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Abstract. Using extensive Monte Carlo simulations we study numerically and analytically a photogalvanic
effect, or ratchet, of directed electron transport induced by a microwave radiation on a semidisk Galton
board of antidots in graphene. A comparison between usual two-dimensional electron gas (2DEG) and
electrons in graphene shows that ratchet currents are comparable at very low temperatures. However, a
large mean free path in graphene should allow to have a strong ratchet transport at room temperatures.
Also in graphene the ratchet transport emerges even for unpolarized radiation. These properties open
promising possibilities for room temperature graphene based sensitive photogalvanic detectors of microwave
and terahertz radiation.

PACS. 81.05.ue Graphene – 73.50.-h Electronic transport phenomena in thin films – 72.40.+w Photo-
conduction and photovoltaic effects – 05.45.Ac Low-dimensional chaos

Graphene [1] is a new two-dimensional material with
a variety of fascinating physical properties (see e.g. [2]).
One of them is a relativistic dispersion law for electron
dynamics with an effective “light” velocity s ≈ 108cm/s
[3], another is a high mobility at room temperature which
in suspended graphene reaches µ ≈ 200, 000cm2/V s [4,
5,6]. Our theoretical studies predict that these properties
lead to emergence of a strong photogalvanic effect induced
by radiation at room temperature in a semidisk antidot
array placed in graphene plane. Such samples can function
as a new type of room temperature sensors of microwave
and terahertz radiation.

Ratchet transport, induced in asymmetric systems by
ac-driving with zero mean force, attracted a significant
interest of scientific community in view of various biolog-
ical applications of Brownian motors [7,8,9]. Experimen-
tal observations of electron ratchet transport in asym-
metric antidot arrays in semiconductor heterostructures
have been reported in [10,11,12,13]. A detailed theory
of ratchet transport of 2DEG on semidisk Galton board
was developed in [14,15] for noninteracting electrons, and
it was shown that the effect remains even in presence of
strong interactions [16]. The theoretical predictions on po-
larization dependence have been confirmed in recent ex-
periments [13]. According to theory [14,15] the velocity
of ratchet flow, induced by monochromatic linear polar-
ized microwave force f cosωt with a frequency ω, has a
polarization dependence:

(v̄x, v̄y) = CFVF (frd/EF )
2(− cos(2θ), sin(2θ)) , (1)

where θ is an angle between the polarization direction and
x−axis of semidisk array shown in Fig. 1, f is amplitude

of microwave force, VF , EF are Fermi velocity and en-
ergy, and CF is a numerical factor depending on the ratio
of periodic cell size R to semidisk radius rd. In the limit
of low density of semidisks with R ≫ rd the theory [15]
gives CF ∝ (ℓs/rd)

2/(1 + (ωℓs/VF )
2), with ℓs ∼ R2/rd ≫

ℓi, where ℓi is the mean free path related to impurity
scattering. The typical parameters of experiment [13] are
f/e ∼ 1V/cm, rd ∼ 1µm, R/rd ≈ 4, electron density
ne ≈ 2.5 ·1011cm−2 with VF ≈ 2.2 ·107cm/s, EF ≈ 100K.
For these conditions we have frd/EF ≈ 1/100, CF ≈ 0.4,
so that the velocity of ratchet flow remains relatively small
but well visible experimentally. Experimental data confirm
the linear dependence of ratchet current on microwave
power [13]. The relation (1) assumes that ωrd/VF < 1
and that the mean free path ℓi remains larger semidisk
size. For ℓi < rd the array asymmetry disappears due to
disorder scattering and ratchet velocity goes to zero.

