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Abstract. We introduce a generalized Ulam method and apply it to symplectic dynamical maps with a
divided phase space. Our extensive numerical studies based on the Arnoldi method show that the Ulam
approximant of the Perron-Frobenius operator on a chaotic component converges to a continuous limit.
Typically, in this regime the spectrum of relaxation modes is characterized by a power law decay for small
relaxation rates. Our numerical data show that the exponent of this decay is approximately equal to the
exponent of Poincaré recurrences in such systems. The eigenmodes show links with trajectories sticking
around stability islands.

1 Introduction

The properties of two-dimensional (2D) symplectic maps
with dynamical chaos have been studied in great detail
during last decades both on mathematical (see e.g. [1,2]
and references therein) and physical (see e.g. [3–5] and
references therein) grounds. A generic and nontrivial be-
havior appears in maps with divided phase space where
islands of stability are surrounded by chaotic components.
A typical example of such a map is the Chirikov standard
map [3,4] which often gives a local description of dynami-
cal chaos in other dynamical maps and describes a variety
of physical systems (see e.g. [6]). This map is character-
ized by one dimensionless chaos parameter K and two
dynamical variables x, y which have a meaning of phase
and conjugated action:

ȳ = y +
K

2π
sin(2πx), x̄ = x+ ȳ (mod 1). (1)

Here bars mark the variables after one map iteration and
we consider the dynamics to be periodic on a torus so that
0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

For small values of K the phase space is covered by in-
variant Kolmogorov-Arnold-Moser (KAM) curves which
restrict dynamics in action variable y. With the increase
of K more and more of these KAM curves start to be de-
stroyed and above a certain Kc all curves disappear and
dynamics in y becomes unbounded. In 1979 Greene [7]
argued that the last KAM curve has the golden rota-
tion number r = rg = 〈(xt − x0)/t〉 = (

√
5 − 1)/2 with

the critical Kg = 0.9716 . . . (here t is given in num-
ber of map iterations; there is also symmetric critical
curve at r = 1 − rg at Kg). A renormalization tech-
nique developed by MacKay [8] allowed to determine
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Kg = 0.971 635 406 with enormous precision. The proper-
ties of the critical golden curve on small scales are univer-
sal for all critical curves with the golden tail of the contin-
uous fraction expansion of r for all smooth 2D symplectic
maps [8]. Further mathematical [9] and numerical [10] re-
sults showed that the actual value of Kc is indeed very
close to Kg (Kc −Kg < 2.5× 10−4 according to [10]) and
it is most probable that Kc = Kg.

The results of Greene and MacKay [7,8] gave a funda-
mental understanding of the local structure properties of
symplectic maps in a vicinity of critical invariant curves
but the global properties of dynamics on a chaotic com-
ponent still keep their mysteries. For K > Kg the golden
KAM curve is replaced by a cantori [11] which can signif-
icantly affect the diffusive transport through the chaotic
part of the phase space [12,13]. In addition there are other
internal boundaries of the chaotic component with critical
invariant curves which can affect statistical properties of
chaotic dynamics. One of such important properties is the
statistics of Poincaré recurrences P (t) which is character-
ized by a slow algebraic decay in time being in contrast
to an exponential decay in a homogeneously fully chaotic
maps (see [14–22] and references therein). This algebraic
decay P (t) ∝ 1/tβ has β ≈ 1.5. Such a slow decay ap-
pears due to trajectory sticking near stability islands and
critical invariant curves and leads to even slower correla-
tion decay with a divergence of certain second moments.
A detailed understanding of this phenomenon is related
to global properties of dynamical chaos in 2D symplectic
maps and is still missing.

With the aim to analyze the global properties of
chaotic dynamics we use the Ulam method proposed in
1960 [23]. In the original version of this method the phase
space is divided in Nd = M ×M cells and nc trajecto-
ries are propagated on one map iteration from each cell j.
Then the matrix Sij is defined by the relation Sij = nij/nc

where nij is the number of trajectories arrived from a
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cell j to a cell i. By the construction
∑

i Sij = 1 and
hence the matrix Sij belongs to the class of the Perron-
Frobenius operators (see e.g. [24]) and can be considered
as a discrete Ulam approximate of the Perron-Frobenius
operator (UPFO) of the continuous dynamics. According
to the Ulam conjecture [23] the UPFO converges to the
continuous limit at large M . Indeed, this conjecture was
proven for one-dimensional (1D) homogeneously chaotic
maps [25]. Various properties of the UPFO for 1D maps
have been studied in [26–28] and further mathematical re-
sults have been reported in [29–32] with extensions to 2D
maps. It was also shown that the UPFO can find useful ap-
plications in studies of dynamics of molecular systems [33]
and coherent structures in dynamical flows [34]. Recent
studies [35,36] traced similarities between the UPFO, the
corresponding to them Ulam networks and the properties
of the Google matrix of the world wide web networks.

While for homogeneously chaotic systems the Ulam
method is well convergent to a continuous limit it is also
well known that in certain cases the discretization leads to
violent modifications of system properties (see e.g. [30]).
For example, for 2D maps with a divided phase space the
UPFO destroys all KAM curves and thus absolutely mod-
ifies the system properties (see e.g. discussion in [35]). The
physical origin of these unacceptable modifications is re-
lated to a small noise, introduced by the coarse-graining,
which amplitude is proportional to the cell size 1/M . This
noise allows trajectories to penetrate through invariant
curves leading to a broadly known opinion that the Ulam
method is not applicable to the Hamiltonian systems with
divided phase space.

In this work we show that the Ulam method can be
generalized in such a way that it becomes applicable to 2D
symplectic maps with a divided phase space. We use this
generalized Ulam method to investigation of the Chirikov
standard map at the critical parameter Kg and at large
values of K when the phase space has small stability is-
lands. Our extensive numerical simulations allow to obtain
new features of the global chaotic dynamics in such cases.
We also show that this method can be applied to other
maps, e.g. the separatrix map or whisker map [4].

The paper is constructed as follows: in Section 2 we
describe the generalized Ulam method and demonstrate
its convergence for the map (1) at K = Kg, in Section 3
we describe the Arnoldi method which allows to study
the spectral properties of the UPFO in the limit of large
matrix size up to Nd ∼ 106. The spectral properties of
the UPFO are analyzed in Section 4 for the map (1) at
K = Kg and in Section 5 at K = 7. The case of the
separatrix map with the critical golden curve is studied
in Section 6, the discussion of the results is presented in
Section 7.

2 Generalized Ulam method

To make the Ulam method to be applicable for the sym-
plectic maps with divided phase space we use the following
generalization of the method which we explain on an ex-
ample of the Chirikov standard map (1). The whole phase

space 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is divided on M ×M equal
cells. One trajectory is taken in the chaotic component
(e.g. at x0 = 0.1/2π, y0 = 0.1/2π) and is iterated on a
large number of map iterations t, e.g. t = 1012. Then the
UPFO matrix is defined as Sij = nij/

∑
l nlj where nij is

the number of transitions of the trajectory from a cell j to
a cell i. By the construction we have

∑
i Sij = 1 and hence

this UPFO Sij belongs to the class of Perron-Frobenius
operators. In this construction a trajectory visits only
those cells which belong to one connected chaotic compo-
nent. Therefore the noise induced by the discretization of
the phase space does not lead to a destruction of invariant
curves, in contrast to the original Ulam method [23] which
uses all cells in the available phase space. Since the trajec-
tory is generated by a continuous map it cannot penetrate
inside the stability islands and on the physical level of rigor
one can expect that, due to ergodicity of dynamics on one
connected chaotic component, the UPFO constructed in
such a way should converge to the Perron-Frobenius oper-
ator of the continuous map on a given subspace of chaotic
component.

