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We apply the approach of the Google matrix, used in computer science and World Wide Web, to de-
scription of properties of neuronal networks. The Google matrix G is constructed on the basis of neuronal
network of a brain model discussed in PNAS 105 (2008) 3593. We show that the spectrum of eigenvalues
of G has a gapless structure with long living relaxation modes. The PageRank of the network becomes
delocalized for certain values of the Google damping factor α. The properties of other eigenstates are
also analyzed. We discuss further parallels and similarities between the World Wide Web and neuronal
networks.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

More than 50 years ago John von Neumann traced first par-
allels between architecture of the computer and the brain [1].
Since that time computers became an unavoidable element of the
modern society forming a computer network connected by the
World Wide Web (WWW). The WWW demonstrates a continuous
growth approaching to 1011 web pages spread all over the world
(see e.g. http://www.worldwidewebsize.com/). This number starts
to become even larger than 1010 neurons in the brain. Each neu-
ron can be viewed as an independent processing unit connected
with about 104 other neurons by synaptic links (see e.g. [2–4]).
About 20% of these links are unidirectional [5] and hence the brain
can be viewed as a directed network of neuron links. At present,
more and more experimental information about neurons and their
links becomes available and the investigation of properties of neu-
ronal networks attracts an active interest of many groups (see e.g.
[6–13]).

The WWW is also a directed network where a site j points to
a site i but no necessary vice versa. The classification of web sites
and information retrieval from such an enormous data base as the
WWW becomes a formidable challenge of modern society where
the search engines like Google are used by Internet users in ev-
eryday life. An efficient way to classify and extract the information
from WWW is based on the PageRank Algorithm (PRA), proposed
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by Brin and Page in 1998 [14], which forms the basis of the Google
search engine. The PRA is based on the construction of the Google
matrix which can be written as (see e.g. [15] for details):

G = αS + (1 − α)E/N. (1)

Here the matrix S is constructed from the adjacency matrix A of
directed network links between N nodes so that Sij = Aij/

∑
k Akj

and the elements of columns with only zero elements are replaced
by 1/N . The second term in r.h.s. of (1) describes a finite probabil-
ity 1 − α for WWW surfer to jump at random to any node so that
the matrix elements Eij = 1. This term with the Google damping
factor α stabilizes the convergence of PRA introducing a gap be-
tween the maximal eigenvalue λ = 1 and other eigenvalues λi . As
a result the first eigenvalue has λ1 = 1 and the second one has
|λ2| � α. Usually the Google search uses the value α = 0.85 [15].
By the construction

∑
i Gi j = 1 so that the asymmetric matrix G

belongs to the class of Perron–Frobenium operators which natu-
rally appear in the ergodic theory [16] and dynamical systems with
Hamiltonian or dissipative dynamics [17]. From the view point of
dynamical systems the matrix G describes time evolution in pres-
ence of noise and coarse-graining. In fact, dynamical systems nat-
urally generate so-called Ulam networks [18,19] where the nodes
are formed by coarse-gaining cells in the phase space and G gives
a time evolution of probability in a coarse-grained phase space.

The right eigenvector at λ = 1 is the PageRank vector with pos-
itive elements p j and

∑
j p j = 1. The classification of nodes in

the decreasing order of p j values is used to classify importance
of WWW nodes as it is described in more detail in [15]. The
PageRank can be efficiently obtained by a multiplication of a ran-
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Fig. 1. Distribution of ingoing (left panels) and outgoing (right panels) links κ :
Pin and Pout give number of nodes with κ ingoing and outgoing links respectively.
Top panels: unweighted links; bottom panels: weighted links.

dom vector by G which is of low cost since in average there are
only about ten nonzero elements in a typical line of G of WWW.
This procedure converges rapidly to the PageRank.

