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Poincaré recurrences in Hamiltonian systems with a few degrees of freedom
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Hundred twenty years after the fundamental work of Poincaré, the statistics of Poincaré recur-
rences in Hamiltonian systems with a few degrees of freedom is studied by numerical simulations.
The obtained results show that in a regime, where the measure of stability islands is significant, the
decay of recurrences is characterized by a power law at asymptotically large times. The exponent of
this decay is found to be β ≈ 1.3. This value is smaller compared to the average exponent β ≈ 1.5
found previously for two-dimensional symplectic maps with divided phase space. On the basis of
previous and present results a conjecture is put forward that, in a generic case with a finite measure
of stability islands, the Poncaré exponent has a universal average value β ≈ 1.3 being independent of
number of degrees of freedom and chaos parameter. The detailed mechanisms of this slow algebraic
decay are still to be determined.

PACS numbers: 05.45.-a, 05.45.Ac, 05.45.Jn

According to the Poincaré recurrence theorem proven
in 1890 [1] a dynamical trajectory with a fixed energy and
bounded phase space will always return, after a certain
time, to a close vicinity of an initial state. This famous
result was obtained in relation to the studies of the three
body gravitational problem which fascinating history can
be find in [2]. While recurrences will definitely take place
a question about their properties, or what is a statistics
of Poincaré recurrences, still remains an unsolved prob-
lem. The two limiting cases of periodic or fully chaotic
motion are well understood: in the first case recurrences
are periodic while in the latter case the probability of
recurrences P (t) with time being larger than t drops ex-
ponentially at t → ∞ (see e.g. [3, 4]). The latter case is
analogous to a coin flipping where a probability to drop
on one side after t flips decays as 1/2t.
However, the statistics of Poincaré recurrences for

generic two-dimensional (2D) symplectic maps is much
more rich. Such systems generally have a divided phase
space where islands of stable motion are surrounded by a
chaotic component [5, 6]. In such a case trajectories are
sticking around stability islands and recurrences decay
algebraically with time

P (t) ∝ 1/tβ , β ≈ 1.5 . (1)

The studies and discussions of this behavior can be find in
[7–13] and Refs. therein. According to the above studies
the Poincaré exponent β has a universal average value
for 2D symplectic generic maps.
While the statistics of Poincaré recurrences in 2D maps

has been studied in great detail [7–13], the original three
body problem with a few degrees of freedom N = 9 ad-
dressed by Poincaré [1] (effective number of degrees of
freedom is Neff = 6 if to exclude the center of mass mo-
tion), has not been studied yet in great detail. The case
of 4-dimensional and 6-dimensional symplectic maps has
been considered in [14] and an algebraic decay of type
(1) has been found with 1.1 < β < 1.5 and 1.7 < β < 2
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FIG. 1: (Color online) Dependence of statistics of Poincaré
recurrences P (t) on time t for N = 8 and parameter K =
1, 0.6, 0.4 (full curves from left to right at log

10
P = −4) and

for N = 6 and K = 0.6, 0.4 (dashed curves from left to right
at log

10
P = −4). Here P(t) is an integrated probability of

recurrences with time larger than t; recurrences are considered
on line pn = 0, sum is taken over all N degrees of freedom.

respectively. A more detailed study, with up to N = 25
degrees of freedom, has been performed in [15] with a
variation of β found to be in a range 1.3 < β < 5.5 de-
pending on map parameters and values of N . In this
work I study the statistics of Poincaré recurrences in a
model system for 4 ≤ N ≤ 8 going up to two orders of
magnitude larger times comparing to [14, 15].
To reach a high efficiency of numerical simulations I

use a dynamical map

p̄n = pn + (K/2π)(sin(2π(xn − xn−1))