A mathematical prove of such a generalized Ulam con-
jecture of the convergence of the UPFO built from one
trajectory is not an easy task. Therefore, we performed
extensive numerical simulations which confirm the con-
jecture. With this aim we checked that the results for the
spectrum and eigenstates of S remain stable when t is
changed from t = 1010 to 1012, when we take another tra-
jectory in the same chaotic component, and when the size
M is increased (see detailed discussion below). To reduce
the matrix size of Sij we use the symmetry property of the
map (1) which remains invariant under the transformation
x→ 1−x, y → 1− y so that we can consider cells only in
the lower half square with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1/2 which
contains M2/2 cells. At K = Kg we find that the num-
ber of cells visited by trajectory in this half square scales
as Nd ≈ CdM

2/2 with Cd ≈ 0.42. This means that the
chaotic component contains about 40% of the total area
that is in a good agreement with the know result of [4].

We used values of M in the range 25 ≤ M ≤ 1600.
To be more precise, for practical reasons, we determined
the UPFO (actually the integer numbers nij) for the two
largest values M = 1600 and M = 1120 by iterating
a single trajectory as described above and for smaller
values of M we used an exact renormalization scheme
by merging four neighbored cells (for a certain value of
M) into one single cell (for M/2). In this way we ob-
tained in an efficient way the UPFO also for smaller values
M = 800, 560, . . . , 35, 25 without the necessity to reiter-
ate the same classical trajectory.

For t = 1012 and M = 1600 we have about nc ≈
2t/(CdM

2) ≈ 1.8×106 transitions for each cell. This num-
ber is rather large and relative statistical fluctuations are
on a small level of 1/

√
nc ∼ 10−3.

The direct exact diagonalization of the matrix S can be
done by standard computer routines which require mem-
ory resources of N2

d ∼M4 double precision registers. The
computational time scales at N3

d ∼ M6. Thus, for the
map at K = Kg we are practically limited to M = 280
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Fig. 1. (Color online) plots of the eigenvector ψ0 of the
UPFO with eigenvalue λ0 = 1. The UPFO is obtained by
the generalized Ulam method with a single trajectory of 1012

iterations of the Chirikov standard map (1) at K = Kg =
0.971635406. The phase space is shown in the area 0 ≤ x ≤ 1,
0 ≤ y ≤ 1/2; the UPFO is obtained from M×M/2 cells placed
in this area. The value of M for the panels is 25 (first/top
left), 50 (first/top right), 140 (second/bottom left), 280 (sec-
ond/bottom right), the corresponding dimension of the UPFO
matrix S is Nd = 177, 641, 4417, 16 609 respectively. The prob-
ability of the eigenstate is shown by color with red/grey for
maximum and blue/black for zero.

(with Nd = 16 609) as the maximum size for the full diag-
onalization. At such M the statistical error is of the level
1/

√
nc ∼ 10−4. Larger values of M can be reached by the

Arnoldi method as it is discussed in the next Section.
The eigenvalues λj and corresponding right eigenvec-

tors ψj(i) are defined from the equation

Nd−1∑

i=0

Smiψj(i) = λjψj(m). (2)

According to the Perron-Frobenium theorem [24] we have
the maximal eigenvalue λ0 = 1 with the corresponding
eigenstate ψ0(i) shown in Figure 1 for four values of M .
All values ψ0(i) are non-negative in the agreement with
the theorem and have the meaning of the probabilities in
a given cell i. With the increase of M the state ψ0(i) con-
verges to a homogeneous ergodic measure on the chaotic
component. The stability islands are well incorporated in-
side the chaotic component.

Another confirmation of the convergence of the UFPO
in the limit of large M is presented in Figure 2. In
a first approximation the spectrum λ of S is more or
less homogeneously distributed in the polar angle ϕ de-
fined as λj = |λj | exp(iϕj) (see left column of Fig. 2).
The two-dimensional of states ρ(λ) clearly converges to
a limiting curve. This density of states is normalized by∫
ρ(λ) d2λ = 1 (for a full spectrum of Nd eigenvalues). It

drops when |λ| approaches to 1 but even at |λ| ≈ 0.9 the
convergence to a limiting curve is clearly seen. This is also
confirmed by data with 400 ≤ M ≤ 1600 obtained from
the Arnoldi method (which corresponds to a partial spec-
trum of 3000-5000 
 Nd eigenvalues with largest |λj | and
is therefore not properly normalized).

The convergence of ρ(λ) at Nd → ∞ implies that the
spectrum has a usual dimension d/2 = 1 corresponding

Fig. 2. (Color online) Spectrum λj of the UPFO of the map
(1) at K = Kg. First row: the left panel shows the eigenvalue
spectrum in the complex plane for M = 280 and Nd = 16 609
by red/grey dots. The small blue/black square close to the
region λ = 1 is shown in more detail in the right panel with
eigenvalues as red crosses. The green/grey curve represents the
circle |λ| = 1. Second row: in the left panel the Ritz eigen-
values (blue/black squares), obtained by the Arnoldi method
for M = 280 and with the Arnoldi dimension nA = 1500,
are compared with the exact eigenvalues (red/grey dots). The
right panel shows the modulus of the differences between the
exact eigenvalues and the Ritz eigenvalues as a function of the
level number j with eigenvalues sorted by decreasing modulus:
|λ0| = 1 > |λ1| > |λ2| >. The Ritz eigenvalues are numerically
correct (with an error ∼ 10−14) for more then 1000 first eigen-
values thus demonstrating the very good convergence of the
Arnoldi method. Third row: the left panel shows the density
ρ(λ) of eigenvalues in the complex plane, being normalized by∫
ρ(λ)d2λ = 1, as a function of the modulus |λ| for the val-

ues M = 100, 140, 200, 280. The peak at |λ| = 0.02 is outside
the plot range and has values ρ(0.02) = 7.7 (M = 280), 8.3
(M = 200), 9.0 (M = 140), and 10 (M = 100). The right
panel shows the density ρ(λ) in the region |λ| ∈ [0.58, 1] for
M = 280 (full spectrum) and M = 400, 560, 800, 1120, 1600
(partial spectrum). For 400 ≤M ≤ 1120 only the largest 3000
eigenvalues and for M = 1600 the largest 5000 eigenvalues
were calculated by the Arnoldi method and therefore the cor-
responding densities deviate from the convergent curve at small
values of λ.

to the dimension of the phase space. We note that the
situation becomes different for dissipative maps where the
fractal Weyl law determines the number of states in a
given area of λ that grows slower than Nd (see [35,37] and
references therein). Our direct computation of the number
of states Nλ in an interval 0.1 ≤ λ ≤ 1 gives a linear
dependence Nλ ∝ Nd.
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The properties of λj , with |λ| being close to 1 (see e.g.
right top panel of Fig. 2), and their scaling with M will
be discussed in next Sections after a description of the
Arnoldi method which is especially efficient in the compu-
tation of such eigenvalues.