Fundamental investigations of the PageRank properties of the
WWW have been performed in the computer science community
(see e.g. [20–25]; involvement of physicists is visible, e.g. [26], but
less pronounced). It was established that the PageRank is satisfac-
tory characterized by an algebraic decay p j ∼ 1/ jβ with j being
the ordering index and β ≈ 0.9; the number of nodes with the
PageRank p scales as Nn ∼ 1/pν with the numerical value of the
exponent ν = 1 + 1/β ≈ 2.1 [15,20]. It is known that such type of
algebraic dependencies appear in various types of scale-free net-
works [27]. The PageRank classification finds its applications not
only for the WWW but also for the network of article citations in
Physical Review as it is described in [28,29]. This shows that the
approach based on the Google matrix can be applied to vary dif-
ferent types of networks.

In this work we construct the Google matrix G for a model of
brain analyzed in [11]. The properties of the spectrum and the
eigenstates of G are described in the next Section 2. The results
are discussed in Section 3.

2. Numerical results

In our studies we use the brain model of [11] which is a
large-scale thalamocortical model based on experimental measures
in several mammalian species. The model spans three anatomi-
cal scales. (i) It is based on global (white-matter) thalamocortical
anatomy obtained by means of diffusion tensor imaging (DTI) of
a human brain. (ii) It includes multiple thalamic nuclei and six-
layered cortical microcircuitry based on in vitro labeling and three-
dimensional reconstruction of single neurons of cat visual cortex.
(iii) It has 22 basic types of neurons with appropriate laminar dis-
tribution of their branching dendritic trees. According to [11] the
model exhibits behavioral regimes of normal brain activity that
were not explicitly built-in but emerged spontaneously as the re-
sult of interactions among anatomical and dynamic processes.

To construct the Google matrix of brain we use a directed
network of links between N = 104 neurons [30] generated from
the brain model [11]. In total there are Nl = 1960108 links in
the network. They form Nout outgoing links and Nin ingoing links

Fig. 2. (Color online.) PageRank p j for the Google matrix of brain model at α = 0.6,
0.85, 0.9, 0.95 and 0.99 shown by red, magenta green, blue and black solid curves
(full curves from bottom to top at log10 j = 0.3); j marks the index of nodes or-
dered according to the decreasing order of PageRank. The dotted black curve cor-
responds to α = 0.999 and demonstrates strong dependence of the PageRank on α
in the vicinity of α = 1. Panels (a) and (b) correspond to unweighted and weighted
links. For panels (a) and (b) the values of PAR are ξ = 8223 and 8314, 6295 and
6040, 5570 and 5046, 3283 and 3367, 28.4, 90.0, 1.09 and 1.19 for α = 0.6, 0.85,
0.9, 0.95, 0.99, 0.999 respectively. Panels (c) and (d) show the dependence of the
influence-PageRank p∗( j) on j for the same values of α as for top panels respec-
tively for unweighted and weighted links (for α > 0.6 there is a strong overlap of
curves).

(Nl = Nout = Nin), so that there are about 200 outlinks (or ingo-
ing) per neuron. Naturally, all links are counted as outgoing for
one nodes and as ingoing for other nodes so that Nout = Nin = Nl .
These numbers include multiple links between certain pairs of
neurons; certain neurons have also links to themselves (there is
one neuron linked only to itself). The number of weighted sym-
metric links is approximately 9.8%. Due to existence of multiple
links between the same neurons we constructed two G matri-
ces based on unweighted and weighted counting of links. In the
first case all links from neuron j to neuron i are counted as one
link, in the second case the weight of the link is proportional to
the number of links from j to i. In both cases the sum of ele-
ments in one column is normalized to unity. The distributions of
ingoing (Pin) and outgoing (Pout) links are shown in Fig. 1. The
weighted distribution of ingoing links have a pronounced peaked
structure corresponding to different regions of brain model con-
sidered in [11]. We note that the distribution of links is not of
free-scale type.

The dependence of the PageRank on α is shown in Fig. 2. For
α = 0.999 almost all probability p j is concentrated on one neuron.
This is the only one neuron which is linked only to itself. With the
increase of α up to 0.99 the main part of probability is concen-
trated mainly on about 10 neurons that approximately corresponds
to the number of peaks in the distribution of weighted ingoing
links in Fig. 1 (bottom left panel). At the same time the PageRank
has a long tail at large j where the probability p j is practically
homogeneous. For α = 0.6 the peak of probability at 1 � j � 10
is washed out and the PageRank becomes completely delocalized.
We note that a delocalization of the PageRank with α appears in
the Ulam networks describing dynamical systems with dissipation
[18,19]. At the same time the WWW networks remain stable in
respect to variation of α as it is discussed in [25,31].

