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Theory of resonant photon drag in monolayer graphene
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Photon drag current in monolayer graphene with degenerate electron gas is studied under in-
terband excitation near the threshold of fundamental transitions. Two main mechanisms generate
an emergence of electron current. Non-resonant drag effect (NDE) results from direct transfer of
in-plane photon momentum q to electron and dependence of matrix elements of transitions on q.
Resonant drag effect (RDE) originates from q-dependent selection of transitions due to a sharp
form of the Fermi distribution in energy. The drag current essentially depends on the polarization
of radiation and, in general, is not parallel to q. The perpendicular current component appears if
the in-plain electric field is tilted towards q. The RDE has no smallness connected with q and exists
in a narrow region of photon frequency ω: |~ω − 2ǫF | < ~sq, where s is the electron velocity.

PACS numbers: 73.50.Pz, 73.50.-h, 81.05.ue

I. INTRODUCTION

Though the theoretical study of two-dimensional car-
bon has a long history [1],[2],[3],[4] only after experimen-
tal evidence of existence of graphene as a stable two-
dimensional crystal [5], [6–8] this material became very
popular. The presence of zero gap and zero electron
mass, combined with a rather high mobility at room tem-
perature, makes graphene an unique material for various
fundamental and applied problems. At present graphene
is intensively studied both theoretically and experimen-
tally (see e.g. reviews [9, 10]).

The study of graphene optics (see [11],[12]) is stimu-
lated by the prediction that the absorption in monolayer
graphene should be determined by the fundamental con-
stant α = e2/~c [13], [14] and its experimental evidence
[15]. The investigation of coupling between photons and
electrons in graphene attracts now an active interest of
the community (see e.g. [16, 17]). An observation of
amplified stimulated terahertz emission from optically
pumped epitaxial graphene heterostructures has been re-
ported recently [18]. However, the photoinduced cur-
rents, namely, photon drag and photogalvanic effects in
graphene were beyond of interest of the researchers. In
this paper we present the theoretical analysis of these
effects.

The study of light pressure on solids has rather long
history. The simplest variant is an instantaneous trans-
mission of photon momentum to electrons. This process
is permitted for interband transitions or in presence of
the ”third body”, for example, phonons, other electrons,
impurities. For a free particle this process is forbidden by
conservation laws. Small value of the photon momentum
makes Nonresonant photon Drag Effect (NDE) extremely
weak.

At the same time there exists a less known variant of
this effect, namely Resonant photon Drag Effect (RDE)

which has no weakness of usual NDE [19],[20],[21]. Res-
onance drag occurs when some partial kinetic property
of electron gas sharply depends on electron energy. A
small photon momentum gives an increase of the electron
energy, that can drastically change the relaxation time.
This leads to a significantly different contributions to the
electron current for electrons exited along or oppositely
to the photon direction. In [21] the situation was stud-
ied for interband transitions in weakly doped GaAs when
the electron energy approaches the energy of longitudi-
nal optical phonon. In this case electrons exited along
the direction of photon have larger energy than electrons
in opposite direction. Hence, their energy can exceed the
threshold for emission of optical phonon: they quickly
emit phonons and stop, while the opposite electrons will
move freely till they collide with impurity. This gives rise
to the appearance of charge flow in the direction opposite
to the light ray.