+ sin(2π(xn − xn+1))) ,

x̄n = xn + p̄n , (2)

which was studied numerically in [16–18]. Here bars
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mark new values of dynamical variables after one map
iteration. Periodic boundary conditions are used in
xn(mod1) and pn(mod1) with −0.5 ≤ pn ≤ 0.5. The
map is symplectic. I use N particles, 1 ≤ n ≤ N , with
a periodic boundary conditions in n(modN). For N = 1
the map (2) is equivalent to the Chirikov standard map
[5] (assuming that all variables for n > 1 are equal to
zero). The properties of P (t) for this case can be find at
[9, 11–13] and Refs. therein. For a number of particles
N > 2 the total momentum of the whole system is pre-
served so that one can say that this situation corresponds
effectively to Neff = N − 1/2 degrees of freedom. In the
following I consider 4 ≤ N ≤ 8.
The recurrences are considered on line pn = 0 for each

particle, the integral probability of recurrences, averaged
over all particles, is defined as a total integral probability
P (t) of recurrences with time larger than time t, which is
measured in number of map iterations. In a more formal
way, I count the number of map iterations tr between
the consecutive crossing of line pn = 0 for each particle,
such an event is called a recurrence. Then the relative
number of recurrences with time tr larger than t (tr > t)
is taken to be equal to the recurrence probability P (t)
with averaging over all particles.
As in [9, 11], to compute P (t) I usually used one trajec-

tory iterated up to time ttot ≤ 1012. Special checks with
other trajectories or other ttot unsure that P (t) remains
unchanged in the limit of statistical fluctuations which
appear only when the number of recurrences becomes of
the order of a few events. It should be noticed that the
map (2) is similar, in certain aspects, to the one studied
in [15] (e.g. both are built on the basis of the Chirikov
standard map), but in the present case the couplings be-
tween particles are local, while all particles are coupled
in [15].
An example of dependence of P (t) on t is shown in

Fig.1 for relatively short times and large N when the dy-
namics is mainly fully chaotic. The initial decay drops ex-
ponentially P (t) ∝ exp(−t/tD) with a certain time scale
tD which depends on K. The dependence of tD on N
is relatively weak since up to a certain time P (t) curves
are practically independent of N (see Figs. 1,2). At large
times the exponential decay is replaced by a power law
decay which is well visible for N = 4, 6 in Fig. 2.
The time scale tD is related to a diffusive spreading in

pn characterized by a diffusion rate D/4π2 =< p2n > /t.
Indeed, such a relaxation diffusive process on an interval
−0.5 ≤ pn ≤ 0.5 of size L = 1 is described by the Fokker-
Plank equation

∂ρ/∂t = D/(8π2) ∂2ρ/∂2p . (3)

This equation with zero boundary conditions ρ(p =
±0.5) = 0 gives the exponential relaxation of probabil-
ity to stay inside the interval at large times: P (t) ∼
exp(−t/tD) with 1/tD = π2(D/4π2)/(2L2) = D/8 (see
e.g. Eq.(2.2.4) in [19], in our case the interval size is
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FIG. 2: (Color online) Same as in Fig.1 for K = 0.6 and
N = 4, 6, 8 (left group of blue/black full, dashed and dotted
curves from right to left at log

10
P = −8 respectively) and

for K = 0.4 and N = 4, 6, 8 (right group of violet/gray full,
dashed and dotted curves from right to left at log

10
P = −8

respectively). The data are obtained from one trajectory with
the total number of iterations ttot = 1012 (for N = 8 I used
ttot = 1011).
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FIG. 3: (Color online) Dependence of the diffusion rate D on
chaos parameter K (points). The dashed curve is drown to
adapt an eye, the full straight line shows the fit of last points
with D = aKb and log

10
a = 0.587, b = 5.93 ± 0.22.

L = 1). Thus with this relation one can extract from the
initial exponential drop of P (t) the relaxation time tD
and from it the diffusion rate D. In such a way I obtain
the dependence of D on K and N . As discussed above
the dependence on N is very weak and can be neglected.
On the contrary the dependence of tD and D on K is
very strong as it is shown in Fig. 3.