Recently, for the studies of procedure call network of the
Linux Kernel [32] it was proposed to study the properties of the
importance–PageRank p∗( j) which is given by the eigenvector at
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Fig. 3. (Color online.) Spectrum of eigenvalues of the Google matrix G of brain at
α = 0.99 in the complex plain λ for (a) unweighted and (b) weighted links in
the neuronal network. Panels (c) and (d) show zooms of data of panel (c). The
color shows the degree of localization of eigenvectors of G being proportional to
the value of PAR ξ and changing from one (red/light gray) to maximal value (dark
green/black).

Fig. 4. Dependence of the density of states dW /dγ of G on the relaxation rate
γ = −2 ln |λ| for unweighted (pluses) and weighted (circles) links in the neuronal
network.

λ = 1 for the Google matrix constructed from the inverted links of
the original adjacency matrix. It was argued that p∗( j) can give an
additional information about certain important nodes. Our results
for p∗( j) are shown in panels (c), (d) of Fig. 2. They show that
p∗( j) is practically delocalized and flat for all used values of α.
This indicates that all nodes have practically equal importance. The
popularity–importance correlator introduced in [32] and defined
as κ = N

∑
i p(i)p∗(i) − 1 is rather small (κ ≈ −0.009, −0.017

at α = 0.6 and κ ≈ −0.054, −0.065 at α = 0.85 for unweighted,
weighted links respectively). This shows that there are no correla-
tions between p and p∗ in our neuronal network that is similar to
the Linux Kernel case.

The spectrum λi and the right eigenvectors ψi of the Google
matrix of brain are defined by the equation

Gψi = λiψi . (2)

The spectrum of λ is complex and is shown in Fig. 3. The color of
points is chosen to be proportional to the PArticipation Ratio (PAR)
defined as ξ = (

∑
j |ψi( j)|2)2/

∑
j |ψi( j)|4. This quantity deter-

mines an effective number of sites populated by an eigenstate ψi ,
it is often used to characterize localization–delocalization transi-
tion in quantum solid-state systems with disorder (see e.g. [33]).
The spectrum has eigenvalues with |λi | being close to unity so that
there is no gap in the spectrum of λ in the vicinity of λ = 1 (we
remind that the second term in the r.h.s. of (1) transfers λi to αλi
keeping only one λ1 = 1 [15]). This is different from the spectrum
of random scale-free networks characterized by a large gap in the
spectrum of λ [34].

Compared to the spectra of the university WWW networks
studied in [31] the spectrum of G in Fig. 3 is more flat being sig-

Fig. 5. Dependence of PAR ξ on relaxation rate γ at α = 0.85 for (a) unweighted
and (b) weighted links in the neuronal network.

Fig. 6. Dependence of PAR ξ of the PageRank on parameter α for (a) unweighted
and (b) weighted links in the neuronal network.

nificantly compressed to the real axis. In this respect our neuronal
network has certain similarity with the spectra of vocabulary net-
works analyzed in [31] (see Fig. 1 there). At the same time the
spectrum of G matrix of brain has visible structures in the eigen-
values distribution in the complex plane of λ while the vocabulary
networks are characterized by structureless spectrum. The spec-
trum of Fig. 3 has global properties being similar to those of the
Ulam networks considered in [18]. It is interesting to note that the
spectra of unweighted and weighted networks of brain have sim-
ilar structure. This supports the view of structural stability of the
spectrum of G matrix.

It is useful to determine the relaxation rate of eigenstates by
the relation γ = −2 ln |λ|. The dependence of density of states
dW /dγ on γ is shown in Fig. 4 (the density is normalized to
unity so that

∫ ∞
0 dW /dγ dγ = 1 corresponds to N = 104 states).

The distribution in γ has a pronounced peak at γ ≈ 5, the den-
sity of states at small γ < 1 is relatively small (this is also seen in
Fig. 3). The comparison of unweighted and weighted links shows
the stability of the density distribution in respect to such modifi-
cation of links.