Here we develop another idea for RDE based on a
sharp Fermi distribution which forbids the transitions
below the Fermi energy ǫF . This idea is illustrated in
Fig.1. Electrons are excited from the hole cone to the
electron cone by photons with frequency ω and wave
vector Q. The conditions for resonant transitions are
sk + s|k− q| = ω, ~s|k| > ǫF , where k is the electron
momentum counted from the cone point, s ≈ 108cm/s is
the electron velocity, and q is a projection of the wave
vector Q of radiation to the plane of graphene. The first
condition determines ellipse in k plane, the second lim-
its a part of this ellipse accessible for transitions. The
wave vector tilts the transitions towards its direction.
Fig. 1 shows the case when the frequency is close to
2ǫF . The electrons in the figure are excited from the
right segment of the Fermi surface contour. This results
in electron flow rightwards. Since q ≪ kF the RDE
appears when the frequency is close to 2ǫF , namely if
|ω − 2ǫF | < sq. Inside this window the current of RDE
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FIG. 1: (Color online) Interband phototransitions in n-
type graphene. Left panel: diagram of transitions in the
momentum-energy space. The hole cone is shifted in k space
by the photon wave vector q. The transitions are permitted
only above the Fermi level. Right panel: projection to the
momentum plane. Filled circle represents the Fermi sea, the
elliptic curve corresponds to the energy conservation equation
s|k− q|+ sk = ω; only momenta outside the Fermi circle are
permitted corresponding to the right segment of the elliptic
curve.

has no smallness connected with q and can be estimated
as j ∼ esτ πα P/(~ω), where e and s are the electron
charge and the velocity, πα is the opacity of graphene,
τ is the transport relaxation time and P is the light in-
tensity. Physical meaning of this estimation is evident:
τπαP/(~ω) is the instantaneous density of exited elec-
trons which conserve their momentum. Being multiplied
by the current of individual electrons es, this quantity
gives the current density.
Below we determine both NDE and RDE for interband

transitions in monolayer graphene with degenerate elec-
tron gas. Due to graphene electron-hole symmetry results
are applicable to n- and p-type graphene. In general the
relaxation process for electrons and holes are different
that breaks electron-hole symmetry. For concreteness,
we consider the n-type graphene. In this case the mean
free time of excited electrons is much longer than that of
holes since due to different distance from the Fermi level
holes can easier emit phonons. Thus, the contribution of
holes will be neglected.
Fig. 2 illustrates a possible experiment on excitation

of the drag current in a suspended graphene sheet placed
in (x, y) plane. Light with frequency ω, wave vector Q

(Q = ω/c) and amplitude of electric field E illuminates
graphene plane. We consider transitions near the cone
singularity. In this case the current is determined by the
projections of the electric field and the wave vector onto
the graphene layer.[22] These quantities are E ≡ eE =
(Ep cosβ, Es) and q = (1, 0)Q sinβ, where β is the angle
of incidence, Es and Ep are amplitude components of the
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FIG. 2: (Color online) Sketch of proposed experiment (see
text for details).

electric field E perpendicular and parallel to the incident
plane. We ignore small modification of field caused by
the layer.

II. BASIC EQUATIONS

The current of photon drag effect can be expressed via
the probability of transition g(k) from the hole state with
a momentum k− q to the electron state with momentum
k and the electron velocity v(k) = sk/k as

j = 4e

∫

dk

4π2
v(k)τg(k), (1)

where the coefficient 4 accounts for the valley and spin
degeneracies. The dependence on the photon momentum
results from the momentum and energy conservation laws
and the matrix elements for transition. For simplicity we
put below ~ = 1.
The two-band Hamiltonian near the Dirac point is

Ĥ(k) = s

(

0 kx − iky
kx + iky 0

)

= skσ. (2)

Here σ is the vector of the Pauli matrices. The eigenval-
ues and eigenvectors of the Hamiltonian (2) are ǫ±(k) =

±sk and Ψ±(k) = (1,±eiφk)/
√
2, where φk is the po-

lar angle of the vector k. The different signs corre-
spond to electrons and holes. The interaction with
the wave is determined by the matrix elements of the
velocity ∇kĤ(k) = sσ between the hole and elec-
tron states with the momenta k− q and k: v−+ =
(Ψ−(k− q)∗sσΨ+(k)), correspondingly.
The transition probability g(k) is

g(k) =
πe2

2ω2
|Ev+−|2δ(sk + s|k− q| − ω)θ(ǫk − ǫF ), (3)

where θ(t) is the Heaviside function. The expression for
current Eq.(1) can be rewritten as

j =
e3E2s3

2πω2

∫

dkτ
k

|k|ajkejekδ(sk+s|k− q|−ω)θ(sk−ǫF )