The dependence D(K) has a few interesting features.
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FIG. 4: (Color online) Statistics of Poincaré recurrences for
the map (1) shown by curves for parameters N = 4, K =
1, 0.6, 0.4, 0.3, 0.2 (curves from left to right at log

10
P = −8

respectively). The exponents β for the power law decay
P (t) ∝ 1/tβ are 1.243 ± 0.001, 1.292 ± 0.002, 1.385 ± 0.003,
1.427±0.007, 1.476±0.005 respectively. The full straight line
shows the dependence P (t) ∝ 1/tβ with β = 1.30± 0.003 cor-
responding to the average of above 5 values of β. The dashed
straight line shows the diffusive decay P (t) ∝ 1/

√
t. For each

K the data are obtained from one trajectory with the total
number of iterations ttot = 1012.

For K = 1 I find D ≈ 1/2 that corresponds to a random
phase approximation valid in a regime of strong chaos.
With a decrease ofK the diffusion drops rapidly, at small
values of K one has approximately algebraic decay D ∝
Kb with the exponent b = 5.93± 0.22. This value of the
exponent is in a good agreement with the values obtained
in [16, 18] which are b = 6.6 and b = 6.3 respectively. It
should be stressed that the methods of computation of D
in [16, 18] were rather different compared to those used
here.

In fact an enormously powerful numerical method has
been used by Chirikov and Vecheslavov [18] to compute
an extremely small rate of the fast Arnold diffusion (down
to D ∼ 10−44 at K ≈ 8 × 10−7 and N = 16). This
diffusion appears in very tiny chaotic layers around multi-
dimensional resonances. By its structure, the method
used in [18] determines the diffusion in a local domain of
phase space while the method used here gives the global
diffusion. The agreement between two methods shows
that these two diffusion coefficient are approximately the
same.

In these studies I want to analyze how this chaotic
web influence the statistics of Poincaré recurrences. Of
course one is not able to go to so small values of K but
also in a certain sense one does not need this. The alge-
braic decay of P (t) appears due to sticking of trajectories
around stability islands so that one simply needs to have

a significant measure of stability islands.
The data of Fig. 2 show that for N = 8 one has

practically only an exponential decay of P (t) indicating
that the measure of stable component is of the order of
µs ∼ tP (t) < 10−8 for K = 0.6 and µs < 10−5 for
K = 0.4 (I use the relation between µ and P (t) discussed
in [9, 11]). For N = 6 the algebraic decay becomes to
be visible at large t showing that the measure of stability
islands starts to be reachable only for ttot = 1012.
The power law decay of P (t) is most visible for N = 4

case shown in Fig. 4. Initially there is a slow decay of
P (t) which is compatible with a diffusive spreading on a
semi-infinite line with P (t) ∝ 1/

√
t (see e.g. discussion

at [7]). Since tD grows significantly with the decrease of
K the range of this diffusive decay of P (t) increases when
K → 0. However, already for K ≤ 0.07 the measure of
chaotic component becomes rather small and one needs
to use special methods described in [18] to be able to
place initial conditions inside tiny chaotic layers. Due to
these reasons I stop at values of K ≥ 0.1. In any case
for small K the time tD becomes very large and a lot of
computational time becomes lost for not very interesting
diffusive decay.
After the time scale tD a trajectory starts to feel a

finite width of the chaotic layer with −1/2 ≤ pn ≤ 1/2
and an algebraic decay due to sticking around islands
starts to be dominant. In this regime I find the exponent
β = 1.3. The statistical error of this value is rather small
but certain oscillations in logarithmic scale of time are
visible for K = 0.6, 0.4, 0.3 so that the real uncertainty of
β can be larger. At the same time the amplitude of these
oscillations is significantly smaller compared to the case
of 2D symplectic maps discussed in [8, 9, 11, 12]. The
fit for β is done for times tdr < t < ttot where tdr marks
the end of the drop transition from diffusive spreading to
sticking in a vicinity of islands.
The values of β, given in the caption of Fig. 4, have a