The dependence of the PAR ξ on γ is shown in Fig. 5 (we note
that except of the PageRank ξ is independent of α due to the unity
rank of matrix E, see e.g. [15,18]). The PageRank value of ξ at
γ = 0 is very large being more than half of the total number of
neurons N = 104. It is clear that this corresponds to a delocal-
ized state. The eigenstates with 0 < γ < 2 have relatively small
ξ � 103 being close to a localized domain while eigenstates with
2 < γ < 10 have ξ > 103 being delocalized on the main part of
the network; the states with γ > 10 enter in the localized do-
main. For α > 0.99 the PAR is close to ξ ≈ 1. Taking as a criterion
that the delocalization takes place when ξ > N/2 we obtain that
the PageRank becomes delocalized at αc ≈ 0.9 (see data of Figs. 2
and 6). The global dependence of the PAR ξ of the PageRank on
parameter α is shown in Fig. 6 with a sharp delocalization of ξ for
α < αc . Of course, the above analysis should be considered as an
approximate one since the localization properties should be stud-
ied in dependence on the system size N while we consider only
one size of N .

Finally, following the approach proposed in [32], we show in
Fig. 7 the distribution of PageRank values p and p∗ for all sites.
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Fig. 7. Distribution of PageRank values p and p∗ for all sites for (a) unweighted and
(b) weighted links in the neuronal network at α = 0.85.

Such kind of distributions can be rather useful in determining sites
which have maximal values of p and p∗ at the same time. How-
ever, a detailed analysis of the properties of this distribution would
require networks with a larger size N where statistical fluctuations
are smaller.

3. Discussion

In this work we studied the properties of the Google matrix
of a neuronal network of the brain model discussed in [11]. For
this network of 104 neurons we found that the spectrum of the
Google matrix has a gapless spectrum at α = 1 demonstrating cer-
tain similarities with the spectra of university WWW networks
and vocabulary networks studied in [31]. At the same time our
neuronal network shows signs of delocalization transition of the
PageRank at the Google damping factor αc ≈ 0.9 which was absent
in the networks studied in [25,31]. A similar transition in α was
detected in the Ulam networks generated by dissipative dynami-
cal maps [18]. We attribute the appearance of such delocalization
transition to a large number of links per neuron (200) which is by
factor 10 larger than in the WWW networks (20).

Of course, our studies have certain limitations since we con-
sidered only a fixed size neuronal network and since this network
is taken from a model system of brain analyzed in [11]. Another
weak point is that we do not consider the dynamical properties of
the network which are probably more important for practical ap-
plications. Nevertheless, the spectral properties of G matrix can be
rather useful. Indeed, the gapless spectrum of λ shows that long
living excitations can exist in our neuronal network. Such relax-
ation modes with small rates γ can be the origin of long living
oscillations found in numerical simulations [11]. It is quite pos-
sible that the properties of spectra of G can help to understand
in a better way rapid relaxation processes and those with long
relaxation times. We conjecture that the rapid relaxation modes
correspond to relaxation of local groups of neurons while long
living modes can represent relaxation of collective modes repre-
senting dynamics of human thoughts. The dynamics of such col-
lective modes can contain significant elements of chaotic dynamics
as it was discussed in the frame of the concept of creating chaos
in [35].

It is possible that the brain effectively implements dynamics
described by the evolution equation dψ/dt = Gψ which with-
out perturbations converges to the steady-state described by the
PageRank (which may be linked with a sleeping phase). External
perturbations give excitations of other eigenmodes of G discussed
here. The evolution of these excitations will be significantly af-
fected by the spectrum of G.

Further development of the Google matrix approach to the
brain looks to us to be rather promising. For example, a detection
of isolated communities and personalized PageRank, represented
by other types of matrix E in (1), is under active investigation
in the computer science community (see e.g. [15,25]). Such type
of problems can find their applications for detection of specific

quasi-isolated neuronal networks of brain. The usage of real neu-
ronal networks, similar to those studied in [6–10,13], in combina-
tion with the Google matrix approach can allow to discover new
properties of processes in the brain. The development of parallels
between the WWW and neuronal networks will give new progress
of the ideas of John von Neumann.
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