Let us note that our special checks show that the vari-
ations of λj with the change of initial trajectory or its
length t remain on the level of statistical accuracy 1/

√
nc.

In the following we present data obtained with the tra-
jectory length t = 1012 which is close to a maximal com-
putational effort used in [19,20] where t ≤ 1013 was used
for the computation of the Poincaré recurrences. Such a
large value of t allows for the trajectory to penetrate into
the very close vicinity of the critical invariant curve that
becomes important at large M .

3 Arnoldi method

In order to capture features of small phase space structures
(such as small stable islands) and to get a better approx-
imation of the continuous limit (M → ∞) it is of course
desirable to increase M further than the value M = 280
accessible by the exact diagonalization. Fortunately the
matrix S is very sparse with an average number of non-
zero connecting elements per row (or per column) being
κc ≈ 5 (and maximum number of links κm = 6, atKg) and
12 (and κm = 20 at K = 7). The value of a maximal num-
ber of non-zero elements is determined by a local stretch-
ing given by the monodromy matrix, thus we have ap-
proximately κc ∼ exp(h) where h is the Kolmogorov-Sinai
entropy (see [4] and discussion in [35]). Since κc 
 Nd we
can calculate and store the matrix S for larger values of
M and also effectively compute the product of S with an
arbitrary vector with κc ×Nd operations.

Furthermore, we are primary interested in the part
of the spectrum with eigenvalues of modulus |λj | close
to 1, or in other words with minimal decay rates γj =
−2 ln(|λj |), in order to capture the long time properties
of chaotic dynamics with the UPFO iterations.

We have therefore used the Arnoldi method [38] which
is perfectly adapted for this situation. This method is
similar in spirit to the Lanzcos method, but is adapted
for non-hermitian or non-symmetric matrices. It has al-
lowed us to compute a considerable number of eigenval-
ues (with largest modulus) and the associated eigenvectors
of S for the values M = 400, 560, 800, 1120, 1600 corre-
sponding to the matrix dimension of the UPFO Nd =
33 107, 63 566, 127 282, 245 968, 494 964 (for the map (1)
at Kg) which are absolutely inaccessible by a full matrix
diagonalisation. For the case with strong chaos at K = 7
or the separatrix map the matrix dimension is even close
to Nd ≈ 106 for M = 1600. In order to provide for a self-
contained presentation, we give a short description of this
method here.

The main idea of the Arnoldi method is to construct
a subspace of “modest”, but not too small, dimension nA

(in the following called the Arnoldi-dimension) generated
by the vectors ξ0, Sξ0, S2ξ0 . . . S

nA−1ξ0 (called Krylov
space) where ξ0 is some normalized initial vector and to

diagonalize the projection of S onto this subspace. The
resulting eigenvalues are called the Ritz eigenvalues which
represent often very accurate approximations of the exact
eigenvalues of S, at least for a considerable fraction of the
Ritz eigenvalues with largest modulus.

To do this more explicitly, we first construct re-
cursively an orthonormal set (of nA + 1 vectors)
ξ0, ξ1, . . . , ξnA . For k = 0, 1, . . . , nA−1 we define the vec-
tor vk+1 as the Gram-Schmidt orthogonalized (but not
yet normalized) vector of S ξk with respect to ξ0, . . . , ξk
and store the matrix elements hj,k = 〈ξj |S| ξk〉 for
j = 0, . . . , k which were used during the orthogonal-
ization scheme. Furthermore we define the matrix ele-
ment hk+1,k =‖ vk+1 ‖ and normalize vk+1 by ξk+1 =
vk+1/hk+1,k. Then the product S ξk can be expressed in
terms of the orthonormal vectors ξj by:

S ξk =
k+1∑

j=0

hj,k ξj (3)

and therefore the matrix hj,k is the representation matrix
of S in the Krylov space. This expansion is called in the
mathematical literature [38] Arnoldi-decomposition when
written in matrix form and it is actually an exact identity.
However, it is not closed since S ξk requires a contribution
of ξk+1 unless hk+1,k = 0 for some value of k in which
case we would have obtained an exact S-invariant sub-
space and the diagonalization of the Arnoldi matrix hj,k

would provide a subset of exact eigenvalues of S (those
with eigenvectors in the S-invariant subspace). An inter-
esting situation appears if due to numerical rounding er-
rors hk+1,k is very small and not exactly zero. Then the
method automatically generates, with the help of round-
ing errors, a new “pseudo-random” start vector and ex-
plores a new subspace orthogonal to the first S-invariant
subspace which is actually useful to obtain further eigen-
values.

However, when diagonalizing the UPFO S for a chaotic
map with large dimension this situation, which may be
quite important in certain other cases, does not happen
and hk+1,k is always different from zero (actually hk+1,k is
quite comparable in size to the modulus of eigenvalue λk).
Therefore we have to cut the above iteration at some max-
imal value of k. In order to calculate the Arnoldi matrix of
dimension nA one must actually be careful to determine
nA+1 vectors, otherwise one would miss the last column of
the matrix h. We also note that the Arnoldi matrix hj,k is
of Hessenberg form (hj,k = 0 if j > k+1) which simplifies
the numerical diagonalization since one can directly call
the subroutine for the QR-diagonalization and omit the
first, quite expensive, step which transforms a full matrix
to Hessenberg form by Householder transformations.

We mention as a side remark that for symmetric or
hermitian matrices S one can show that the matrix hj,k

is tridiagonal and the orthogonalization needs only to be
done with respect to the last two vectors resulting in the
well known Lanczos algorithm. In principal, the use of an
exact mathematical property, which may be violated due
to numerical rounding errors, is somewhat tricky and may
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require special treatment in the various variants of the
Lanczos method. However, the Arnoldi method always re-
quires orthogonalization with respect to all previous vec-
tors and does not suffer from this kind of problem but it
is also more expensive than the Lanczos algorithm.

The Arnoldi method requires Nd κc double precision
registers to store the non-zero matrix elements of S,Nd nA

registers to store the vectors ξk and const.×n2
A registers

to store hj,k (and various copies of h). The computational
time scales as Nd κc nA for the computation of S ξk, with
Nd n

2
A for the Gram-Schmidt orthogonalization procedure

(which is typically dominant) and with const.×n3
A for the

diagonalization of hj,k.
In the practical applications of the Arnoldi method an

important point concerns the “good” choice of the initial
vector ξ0. It is actually a bad idea to chose a vector which
is close to the eigenvector of maximal eigenvalue (or other
eigenvalues) because this would suppress contributions of
other eigenvectors which we want to retain. A much better
choice is a random initial (normalized) vector. During the
Arnoldi iteration the method will automatically suppress
the eigenvector contributions with respect to the smallest
values |λj | and retain the contributions of eigenvalues close
to the unit circle. If the spectrum has some well-defined
modest gap between λ0 = 1 and the other eigenvalues
the random initial vector is indeed a very good choice
and we have used this choice for the case of map (1) at
K = 7 which we discuss in Section 5. However, at critical
Kg there is no real gap (see for example the upper right
panel in Fig. 2) and there is also a considerable number of
eigenvalues close to unit circle. In this case the inherent
suppression of small eigenvalues by the Arnoldi method
may not be sufficiently fast, if |λk|k is not small for k close
to the chosen Arnoldi dimension nA. Therefore we have
chosen here an initial (normalized) vector obtained from
an initial number of iterations of S applied to a random
vector: ξ0 ∝ Snini. ξrandom with nini. being the number of
initial S-iterations which we have chosen to scale withM2:
nini. = M2/200 (except for the case M = 1600 where we
have chosen nini. = 7000).

