (bottom panel),
the space region is (−aK/2 ≤ y ≤ aK/2, 0 ≤ x ≤ 2π)
and the fractal dimension of the strange repeller is d =
1.769. Right column shows eigenstates for the model 2
at K = 7, η = 0.3 for maximum λ = 1 (top panel) and
λ3 = −0.258 + ı0.445 (bottom panel), the space region is
(−4π ≤ y ≤ 4π, 0 ≤ x ≤ 2π) and the fractal dimension of
the strange attractor is d = 1.532.

pared to dynamical chaos and thus , in the limit of small
cell size, the physical properties of the dynamics are ex-
pected to have no significant modifications in agreement
with the results presented in [16,18]. Our numerical results
obtained for dynamical maps with homogeneous chaotic
dynamics confirm the convergence of the Ulam method to
the continuous limit of the Perron-Frobenius operator.

The paper is organized in the following way: Section
II gives the model description; Section III presents the
numerical results and the discussion is given in Section
IV.

2 Model description

To study the validity of the fractal Weyl law we use the
Chirikov standard map [12]. We consider two models: the
map with absorption that corresponds to the classical
limit of the quantum model studied in [13,10] (model 1)
and the map with dissipation (model 2) also known as
the Zaslavsky map [20]. In the first model the dynamics

is described by the map
{

ȳ = y +K sin(x+ y/2)
x̄ = x+ (y + ȳ)/2 (mod2π)

(2)

where bar notes the new values of dynamical variables
and K is the chaos parameter. The map is written in its
symmetric form and all orbits going out of the interval
−aK/2 ≤ y ≤ aK/2 are absorbed after one iteration. We
consider a strong chaos regime at fixed K = 7 and vary
the classical escape time by changing a in the interval
0.8 ≤ a ≤ 6.

The second model is described by the map with dissi-
pation parameter η < 1:

{

ȳ = ηy +K sinx
x̄ = x+ ȳ (mod2π)

(3)

with periodic boundary conditions in y ∈ [−4π, 4π). Due
to dissipation and chaos the dynamics converges to a strange
attractor (see e.g. [21]).

To construct the Ulam matrix approximant for a con-
tinuous Perron-Frobenius operator in the two-dimensional
phase space we divide the space of dynamical variables
(x, y) on N = Nx ×Ny cells with Nx = Ny. Then Nc tra-
jectories are propagated on one map iteration from a cell
j, and the elements Sij are taken to be equal to a relative
number Ni of trajectories arrived at a cell i (Sij = Ni/Nc

and
∑

i Sij = 1). Thus the matrix S gives a coarse-grained
approximation of the Perron-Frobenius operator for the
dynamical map. The map gives about K links for each
cell. We use Nc values from 104 to 106 where the results
are independent of Nc. The fractal dimension d of the
strange repeller and attractor depends on system param-
eters and is computed as a box counting dimension using
standard methods [21].

We also used another method to construct the Ulam
matrix based on a one trajectory for the dynamics with
a strange attractor in the model 2. In the one trajectory
Ulam method we iterate one trajectory up to time t1 =
100; after that we continue iterations of the trajectory up
to time t = 109 and determine the matrix elements Sij

as the ration between the number of transitions from cell
j to cell i divided by the total number of transitions Nc

from cell j to all other cells (in this way
∑

i Sij = 1). This
approach has certain advantages since it gives the Ulam
matrix restricted to a dynamics only on the attractor. For
a given cell size this method gives a significantly smaller
matrix size Na ≪ N since the number of cells Na located
on the attractor is much smaller than the total number of
cells N . When speaking about the results based on the one
trajectory Ulam method we always directly specify this.