(4)
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where

ajk =
1

s2
v−+∗

j v−+
k . (5)

We utilized the symmetry of the tensor aij resulting to
inclusion of the field polarization in the combinations
e∗i ej + e∗jei only and independence on the degree of cir-
cular polarization. Hence, without loss of generality one
can consider the field as linear-polarized and e as real.
Due to the smallness of the wave vector q, as compared

to the electron momentum, one can expand all quanti-
ties in powers of q. Expanding by q we can write the
argument of the delta-function as sk + s|k − q| − ω ≈
2sk − ω − sq cosφk (we choose the direction of axis x
along q). At the same time, q is comparable with 2sk−ω
and we keep ourselves from subsequent expansion of the
delta-function.
Expanding the tensor aij , we have

axx = sin2 φk(1 +
q

k
cosφk),

ayy = cos2 φk − q

k
sin2 φk cosφk, (6)

2Re(axy) = −2 sinφk cosφk − q

k
sinφk cos(2φk)

From Eq.(4) we obtain for components of the current

jx = −2J0

∫ min(1,a)

−1

dx√
1− x2

τ

τ0
×

{

e2x[−x(1− x2)(1 + bx) + 2b(1− x2)(1 − 2x2)] +

e2y[−x3(1 + bx) + 4bx2(1 − x2)]
}

; (7)

jy = 2J0exey

∫ min(1,a)

−1

dx
τ

τ0

√

1− x2 ×
{

− 2x(1− x2)(1 + bx) + 2b(3x2 − 1)
}

. (8)

Here we have introduced the following notations:

J0 =
e2

~c

cE2

8π~ω
|e|τ0s, τ0 = τ |k=kF

, a =
ω − 2ǫF

sq
, b =

sq

ω
.

If τ is independent on the energy of electrons then the
integration in Eq.(7) can be done directly. The current
has different values inside and outside the region |ω −
2ǫF | < sq. If |ω − 2ǫF | < sq then we have

jx = −2

3
J0

√

1− a2((1− a2)e2x + (2 + a2)e2y), (9)

jy = −4

3
J0(1− a2)3/2exey. (10)

These values represent resonant photon drag RDE. It
remains constant if q → 0. The value of resonant current
is determined by J0. For the photon flow cE2/8π~ω =
1019cm−2s−1, τ = 10−12 s, J0 = 1.16 · 10−6A/cm. This
approximately corresponds to a power of 0.1W/cm2 for
photons with energy 0.1eV .
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FIG. 3: Resonant photon drag current in units of J0 versus
normalized frequency (ω−2ǫF )/sq. The solid curve shows the
longitudinal component of current jx, the field is polarized
along the projection of the wave vector on the plane (θ = 0)
and jy at θ = π/4. The dashed curve shows jx at θ = π/2.

If |ω − 2ǫF | > sq, then there is only NDE current. It
is proportional to q:

jx = J0
πsq

4ω
(3e2x − e2y), (11)

jy =
3

2
J0

πsq

ω
exey. (12)

The value of NDE is significantly smaller then the RDE
value.
In agreement with the simple estimates the RDE has

always the direction opposite to the direction of light
wave vector. Its polarization dependence is explained by
the dependence of the directional diagram of excitation:
most of carriers are excited perpendicular to the polar-
ization. At the same time the Fermi sea limits the tran-
sitions by the direction of the photon wave vector. This
circumstances together determine lower x-component of
current if e||q in comparison with the case e ⊥ q and
also the appearance of y-component of the RDE current.
In agreement with the system symmetry, jy exists only

if the polarization has both ex and ey components. The
RDE current exists in a narrow window |ω − 2ǫF | < sq
which shrinks if q → 0. But inside this window RDE is
much stronger than NDE so the later can be neglected
in this window.
The sign of x-component of NDE depends on polariza-

tion. This contradicts to a simple assumption according
to which the current is mainly determined by kicks which
photons give to electrons. The origin of this difference is
the dependence of the directional diagram on the small
wave vector q via the parameter aij : at some polariza-
tions electrons prefer to be excited in opposite direction
to q. This explains the change of sign.
Fig. 3 demonstrates the dependence of RDE current

components on the frequency in the window |ω − 2ǫF | <
sq where RDE exists. The current vanishes at the edges
of the window. The component jx is larger for the polar-
ization along the y axis. The component jy appears only
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FIG. 4: Polarization dependence of the RDE current at ω =
2ǫF ; jx is shown by dash curve, jy is shown by solid curve.