As a first illustration, we have applied the Arnoldi
method with nA = 1500 to the case of M = 280 and
Nd = 16 609 for the Chirikov standard map at Kg, for
which we were still able to diagonalize the full matrix S.
In the middle right panel of Figure 2, we show the mod-
ulus of the difference (in the complex plane) of the Ritz
eigenvalues and the exact eigenvalues as a function of the
level number j. The first 1000 Ritz eigenvalues, out of
1500 in total, are numerically correct with a deviation
∼10−14 entirely due to numerical rounding errors. If we
only require graphical precision (∼10−5) there are actu-
ally 1200 Ritz eigenvalues which are still acceptable. This
can also be seen in the middle left panel of Figure 2 where
we compare the spectrum in the complex plane of the
full matrix S with the partial spectrum obtained by the
Arnoldi method. This provides a quite impressive confir-
mation of the accuracy of the Arnoldi method. For larger
values of M we have done similar verifications, for exam-
ple by comparing the Ritz eigenvalues for different values

of nA or for different initial vectors. Choosing typically
nA = 1500 or nA = 3000-5000 for the largest values of
M = 1120, M = 1600, we always have a considerable
number (at least 500 to 1000) of numerically accurate
eigenvalues.

Concerning the (right) eigenvectors, we prefer to deter-
mine them independently by the method of inverse vector
iteration which provides numerical reliable (real or com-
plex) eigenvectors with n2

A operations per eigenvector due
to the Hessenberg form of hj,k. Suppose that ϕ is such an
eigenvector of hj,k with eigenvalue λ,

λϕj =
nA−1∑

k=0

hj,k ϕk, (4)

then we obtain by equation (3), the corresponding eigen-
vector ψ of S directly from:

ψ =
nA−1∑

k=0

ϕk ξk. (5)

4 Chirikov standard map at Kg

We first apply the Arnoldi method to the Chirikov stan-
dard map (1) at the critical value Kg = 0.971635406. The
Arnoldi method allowed us to obtain a considerable num-
ber of eigenvalues and eigenvectors of the UPFO S for the
valuesM = 400, 560, 800, 1120, 1600 corresponding to the
matrix dimension Nd = 33 107, 63 566, 127 282, 245 968,
494 964. We choose the Arnoldi dimension nA = 3000 for
M ≤ 1120 and nA = 5000 for M ≤ 1600 and we also com-
pute the first 500 eigenvectors for each case. Even though
we are not able to calculate the full spectrum for these
cases, the partial densities of the eigenvalues in the com-
plex plane, for |λ| close to 1, are in a good agreement with
the full densities obtained for M ≤ 280 as can be seen in
the bottom right panel of Figure 2. Below we present the
most important part of obtained data, more details with
many eigenstates and high resolution figures are available
at [39].

In Figure 3 we show the decay rates γj = −2 ln(|λj |) as
a function of the level number j (with eigenvalues sorted
by decreasing |λj | or increasing γj) for the case M = 800.
We note that the first 6 eigenvalues follow quite closely
a quadratic dispersion law γj ≈ γ1 j

2 for 0 ≤ j ≤ 5.
These 6 eigenvalues are actually real, positive and close to
1. Their corresponding eigenvectors (which are also real)
extend over the full phase space covered by the chaotic
trajectory used to determine the UPFO.

In the first row of Figure 4 we show the density plots
of the (right) eigenvector ψ0(m) in phase space represen-
tation (the index m gives the discretized phase space po-
sition of the cell m) for M = 800 and M = 1600. The
second row shows |ψ1(m)| and |ψ2(m)| for M = 800. In
agreement with the ergodic theorem, the eigenvector ψ0

represents a nearly uniform density on the chaotic com-
ponent. The eigenvectors ψj for 1 ≤ j ≤ 5 (and also for
certain higher values j ≤ 15 if the associated eigenvalue is
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Fig. 3. (Color online) Decay rates γj = −2 ln(|λj |) versus level
number j (red crosses) for the UPFO eigenvalues λj of the map
(1) at K = Kg, M = 800 and Nd = 127 282. The green curve
corresponds to the quadratic dispersion law γj ≈ γ1 j

2 which
is approximately valid for the diffuson modes with 0 ≤ j ≤ 5.

real, positive and close to 1) correspond to some kind of
“diffuson modes” with a roughly uniform distribution in
the angle coordinate x and a wave structure with a finite
number of nodes in the action coordinate y. For example
|ψ1(m)| is maximal at the upper and lower borders of the
available phase space and ψ1(m) changes sign on exactly
one curve in between. For |ψ2(m)| there are three maximal
curves and two node curves with a sign change of ψ2(m)
and so on for other diffuson modes. Such diffuson modes
with quadratic spectrum naturally appears as a solution
of the diffusion equation

∂ρ

∂t
=

∂

∂y

(

Dy
∂ρ

∂y

)

, (6)

with boundary conditions ∂ρ/∂y = 0 at y = 0 and y ≈
1 − rg: ρj(y) ∝ cos(πjy/(1 − rg)), γj ≈ π2Dyj

2/(1 − rg)2
(assuming Dy to be constant on the interval 0 ≤ y ≤
1 − rg).

The structure of the eigenvectors for complex eigen-
values (or real negative eigenvalues close to “−1”) is very
different and corresponds to the “resonance modes” which
are typically concentrated (or even localized) around one
(or a chain of few) resonance(s). This can be seen in the
third and fourth rows of Figure 4 containing the density
plots of |ψj(m)| for j = 6 and j = 8 (third row) and
for j = 13 and j = 19 (fourth row). The complex phase
ϕj of λj = |λj | ei ϕj for such an eigenvalue represents
quite well the periodicity of a trajectory with a period
q if ϕj ≈ 2π(p/q) is approximated by a rational number
times 2π. The fraction p/q represents the position of the
resonance in the rotation number r. In Figure 4 we can
identify ϕ6 ≈ 2π(1/3), ϕ8 ≈ 2π(1/4), ϕ19 ≈ 2π(3/8) and
as a secondary resonance (close to the main resonance at
p = 0) ϕ13 ≈ 2π(2/5).

The density plots of further resonance modes (with
complex or real negative eigenvalue) are typically sim-
ilar and they approximately repeat the modes associ-
ated with the largest resonances but with modified phases
and decay rates. For example the density of the mode
λ10 = −0.99187524 (for M = 800) with the phase ϕ10 =
2π(2/4) is very similar to the density of the mode λ8 with

Fig. 4. (Color online) First row: density plot of the eigen-
vector with eigenvalue λ0 = 1 for M = 800 and Nd = 127 282
(left panel) and for M = 1600 and Nd = 494 964 (right panel).
In last three rows M = 800 and Nd = 127 282. Second row:
density plot of the modulus of the components of the eigen-
vectors for λ1 = 0.99980431 (left panel) and λ2 = 0.99878108
(right panel). Third row: density plot of the modulus of the
components of the eigenvectors for λ6 = −0.49699831 +
i 0.86089756 ≈ |λ6| ei 2π/3 (left panel) and λ8 = 0.00024596 +
i 0.99239222 ≈ |λ8| ei 2π/4 (right panel). Fourth row: density
plot of the modulus of the components of the eigenvectors
for λ13 = 0.30580631 + i 0.94120900 ≈ |λ13| ei 2π/5 (left panel)
and λ19 = −0.71213331 + i 0.67961609 ≈ |λ19| ei 2π(3/8) (right
panel).