3 Numerical results

The eigenvalues λi and right eigenvectors ψi of the matrix
S (Sψi = λiψi) are obtained by a direct diagonalization.
Examples of the eigenstates with maximal absolute values
of λi are shown in Fig.1. The fractal structure of eigen-
states is evident. For the model 1 the measure is decreasing



L.Ermann, D.L.Shepelyansky: Ulam method and fractal Weyl law for Perron–Frobenius operators 3

Fig. 2. (Color online) Distribution of eigenvalues λ in the
complex plane for the Ulam matrix approximant S for
the parameters of Fig.1 for the models 1 (top panel) and
2 (center panel). Bottom panel shows the spectrum for
the model 2, with the same parameters as for the central
panel, obtained via the one trajectory Ulam approximant
(see text). Color/grayness of small squares is determined
by the value of overlap measure µ defined in the text and
shown in the palette.

due to absorption and λ1 < 1, the state with λ1 represents
a set of strange repeller formed by orbits nonescaping in
future. For the model 2 all measure drops on the strange
attractor and in agreement with the Perron-Frobenius the-
orem we have λ = 1 [15]. Other eigenstates with smaller
values of |λ| are located on the same fractal set as the
states with maximal λ1 but have another density distri-
bution on it.

The spectrum of matrix S in the complex plane is
shown in Fig.2. It has a maximal real value λ1 isolated

by a gap from a cloud of eigenvalues more or less homoge-
neously distributed in a circle of radius rλ. For the model
2 the dense part of the spectrum has rλ ≈ η (at least at
small values of η) that physically corresponds to the fact
that η gives the relaxation rate to the limiting set of the
strange attractor. The gap between λ1 and other eigen-
values in the model 1 is probably related to a dynamics
on the strange repeller. According to [10] the decay rate
of total probability in (2) is exponential in time with the
rate γc = 0.270 (for parameters of Figs.1,2). This agrees
well with the numerical value λ1 = 0.756 ≈ exp(−γc). The
data of Fig.1 indicate that the states with i > 1 have a
strong overlap with the steady state of λ1 (i = 1). In a
quantitative way this overlap can be characterized by an
overlap measure defined as µi =

∑

l ψ1(l)|ψi(l)| where the
sum runs over all N cells. For µ close to unity an eigen-
state ψi has a strong overlap with the steady state ψ1 and
such states can be viewed as higher mode excitations on
this domain. For µ ≪ 1 we have other type of states be-
ing rather different from ψ1. The data of Fig.2 show that
states with small values of |λ| have small µ.
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Fig. 3. (Color online) Dependence of the integrated num-
ber of states Nγ with decay rates γ ≤ γb = 16 on the
size N of the Ulam matrix S for the models 1 and 2 at
K = 7. The fits of numerical data, shown by dashed
straight lines, give ν = 0.590, d = 1.643 (at a = 1);
ν = 0.772, d = 1.769 (at a = 2); ν = 0.716, d = 1.532
(at η = 0.3); ν = 0.827, d = 1.723 (at η = 0.6).

In fact, as it is typical of the fractal Weyl law, almost
all eigenvalues drop to very small |λ| → 0. The number
of states within a finite band with 0 ≤ γ ≤ γb, where
|λ| = exp(−γ/2), grows algebraically with N with the
exponent ν < 1 remaining small compared to N . Typical
examples of such a dependence are shown in Fig.3 for both
models.

The spectrum for the one trajectory Ulam approxi-
mant is shown in the bottom panel of Fig.2 (here Na =
2308 while N = 12100). The spectrum with one trajectory
has a structure similar to the spectrum of the usual Ulam
method. This shows that the spectrum is mainly deter-
mined by the diffusive type excitations on the attractor.
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Fig. 4. (Color online) Dependence of density of states
dW/dγ on the decay rate γ for the Ulam matrix S for
the model 1 (top panel), and model 2 (center panel) at
different sizes N = Nx × Ny given in the inset. Bottom
panel shows the spectral density for the one trajectory
Ulam method for parameters of the central panel. Data are
shown for parameters of Fig.1, the density is normalized

by the condition
∫

16

0
dW/dγdγ = 1.