certain tendency to increase with a decrease of K. How-
ever, this increase is rather small (about 19% while K
is changed by factor 5). I attribute this to a decrease
of fit interval at small values of K, where the diffusion
time tD becomes larger and larger, that gives a reduc-
tion of the fit interval between tdr and ttot. It is clear
that the fit interval tdr < t < ttot for asymptotic alge-
braic decay should be sufficiently large to determine β
reliably. This is clearly not so for N = 6 case shown
in Fig. 2, where the transition from exponential diffusive
decay only starts to be replaced by an asymptotic alge-
braic decay. In my opinion a fit in such a small interval
would artificially increase the value of β, since a sharp
drop of P (t) visible at t < tdr ∼ tD and being character-
istic of diffusive exponential decay, is not yet terminated
completely. The data of Fig. 4 clearly show that the scale
tdr grows significantly with a decrease of K and D.
This view, obtained on the basis of my results for

rather long ttot, leads me to another interpretation of
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previous results [14, 15] which claimed the growth of β
with growth of N and chaos parameter (see e.g. Fig.2
in [15]). Thus, on a first glance, in Fig.2(c) of [15] β in-
creases from β ≈ 1.4 to 2.8 for N = 4 when the chaos
parameter ξ is changed from 0.03 to 0.1. This is in dras-
tic contrast to the results presented here in Fig. 4 clearly
showing that β ≈ 1.3 ≈ const when the chaos parameter
is changed by a factor 5. I think that such an increase
of β with ξ in [15] should be attributed to shorter times
considered there in comparison with the present studies.
In view of that I make a conjecture that in a generic

case, when the islands of stability have nonzero mea-
sure, the asymptotic decay of Poincaré recurrences has
the form (1) with a universal average Poincaré exponent
β ≈ 1.3− 1.4 being independent of chaos parameter, and
number of degrees of freedom N (at least for moderate
and large but finite values of N).
The data of present studies confirm the approximate

independence of β of chaos parameter K (see Fig. 4). At
the same time the data of Fig.2(c) of [15] at moderate
values of chaos parameter ξ = 0.03 clearly show that β is
approximately 1.4 − 1.5 for 2 ≤ N ≤ 10. This confirms
the above conjecture. In my opinion, a further increase
of β for 11 ≤ N ≤ 25, visible in Fig.2(c) of [15] for
ξ = 0.03, should be attributed to a significant reduction
of the available fit interval tdr < t < ttot which is clearly
seen in Fig.2(a),(b) of [15]. It is also clear that for the
model of [15] the growth of N gives an effective increase
of the chaos parameter due to long range interactions
present in the model. The data of [14] for 4D map give
approximately the same universal value of β, while for
6D I expect that the time interval was not so long to see
the asymptotic behavior.
It is now well established that generic 2D symplectic

maps have Poincaré recurrences with a universal average
Poincaré exponent β ≈ 1.5 [7–10, 12]. This slow decay
is linked to sticking in a vicinity of stability islands. It
is naturally to expect that for larger number of degrees
of freedom N the structure of such sticking regions is
more complicated giving more possibilities for sticking
with slow Arnold diffusion processes. Hence, intuitively
it is natural to expect that for a few degrees of freedom
the average value of β will be smaller. The universal
average value β ≈ 1.3 − 1.4 found here and in [15] is in
agreement with such expectations.
In conclusion, the studies of the statistics of Poincaré

recurrences in Hamiltonian systems with a few degrees of
freedom show that at large times it is characterized by a
power law decay (1) with the universal average exponent
β ≈ 1.3. This value is not so far from the average ex-
ponent β ≈ 1.5 found for the 2D symplectic maps. It is

possible that the physical mechanisms of this slow decay
have similar grounds related to sticking of trajectories in
a vicinity of small islands of stability for enormously long
times. Further extensive studies are required to under-
stand in a deeper way the detailed mechanisms of this
slow decay. Even more than hundred twenty years af-
ter the work of Poincaré [1] this fundamental problem of
dynamical chaos remains unsolved.

I thank A.S. Pikovsky for stimulating discussions that
initiated this work.
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