ϕ8 = 2π(1/4) representing the resonance at 1/4. Another
example concerns the resonance modes close to the res-
onance 1/3 (see density plot of the mode λ6 in Fig. 4).
There is a certain number of higher modes with phases
that can be written in the form 2π(p1/3 + p2/8) with cer-
tain small integer numbers p1, p2.

One may also ask the question in how far the complex
phases of the eigenvector components carry interesting
information. As a illustration we show in Figure 5 for
two examples the density plot of the complex phase of
ψj(m) for j = 6 (or j = 8) and M = 800. Even though
these modes are quite well localized (see Fig. 4) close to
the resonances 1/3 (or 1/4) they still extend, with well
defined complex phases of ψj(m), to the full accessible
phase space described by the UPFO. In the region with
very small values of |ψj(m)| the phase dependence is quite
complicated and one cannot provide a simple physical in-
terpretation. However, in the region of maximal |ψj(m)|
close to the classical resonance 1/3 (1/4) for j = 6 (j = 8)
one can identify a simple structure where the phase is
roughly constant on a boundary layer outside of each sta-
ble region associated to the resonance but with differ-
ent values 2π(l/3)+const. (2π(l/4)+const.) for each of the
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Fig. 5. (Color online) Density plot of the complex phase of
the components of the eigenvectors for λ6 = −0.49699831 +
i 0.86089756 ≈ |λ6| ei 2π/3 (left panel) and λ8 = 0.00024596 +
i 0.99239222 ≈ |λ8| ei 2π/4 (right panel). Deep blue corresponds
to either empty cells or phase = −π, green to phase = 0 and
red to phase = π (M = 800 and Nd = 127 282).
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Fig. 6. (Color online) The left panel shows the decay rate
γ1(M) of the first “excited” diffuson mode (see second row, left
panel in Fig. 4) of the UPFO as a function of M (red crosses) in
a double logarithmic scale. The lower (blue) line corresponds
to the power law fit 2.36 M−1.30. The upper (green) curve

corresponds to the fit: f(M) = D
M

1+C/M
1+B/M

with D = 0.245,

C = 258 and B = 13.1. The right panel shows the decay rate
γ6(M) of the mode associated to the resonance 1/3 (see third
row, left panel in Fig. 4) as a a function of M (red crosses)
in a double logarithmic scale. The (green) line corresponds to
the power law fit 389M−1.55. Both power fits were obtained
for the range 400 ≤ M ≤ 1600 while for the fit with f(M) all
values 25 ≤M ≤ 1600 were used.

three (four) islands characterized by the number l = 0, 1, 2
(l = 0, 1, 2, 3).

Concerning the first non-zero decay rates one impor-
tant question is the dependencies of γj(M) as a function of
M and in particular what happens in the limitM → ∞. In
Figure 6, we show γ1(M), for the first non-trivial diffuson
mode (left panel), and γ6(M), for the first resonance mode
(right panel), versus M in a double logarithmic scale. In
both cases γj(M) seems to tend to zero for M → ∞ and a
power law fit for the range 400 ≤M ≤ 1600 indicates the
behavior γ1(M) ≈ 2.36M−1.30 and γ6(M) ≈ 389M−1.55.
However, the situation for γ1(M) seems more subtle and
the curvature, when taking into account the range of all
values 25 ≤M ≤ 1600, seems to indicate a transition from
M−2 for small M -values to M−1 for larger values of M .
Actually the data can also be well described by the fit:

γ1(M) ≈ f(M) =
D

M

1 + C/M

1 +B/M
(7)

with D = 0.245, C = 258 and B = 13.1.
A physical interpretation of this behavior will be dis-

cussed in Section 7. Here we only note that the vanishing
limit limM→∞ γj(M) = 0 is coherent with the observation
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Fig. 7. (Color online) The top left panel shows the or-
dered complex phases ϕj of the complex eigenvalues λj =
|λj | exp(iϕj) of the UPFO for M = 1600 and the largest 2000
eigenvalues (obtained by the Arnoldi method with the Arnoldi
dimension nA = 3000) as a function of the index j such that
ϕj ≤ ϕj+1. The horizontal (blue) lines represent the fractional
values of the Farey sequence of order 8 corresponding to steps
in the phase number function. The two bottom panels show the
same data at with higher resolution in a vicinity of ratios 1/3
(left panel) or 1/4 (right panel) for the phase rotation number.
The top right panel shows the distribution of the phase rotation
numbers obtained by a histogram of bin width 1/840 and the
complex phases of the largest 3000 eigenvalues. The positions
of the local maxima correspond quite well to the fractional
values of the Farey sequence. Since the complex eigenvalues
appear in complex conjugate pairs phase numbers ϕ/2π > 1/2
have been mapped to values below 1/2 by ϕ/2π → 1 − ϕ/2π.

that the relaxation to the uniform ergodic eigenvector is
described by a power law decay of the Poncaré recurrences
in time.

Before we close this section, we come back to the dis-
cussion of the complex phases of the eigenvalues. As al-
ready observed above, it seems that for the resonance
modes the eigenvalue phases ϕj of λj = |λj | exp(iϕj) are
close to 2π×p/q, where p/q is some rational number with
small values of q. In Figure 7 we analyze the statistical
behavior of ϕj/(2π) in two ways. Namely, we show ϕj ver-
sus an index j ordered in such a way that ϕj < ϕj+1. The
horizontal lines show the rational numbers of the Farey
sequence of order 8 (i.e. all irreducible rational numbers
between 0 and 1 with a maximal denominator 8) obtained
from a continuous fraction approximation of ϕj/(2π). One
can see that these rational values correspond to small steps
indicating a larger than average probability to find a ratio-
nal number with small denominator. This feature is seen
even clearer in the top right panel of Figure 7 where the
distribution of ϕj/(2π) has well defined peaks at the po-
sitions associated with the Farey sequence.
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5 Chirikov standard map at K = 7

We now turn to a particular case of strong chaos at K = 7
which was previously studied in [16] and by Chirikov
in [40]. According to [16] the statistics of Poincaré recur-
rences on line y = 0 drops exponentially with time. This is
also a case even if one takes another line for recurrences,
e.g. y = 1/2. In the latter case the recurrences are mainly
determined by a trajectory sticking in a vicinity of two
small stability islands located on a line y = 0. However,
in this case the border of islands is very sharp and the
statistics of Poincaré recurrence still decays exponentially
up to rather long times P (t) ∼ exp(−t/τ) with a decay
time τ = 23.1 [40].

We have determined the UPFO S at K = 7 for the
same values as previously (25 ≤ M ≤ 1600) using a tra-
jectory of length 1011 which is sufficient due to the faster
relaxation to the ergodic distribution (as compared to the
case of critical Kg where we used a trajectory of length
1012). Now the matrix size Nd of S is very close to its max-
imal value M2/2 since with the exception of the two small
stable islands nearly all cells are visited by the trajectory.
For M = 1600 we have Nd = 1 279 875.