Our matrix sizes N are sufficiently large and allow to
reach asymptotic behavior in the limit of large N . This is
confirmed by the fact that the density of states dW/dγ in
γ becomes independent of N as it is show in Fig. 4. This
directly demonstrates that the Ulam method is stable for
our models and that it converges to the continuous limit
of the Perron-Frobenius operator. The density of states
for the Ulam matrix obtained with one trajectory has the
density of states very close to the one obtained by the
usual Ulam method. This shows that the spectrum with
finite values of γ is determined by the dynamics on the
attractor.

The density is mainly determined by the cloud of states
in the radius rλ, the contribution of the isolated eigenvalue
λ1 is only weakly visible at minimal γ. The density has a
broad maximum around γ ≈ 3, for the model 2 this value
is compatible with the value −2 ln η which determines the
global relaxation rate to the strange attractor. It is in-
teresting to note that for the model 1 the spectral den-
sity of the Perron-Frobenius operator (Fig.4, top panel)
is rather different from the spectral density in the cor-
responding quantum problem (Fig.4 in [10]). Indeed, the
densities dW/dγ for the classical and quantum systems
are very different: the classical model 1 has one isolated
eigenvalue λ1 and a broad maximum around γ ≈ 3. The
quantum model of [10] has a peaked distribution around
γc = −2 lnλ1 corresponding to the classical state at λ1
and a monotonically decreasing density at larger values of
γ. At the same time the eigenstates with minimal γ are
located on the strange set of trajectories nonescaping in
future times, both in the classical and quantum cases (see

Fig.1 here and in [10]). Thus the semiclassical correspon-
dence between classical and quantum cases of model 1 still
requires a better understanding.
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Fig. 5. (Color online) Fractal Weyl law for three different
models: models 1 (black points at K = 7) and 2 (red/gray
squares at K = 12, blue/black triangles at K = 7) and
Hénon map (green/gray diamonds at a = 1.2; 1.4 for
b = 0.3). The fractal Weyl law exponent ν is shown as
a function of fractal dimension d of the strange forward
trapped set in model 1 and strange attractor in model 2
and Henon map. The straight dashed lines show the laws
(4) (upper line) and (1) (bottom line). We used a ∈ [0.8, 6]
for model 1 and η ∈ [0.3, 1] for model 2.

We determine the exponent ν as it is shown in Fig. 3 for
both models at different values of parameters. At the same
time we compute the fractal dimension d of the strange set
of trajectories nonescaping in future using box counting
dimension with a box size ǫ. In this way the size of the
Ulam matrix is N = 1/ǫ2 while the number of cells on
the fractal set scales as Nf ∝ 1/ǫd = Nd/2. In this way we
determine the dependence of ν on d. The data are shown in
Fig. 5. For the model 1 we find that the usual fractal Weyl
law with ν = d − 1 holds in a large interval of variation
of d. Relatively small deviations can be attributed to a
finite accuracy in computation of ν at finite matrix sizes.
In contrast to that for the model 2 we find absolutely
another relation which can be approximately described as

Nγ ∝ Nν , ν = d/2 . (4)

This relation works rather well for K = 12 while for
K = 7 the deviations are a bit larger. We attribute this to
the fact that at K = 7 there is a small island of stability
at η = 1 [22] which does not influence the dynamics in the
case of absorption (2) but can produce certain influence
for the dissipative case (3). To check that the law (4) works
for other systems with strange attractors we computed ν
and d for the Hénon map (x̄ = y + 1 − ax2, ȳ = bx, see
e.g. [21]) at standard parameter values of a, b. The results
confirm the validity of the fractal Weyl law also for the
Hénon map (see Fig. 5).

The physical origin of the law (4) can be understood in
a simple way: the number of states Nγ with finite values
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of γ is proportional to the number of cells Nf ∝ Nd/2 on
the fractal set of strange attractor. Indeed, the results for
the overlap measure µ (see Fig. 2) show that these states
have strong overlap with the steady state while the states
with λ → 0 have very small overlap. Thus almost all N
states have eigenvalues λ→ 0 and only a small fraction of
states on the strange attractor Nγ ∝ Nf ∝ Nd/2 ≪ N has
finite values of λ. We also checked that the participation
ratio ξ of the eigenstate of model 2 at λ = 1, defined as
ξ = (

∑

l |ψ1(l)|
2)2/

∑

l |ψ1(l)|
4, grows as ξ ∼ Nf ∝ Nd/2.