for tilted polarization of the light. Fig. 4 shows the de-
pendence of jx and jy on the angle θ between the vector
of polarization e and the wave vector q.

III. DISCUSSION

We have studied the electron contribution to the pho-
ton drag current. In fact, in the considered system
the hole contribution also presents. The symmetry be-
tween holes and electrons in a neutral system means that
these contributions double. However, the result will be
changed if to take into account the difference between
electrons and holes caused by their different excitation
energy: while electrons are generated near the Fermi en-
ergy the holes appear well below the Fermi energy. This
leads to a strong difference between the relaxation times.

In high-mobility samples at low temperature the mo-
mentum relaxation time near the Fermi energy is much
greater than far from the Fermi energy. At the same
time, quick relaxation of excited electrons (holes) to the
Fermi energy due to electron-electron interaction (de-
scribed by e-e relaxation time τee) conserves their mo-
menta up to the moment when excitations reaches the
temperature layer. This results in equality of holes and
electrons contributions to the current. And vice versa,
electron-phonon relaxation can cancel the hole contribu-
tion if τe−ph ≪ τee, where τe−ph is the time of energy
relaxation due to electron-phonon collisions. Thus, the
obtained current should be multiplied by a factor 2 in
the case of quick e-e relaxation and be kept unchanged
in the opposite case. We note, that when the Fermi en-
ergy tends to zero the system becomes symmetric.

The RDE exists in a narrow energy range ∆ǫ ≈ ~sq ≈
~ωs/c near the Fermi energy. This means that the RDE
is visible for temperature T < ∆ǫ. For photons with
~ω = 0.1eV this gives T < 3K.

The observation of the resonant photon drag in mono-
layer graphene is accessible to the modern experimental
technique that allows to investigate interesting aspects of
coupling between photons and electrons in this material.
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[16] J.Z. Bernád, U.Zülicke, and K. Ziegler,
arXiv:1001.3239[cond-mat] (2010).

[17] K. Ziegler and A. Sinner, arXiv:1001.3366[cond-mat]
(2010).

[18] T.Otsuji, H.Karasawa, T.Komori, T.Watanabe,

http://arxiv.org/abs/1001.3239
http://arxiv.org/abs/1001.3366


5

H.Fukidome, M.Suemitsu, A.Satou, and Victor Ryzhii,
arXiv:1001.5075[cond-mat] (2010).

[19] A. A. Grinberg, Zh. Eksp. Teor. Fiz. 58, 989 (1970) [Sov.
Phys.-JETP 31, 531 (1970)].

[20] A.M.Danishevskii, A.A.Kastal’skii, S.M.Ryvkin, and
I.D.Yaroshetskii, Zh.Exp.Teor.Fiz. 58, 544 (1970) [Sov.
Phys. JETP, 31, 292 (1970)].

[21] V.L. Al’perovich, V.I. Belinicher, V.N. Novikov, and
A.S. Terekhov, 33, 557 (1981) [Sov. Phys.-JETP Lett.,
33, 573 (1981)].

[22] The vertical component of the electric field also inter-
acts with electrons, however, its action is weaker by the
parameter kF d, where d is the vertical distance between
dangling bonds of neighboring atoms. In fact, this com-
ponent results in the dynamical splitting of these states
and can be included in the Hamiltonian as σzeEzd/2.
Comparison of this term with considered one gives fore-
going estimate.

http://arxiv.org/abs/1001.5075