We have calculated the full eigenvalue spectrum of S
by direct diagonalization for M ≤ 140 (corresponding to
Nd ≤ 9800) and the first nA = 1500 eigenvalues (and the
first 500 eigenvectors) by the Arnoldi method forM ≥ 200
(Nd ≥ 20 000). As compared to the case of critical Kg the
necessary time and memory resources are increased due to
larger values of Nd at given M but on the other hand we
get reliable eigenvalues for smaller numbers of the Arnoldi
dimension because the modulus of the eigenvalues decay
much faster with increasing level number. This can be seen
at the eigenvalue spectrum in the complex plane shown in
the left panel of Figure 8 for M = 140. There are only
few eigenvalues outside the circle of radius 0.5 and we can
also identify a clear gap between the first two eigenval-
ues λ0 = 1 and λ1 = 0.8963823322 (for M = 140). The
density of eigenvalues in the complex plane (normalized
by

∫
ρ(λ) d2λ = 1) can be quite well approximated by the

expression:

ρ(λ) ≈ exp
(
2.55 − 6.0 |λ| − 11.4 |λ|2) , |λ| ≤ 0.65 (8)

and for |λ| > 0.65 we have ρ(λ) < 0.001. This expression
fits the density for all values 25 ≤ M ≤ 140 for which we
have been able to compute the full eigenvalue spectrum of
S.

In view of the exponential distribution of Poincaré re-
currence times as found in [16,40], a very important ques-
tion concerns the limit of the first non-zero decay rate
γ1(M) asM → ∞. For the case of criticalKg with a power
law distribution we found a vanishing limit of γ1(M) but
here we expect a finite limit. This is indeed the case as
can be seen in the right panel of Figure 8 where we show
γ1(M) as a function of M−1. A simple fit with two pa-
rameters γ1(M) = d + eM−1 for M−1 ≤ 0.004 results in
d = 0.0994± 0.0018 and e = 20.3 suggesting the finite ex-
trapolation limit limM→∞ γ1(M) = 0.0994. However, as
can be seen in the figure, the quality of the fit is not very
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Fig. 8. (Color online) The left panel shows the eigenvalue
spectrum in the complex plane of the UPFO (t = 1011 it-
erations) for the map (1) at K = 7 for M = 140 and
Nd = 9800 = 1402/2 as red dots. The green curve shows the
unit-circle |λ| = 1. The right panel shows the decay rate γ1(M)
as a function of M−1 for 100 ≤ M ≤ 1600. The upper (blue)
straight line corresponds to the fit γ1(M) = d + eM−1 for
M−1 ≤ 0.004 resulting in d = 0.0994 and e = 20.3 suggesting
the extrapolation limit limM→∞ γ1(M) = 0.0994. The lower
(green) curve corresponds to the fit γ1(M) = a (1+bM−1)c for
M−1 ≤ 0.01 resulting in a = 0.0857, b = 1370 and c = 0.389
suggesting the extrapolation limit limM→∞ γ1(M) = 0.0857.
The black dot marks the decay rate γcl = 0.0866 found di-
rectly from the the Poincaré recurrences in [40].

good and can be improved by a more suitable three param-
eter fit: γ1(M) = a (1+ bM−1)c for M−1 ≤ 0.01 resulting
in a = 0.0857± 0.0036, b = 1370 and c = 0.389 suggesting
the extrapolation limit limM→∞ γ1(M) = 0.0857 which
actually coincides (within the error bound) with the “de-
cay rate” γcl = 2/23.1 = 0.0866 found in [40] from the ex-
ponential tail of the distribution of Poincaré recurrences.

Concerning the eigenvectors of S, we mention that
the eigenvectors for the first mode λ0 = 1 represents of
course the uniform ergodic distribution on the (nearly)
full phase space with exception of the two small stable
islands. The eigenvector structure is more interesting for
the other (non-uniform) modes and in Figure 9 we show
for M = 1600 the density plots of the eigenvectors for
the two modes λ1 = 0.94665516 and λ2 = −0.49451923+
i 0.80258270. One can clearly identify the invariant man-
ifolds and a very interesting structure around the stable
islands.

In Figure 10 we furthermore show zoomed density
plots of the eigenvector for the mode λ1 for the two regions
close to the stable islands at x = 0.33, y = 0 and x = 0.67,
y = 0. Both islands cover 125 out of 1 280 000 cells in total
with a relative phase space volume being approximately
125/(16002/2) ≈ 9.7 × 10−5 that, up to statistical fluctu-
ations, is in agreement with the result 7.8 × 10−5 of [40].

6 Separatrix map at Λc = 3.1819316

In this section, we study the UPFO for a different map,
called the separatrix map [4], defined by:

ȳ = y + sin(2πx), x̄ = x+
Λ

2π
ln(|ȳ|) (mod 1). (9)

This map can be locally approximated by the Chirikov
standard map by linearizing the logarithm near a certain
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Fig. 9. (Color online) Density plot of the modulus of the com-
ponents of the eigenvectors for λ1 = 0.94665516 (top panel)
and λ2 = −0.49451923 + i 0.80258270 (bottom panel) of the
UPFO for the map (1) at K = 7, M = 1600, Nd = 1279 875
and Arnoldi dimension nA = 1500.

Fig. 10. (Color online) Increased representation of the regions
of the two stable islands, close to x = 0.33 and y = 0 (left
panel) or x = 0.67 and y = 0 (right panel), of the eigenvector
for λ1 = 0.94665516 (see top panel in Fig. 9).

y0 that leads after rescaling to the map (1) with an effec-
tive parameter Keff = Λ/|y0| [4]. Therefore the separatrix
map exhibits strong chaos for small values of |y0| 
 Λ
while for larger values of |y0| we have the typical KAM-
scenario similar to the Chirikov standard map for small
or modest values of K.

For the separatrix map the width of the chaotic com-
ponent |y| ≤ yb can be estimated from the condition
Keff ≈ Λ/yb ≈ 1 that gives yb ≈ Λ. It is known that
the golden curve with the rotation number r = rg =
(
√

5 + 1)/2 = 0.618.. is critical at Λc = 3.1819316 [16]
at which there is a quite large chaotic domain confined
up to values |y| ≤ 3.84. Therefore we define the M ×M
cells to construct the UPFO for the phase space domain
0 ≤ x ≤ 1, −4 ≤ y ≤ 4. As in the case of the Chirikov
standard map, we use a symmetry: x→ x+ 1/2 (mod 1),
y → −y, to reduce this range to 0 ≤ x ≤ 1, 0 ≤ y ≤ 4 for
M×M/2 cells. It turns out that for the separatrix map the
number of cells visited by the trajectory (of length 1012)

scales as Nd ≈ CdM
2/2 with Cd ≈ 0.78 meaning that the

chaotic component contains about 78% of the total area
of the domain (e.g. Nd = 997 045 for M = 1600).