The fractal Weyl laws (1) and (4) have two different
exponents ν but they correspond to two different situa-
tions: for (1) the law describes the systems with absorp-
tion when all measure escapes from the system and only a
small fractal set remains inside; for (4) all measure drops
on a fractal set inside the system. Due to that reasons the
exponents are different.
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0
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Fig. 6. (Color online) Fractal Weyl law for three different
models as a function of the dimension of the invariant set
d0; the models and their parameters are the same as in Fig.
5. The fractal Weyl exponent ν is shown as a function of
fractal dimension d0 of the strange repeller in model 1 and
strange attractor in model 2 and Henon map. The straight
dashed line show the theoretical dependence ν = d0/2 of
Eq. (5). The inset shows the relation between the fractal
dimension d of trajectories nonescaping in future and the
fractal repeller dimension d0 for the case of model 1; the
dashed straight line shows the theoretical dependence d =
d0/2 + 1.

The different dependencies of ν on d in Eqs. (1,4) can
be reduced to one dependence if to express ν via the fractal
dimension d0 of the invariant sets. Indeed, for the model
(2) all trajectories drop on the strange attractor which can
be considered as an invariant set with the fractal dimen-
sion d0 = d. For the model 1 we have the set of trajectories
nonescaping in future with dimension d, there is also the
fractal set of trajectories nonescaping in the past which
has also the dimension d due to symmetry between the
future and the past present in the model 1 (symmetry to
reflection x, y → −x,−y in (2)). Then the invariant set of
a strange repeller corresponds to the intersection of these

two sets of trajectories nonescaping neither in the future
neither in the past with the fractal dimension d0. As it
is known, see e.g. [21], we have 2 = d + d − d0 so that
d = d0/2 + 1. This relation is confirmed by the data pre-
sented in the inset of Fig. 6. On the basis of these relations
we can express the fractal Weyl exponent via the fractal
dimension d0 of the invariant set

Nγ ∝ Nν , ν = d0/2 . (5)

This global dependence is confirmed by the data shown in
Fig. 6.

The numerical data for the one trajectory Ulam method
gives always Nγ ∝ Na. This satisfies the relation (5) since

by definition Na ∝ Nd0/2.

4 Discussion

In summary, our results show that the Ulam method gives
very efficient possibility to study the spectral properties of
the Perron-Frobenius operators for systems with dynam-
ical chaos. Their spectrum is characterized by the fractal
Weyl law with the Wyel exponent determined by the frac-
tal dimension of dynamical system according to relations
(1), valid for systems with absorption or chaotic scatter-
ing, or (4), valid for dissipative systems with strange at-
tractors.

It is interesting to note that for dynamical systems the
Ulam method naturally generates directed Ulam networks
[18] which have certain similarities with the properties
of the Google matrix of the World Wide Web (WWW).
However, for the model 2 and the Hénon map considered
above, there is a finite gap between λ = 1 and other eigen-
values while for the WWW there is no such gap [23,24].
In this sense the above models are more close to ran-
domized directed networks considered in [25] which have
a relatively large gap. We note that the PageRank vec-
tor ψ1 with λ = 1, used by Google for ranking of web
pages, corresponds in our case to a strange attractor. In
this case the probability pl ∼ ψ1(l) is distributed over all
cells Nf ∝ Nd/2 occupied by the strange attractor. The
number of such cells grows infinitely with N that corre-
sponds to a delocalized phase of the PageRank similar to
the cases discussed in [18]. In contrast to that the WWW
is characterized by a localized PageRank with an effective
finite number of populated sites independent ofN . In spite
of that it is not excluded that the future evolution of the
WWW can enter in a delocalized regime of the PageRank.
Therefore, we think that the fractal Weyl law discussed
here can be useful not only for the Perron-Frobenius op-
erators of dynamical systems but also for various types of
realistic directed networks.
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