As in the case of the Chrikiov standard map the ma-
trix S is very sparse with small numbers κ 
 Nd of non-
zero elements per row (or per column). The average of
these numbers (with respect to all rows or all columns)
is κc = 〈κ〉 ≈ 19 (for M = 1600 and with 12 < κc < 19
for the other values of M). However, κ has a very large
distribution p(κ) depending if we consider the number
of transitions from (or to) a cell which is either in the
strongly chaotic range for small y or in the range close to
the critical curve. This distribution has a power law tail
p(κ) ∼ 1/κ2 for the range κc < κ ≤ κm with a very large
maximal value κm � κc (e.g. κm = 2123 for M = 1600).
We also note that the peak position κp of the distribu-
tion p(κ) is considerably smaller than κc, e.g. κp = 6 for
M = 1600. The difference between κc and κp is clearly
due to the long tails of p(κ). These features of the matrix
S are coherent with the effective value Keff = Λ/|y| of
the chaos parameter which produces large stretching. This
property does not create any problems for the Arnoldi
method and gives only a slight increase of the amount
of required computer resources (in memory and compu-
tational time) since the dominant contributions to these
resources for 1 ≤ nA 
 Nd come from terms which do not
contain κc (see Sect. 3).

We have been able to calculate the full eigenvalue spec-
trum of S for the separatrix map for 25 ≤ M ≤ 200
(279 ≤ Nd ≤ 16 105) and the first 3000 eigenvalues (and
the first 500 eigenvectors) by the Arnoldi method for
280 ≤M ≤ 1600 (31 273 ≤ Nd ≤ 997 045).

As previously the mode for λ0 is uniformly distributed
in the available phase space and therefore is not shown as
a density plot here. In Figure 11, we show the density plot
of the more interesting modes λj for j = 1, 2, 3, 18, 20,
26, 77, 79 (for M = 1600, Nd = 997 045 and nA = 3000).
The first two of these modes (first row in Fig. 11) are
similar to diffuson modes in the Chirikov standard map
at Kg that is also confirmed by the quadratic dispersion
of the associated decay rates γj (see left panel of Fig. 12).
However, the total number of diffuson modes in the list of
leading eigenvalues is reduced to only three modes (if the
uniform mode for λ0 is also counted as diffuson mode).
There are however further diffuson modes characterized
by real positive eigenvalues λj close to 1 (e.g. for j =
4, 5, 16, 17). Actually, if we take out in the left panel of
Figure 12 the mode for j = 3 (which corresponds to a real
negative eigenvalue, see below), the quadratic dispersion
law extends even up to the first five modes.

The four modes λj for j = 3, 18, 20, 26 (second and
third rows in Fig. 11) correspond well to resonant modes
with phases 2π(1/2), 2π(5/13), 2π(2/5), 2π(3/7) and can
be identified with the resonances at 1/2, 8/13, 3/5 and 4/7
with 2, 13, 5 and 7 stable islands (we remind that phases
2π α and 2π (1 − α) are always equivalent since they be-
long to the same pair of complex conjugated eigenvalues
for 0 < α < 1/2). For λ18 (second row, right panel) this is
not very clearly visible since the resonance 8/13 is quite
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Fig. 11. (Color online) Density plot of the modulus of the
components of the eigenvectors for λ1 = 0.99970603 (first
row, left panel), λ2 = 0.99828500 (first row, right panel),
λ3 = −0.99816880 ≈ |λ3| ei 2π(1/2) (second row, left panel),
λ18 = −0.73824747 − i 0.66068553 ≈ |λ18| ei 2π(5/13) (sec-
ond row, right panel), λ20 = −0.80147707 + i 0.58216934 ≈
|λ20| ei 2π(2/5) (third row, left panel), and λ26 = −0.89084450+
i 0.42827996 ≈ |λ26| ei 2π(3/7) (third row, right panel) of the
UPFO (1012 iterations) for the separatrix map at critical
Λc = 3.1819316, M = 1600, Nd = 997 045 and Arnoldi di-
mension nA = 3000. In the first three rows and the fifth row
the phase space covers the range 0 ≤ x ≤ 1 and 0 ≤ y ≤ 4.
The fourth row shows zoomed density plots of the eigenvec-
tors for λ20 (left panel) and λ26 (right panel) in the phase
space range 0.45625 ≤ x ≤ 0.83125 and 2.5 ≤ y ≤ 4. The
fifth row shows two modes in the strongly chaotic region for
λ77 = −0.49158867 + i 0.85154001 ≈ |λ77| ei 2π(1/3) (left panel)
and λ79 = 0.98321618 (right panel).

small in size as compared to the resonance 3/5 which also
contributes to this mode. However, the eigenvector com-
ponents are significantly larger in size at the resonance
8/13 as compared to the resonance 3/5. In the fourth row
of Figure 12 we also show zoomed density plots of the
modes λ20 (left panel) and λ26 (right panel) (zoom factor
3.2) in order to visualize clearly the fine structure of the
resonances. For the mode λ20 we see (some of) the small
islands belonging to the resonance 8/13 even though this
mode is more maximal at the resonance 3/5 (the other
way round as for λ18). In short these four resonant modes
show a similar behavior with phases of the form 2π(p/q)
as for the Chirikov standard map at Kg.
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Fig. 12. (Color online) The left panel shows the decay rates
γj = −2 ln(|λj |) versus level number j (red crosses) where λj

are the complex eigenvalues of the UPFO of the separatrix map
for M = 1600 and Nd = 997 045. The green curve corresponds
to the quadratic dispersion law γj ≈ γ1 j

2 which is approxi-
mately valid for the diffuson modes with 0 ≤ j ≤ 2. The right
panel shows the decay rates γj(M) for j = 1 (red crosses),
j = 3 (green open squares) and the eigenvector associated to
the phase 2π(5/13) (blue full circles, see second right panel in
Fig. 11) of the UPFO of the separatrix map as a function of M
in a double logarithmic scale. The upper (black) straight line
corresponds to the fit γ(M) ≈ 3.48M−0.71, the middle (cyan)
line corresponds to the fit γ3(M) ≈ 1.946M−0.86 and the lower
(magenta) line corresponds to the fit γ1(M) ≈ 4.177M−1.203.
All fits were obtained for the range 400 ≤M ≤ 1600.

We furthermore note that the significant properties of
these 6 modes (2 diffuson and 4 resonant modes) are es-
sentially determined by the phase space region with y � 2
(KAM region). We have also identified a few number of
modes which are determined by the strongly chaotic region
y � 2. In the fifth row of Figure 11 we show two of these
modes for λ77 and λ79. These two modes are qualitatively
quite similar to the two modes shown in the last section
for the Chirikov standard map at strong chaos K = 7 (see
Fig. 9). This again confirms the picture that the separa-
trix map, at one value of the parameter Λ, covers implicitly
various regions with different Chirikov chaos parameters
Keff = Λ/|y|. There are also modes which are quite ergodic
in the chaotic region and those with a resonant structure
in the KAM region. The higher diffuson modes (those with
real positive eigenvalues close to 1) have typically a wave
node structure in the KAM region, which is quite com-
plicated due to the two big islands for the resonance 1/2,
and are simply ergodic (or well extended) in the chaotic
region. High resolution image files for a selected number
of these and other modes are available at [39].

As in the previous sections we have also studied the
dependence of some of the first non-zero decay rates with
M and their scaling behavior for M → ∞. As can be seen
in the right panel of Figure 12, these decay rates (corre-
sponding to the modes for λ1, λ3 and λ18 shown in Fig. 11)
can be quite well fitted (for the values 400 ≤ M ≤ 1600)
by the power law expressions: γ1(M) ≈ 4.177M−1.203,
γ3(M) ≈ 1.946M−0.86 and γ(M) ≈ 3.48M−0.71 where
γ(M) corresponds to the mode j = 18 for M = 1600 with
phase 2π(5/13) and localized at the resonance 8/13 (how-
ever the level number j of this mode changes with M and
this is not a fit of “γ18(M)”). We note that, as for the
Chirikov standard map at critical Kg, these decay rate
tend to 0 for M → ∞.
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7 Discussion

The numerical results for the spectrum and eigenvectors
of the UPFO presented above clearly show that there are
modes which relaxation rates γ → 0 with M → ∞. For
the map (1) at Kg we have γ1 ∼ 1/M2 for M2 < C2 =
τC ≈ 0.66×105 and γ1 ∼ 0.2/M for M2 > C2 (see Fig. 6).
We interpret this transition in the following way. Accord-
ing to the results obtained in [19,20] the average exit time
τn from an unstable fixed point of the Fibonacci approxi-
mant rn = pn/qn of the golden rotation number scales as
τn ≈ τgqn with τg = 2.11× 105. Thus even for a moderate
value of q3 = 3 we have a very large exit time τ3 ∼ 6×105

which is much larger than 1/γ1 for any M reached numer-
ically. The Ulam method creates effective noise amplitude
±1/(2M) in x, y that generates a diffusion with the rate
DU ∼ 1/(12M2). Due to this noise a trajectory crosses the
whole interval 0 ≤ y ≤ 0.38 up to the golden curve on a
time scale tU ≈ 0.382/DU ≈ 1.73M2 which is smaller than
τ3 for M < 600 ∼ C. Thus for M < C the smallest re-
laxation modes have a diffuson type with γ1 ∼ 1/M2. For
M � C we should have τ3 
 tU and the dominance of the
diffuson modes at low γ should disappear. There is such an
indication in Figure 6 where the crossing between γ1 and
γ6 should appear at rather large M values. But at the val-
ues M = 1600 reached in our numerics we only start to see
an intermediate behavior with γ1 ∼ 1/M . Thus we think
that the diffuson modes will disappear at values M > 104

which are unfortunately are out of reach of our numerical
data. Other modes like γ6 correspond to sticking of tra-
jectories in a vicinity of stability islands. However, it is
most probable that the lowest values of γ for such modes
are also affected by the noise of Ulam method for similar
reasons as for the diffuson modes discussed above (but on
a smaller scale around main sticking islands).

A similar situation appears also for the separatrix map
where the average exit time τ2 ≈ 460 from a vicinity of
an unstable fixed point of the resonance q = 2 is also
rather large (we determined this time in a similar way as
in [19,20]). This time is significantly smaller than τ3 of the
map (1) due to strong chaos at |y| < 2. Due to that we
see no 1/M2 behavior for γ1 and observe only an inter-
mediate behavior 1/M which should disappear at larger
values of M . The modes localized around resonant islands
are characterized by a decay of their corresponding lowest
γ ∼ 1/M0.8 (see Fig. 12 right panel). This dependence on
M clearly shows that these modes are also affected by the
noise of the Ulam method.

In fact our aim is to recover the properties of the con-
tinuous Perron-Frobenius operator using the UPFO as
a convergent approximant. Our results presented above
in Figure 2 clearly confirm this convergence at values
|λ| < 0.9. In Figure 13 we demonstrate this convergence
even at smaller values of γ. Indeed, the data of this figure
show that the integrated density ρΣ(γj) = j/Nd, which
gives the relative number of states within the interval
[0, γj], is well described by the dependence ρΣ(γ) = AΣγ

β

(we remind that we order γj+1 ≥ γj). The prefactor AΣ

varies by a factor 2 when the matrix size Nd ∝ M2 is
changed by a factor 64 (when changing M from 200 to
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Fig. 13. (Color online) Rescaled level number j/Nd versus the
decay rate γj , in a double logarithmic scale, for the Chirikov
standard map at Kg (left panel) and the separatrix map (right
panel). Red data points correspond to M = 1600, green to
M = 800, blue to M = 400 and magenta to M = 200 (from
bottom to top at γj = 0.2). The black straight line corresponds
to the power law fits j/Nd ≈ 0.052745 γ1.5203 (left panel) and
j/Nd ≈ 0.014174 γ1.4995 (right panel) using the data for M =
1600 in the range 0.04 ≤ γ ≤ 0.3. The statistical error bound
of the exponents obtained from the fits is close to 0.1% in both
cases. Here we used nA = 3000 for the Arnoldi method at all
M , except the map (1) at M = 1600 with nA = 5000.

1600). We attribute this to the fact that there is a small
decrease of effective measure near the islands with the
increase of number of cells. However, this growth is satu-
rated at large M and we can consider that AΣ → const.
at M → ∞. While a small variation of AΣ with M is
visible in Figure 13 the exponent β remains independent
of Nd within few percents accuracy. For the largest value
of M = 1600 we obtain β = 1.520 for the Chirikov stan-
dard map at Kg and β = 1.499 for the separatrix map
(with a statistical error of 0.1% by a fit in the range
0.04 ≤ γ ≤ 0.3). Thus our results show the existence of
universal dependence ρΣ(γ) ∝ γ1.5 independent of M .
This dependence works down to smaller and smaller val-
ues of γ when the size M increases (the lowest values of
γj depend on M as we discussed above).

Thus our results obtained by the generalized Ulam
method show that the integrated spectral density decays
algebraically at small γ:

ρΣ(γ) ∼ γβ , β ≈ 1.5. (10)

This behavior leads to an algebraic decay of Poincaré re-
currences P (t) ∝ 1/tβ. Indeed, the probability to stay in
a given domain e.g. 0 < y < 1/4 can be estimated as
P (t) ∼ ∫ 1

0 (dρΣ(γ)/dγ) exp(−γt)dγ ∼ 1/tβ. The case of
β = 1/2 corresponds to a diffusion on an interval where
the diffusion equation (6) gives γj ∼ π2Dyj

2/(1− rg)2. In
this case j ∝ √

γj and we have P (t) ∼ 1/
√
t as discussed

in [14,16] (for t < 1/γ1). For β = 1.5 we have the decay
P (t) ∝ 1/t1.5 in agreement with the data for the Poincaré
recurrences found for these two maps (see [19–21]).

The above arguments give an interesting simple rela-
tion between the exponent of Poincaré recurrences and
the exponent of the spectral density decay. Of course,
our numerical data for the UPFO spectrum in Figure 13
have certain numerical restrictions showing the algebraic
behavior in a moderate range 0.03 < γ < 0.3. Also it
is known that the power law decay of P (t) has certain
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oscillations of the exponent β. Thus further studies of the
relations between the Poincaré recurrences and the spec-
trum given by the generalized Ulam method are highly de-
sirable. At the moment, on the basis of our data we make
a conjecture that the both exponents are the same. These
points will be addressed in more detail elsewhere [41].

In conclusion, our results show that the generalized
Ulam method applied to symplectic maps with divided
phase space converges to the Perron-Frobenius operator
of the continuous map on a chaotic component. The spec-
trum of this operator has a power law spectral density of
states (10) for modes with relaxation rates γ → 0. The
exponent of this power law is in agreement with the ex-
ponent of Poincaré recurrences decay established for such
maps, even if the range of algebraic decay of the spectral
density is rather moderate compared to the range reached
for the algebraic decay of the Poincaré recurrences. More
direct relations between the UPFO and the Poincaré re-
currences require further investigations which are in our
future plans [41].
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Ulam method for the Chirikov standard map, in prepara-
tion for Eur. Phys. J. B (2010)