The theory (1) assumes the usual quadratic dispersion
law for electron dynamics E = p2/2m, while graphene
has a linear relativistic dispersion E = sp, so that such
a case requires a separate analysis. Recently rectification
and photon drag in graphene started to attract experimen-
tal [19] and theoretical interest [20,21,22]. We note that a
case of relativistic dispersion appears for a flux quantum
in long annular Josephson junction, which has been stud-
ied theoretically and experimentally in [23,24], but there
the dynamics takes place in 1D while for graphene it is
essentially 2D. In addition, experiments with accelerator
beams in crystals [25] show that a crystallographic poten-
tial creates an efficient channeling of relativistic particles.
This gives some indication on a possible enhancement of
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Fig. 1. (Color online) Top panel shows one electron trajec-
tory on semidisk Galton square board (with periodic boundary
conditions for two cells, no impurities, time t ≈ 100rd/s and
frd/EF = 0.05), graphene structure is shown in a schematic
way. Bottom panel shows two ratchet trajectories on a longer
time for graphene (with initial conditions (x, y) = (0, 2000)
and t ≈ 2×105rd/s), model graphene (with (x, y) = (0, 0) and
t ≈ 105rd/s) and 2DEG (with (x/rd, y/rd) = (0,−2000) and
same t) all of them at the same pF and T/EF = 0.02; here
R/rd = 4, θ = 0, ωrd/s = 0.5, VF/s = 2, and frd/Ef = 0.1
(red/gray curve), 0.025 (blue/black curve); impurity parame-
ters are sτi/rd = 5, αi = π/10.

ratchet transport of electrons in graphene with a periodic
array of asymmetric antidots.

The dynamics of electron on a 2D semidisk Galton
board, shown in Fig. 1, is described by the Newton equa-
tions

dp/dt = f cosωt+ Fs + Fi , (2)

dr/dt = sp/|p| (graphene) ; dr/dt = p/m (2DEG) ,

where the second equation corresponds to a relativistic
case (l.h.s.) or to a non-relativistic case with an effective
mass m (r.h.s.) . Here the force Fs describes elastic colli-
sions with semidisks and Fi models impurity scattering on
a random angle φi (|φi| ≤ αi) with an effective scattering
time τi.

Following [14], we use the Monte Carlo simulations
with the Metropolis algorithm which keeps noninteract-
ing electrons at the Fermi-Dirac distribution with fixed
Fermi energy EF and temperature T . As discussed in [14,
15,16], in a wide range, a variation of energy equilibrium
relaxation time τrel does not influence the ratchet velocity
v̄. The later is computed along one or few very long tra-
jectories with times up to t = 108rd/s. With this approach
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Fig. 2. (Color online) Dimensionless energy distribution
functions P (E) obtained numerically for 2DEG (blue/black
curves), model graphene (red/gray curves) and graphene
(green/gray curves). Parameters are kept as in Fig. 1 with
t ≈ 107rd/s and temperature fixed to T/EF = 0.02 with
frd/EF = 0.02 for full curves, and frd/EF = 0.1 for dotted
curves (full red and blue curves are overlapped).

we consider three cases of steady-state distributions. For
2DEG the phase volume is proportional to pdp ∼ mdE,
where E is an electron energy, hence here the probability
distribution over energy is P (E) = EF dW/dE = ρFD(E)
where ρFD(E) = 1/(1 + exp((E − EF )/T )) is the Fermi-
Dirac distribution at temperature T . For graphene we
have the phase volume pdp ∼ EdE/s2 so that the en-
ergy distribution has the form P (E) = EF dW/dE =
BρFD(E)E/EF , where B is a numerical normalization
constant. We also consider a case of model graphene with
the energy distribution being the same as for 2DEG with
P (E) = EFdW/dE = ρFD(E) while the dynamical equa-
tions of motion correspond to the graphene spectrum.
Typical examples of the steady-state distribution P (E) in
energy are shown in Fig. 2 for three models we consider:
graphene, model graphene and 2DEG.

We note that the triangular lattice of disks had been
used already by Galton [17] to demonstrate an emergence
of statistical laws in deterministic systems. According to
the mathematical results of Sinai [18] the dynamics is
fully chaotic also for semidisk lattice used here (in absence
of impurities, microwave driving and Metropolis thermo-
stat).

A typical example of trajectory for graphene is shown
in Fig. 1. The dynamics is clearly chaotic on one cell scale,
while on large scale it shows diffusion and ratchet trans-
port directed along x-axis. The ratchet displacement is
significantly larger for model graphene compared to usual
2DEG with approximately the same parameters. Even
more striking a decrease of the driving force by a factor 4
gives a significantly smaller reduction of the ratchet dis-
placement compared to factor 16 expected from the theory
for 2DEG (1). Thus for the model graphene the relativistic
graphene ratchet has a strong enhancement compared to
the usual 2DEG case studied before. The case of graphene
has more strong ratchet compared to 2DEG but it is less
strong compared to the model graphene.
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Fig. 3. (Color online) Rescaled ratchet velocity |v̄x| as a
function of rescaled force frd/EF at polarization θ = 0 for
graphene (green/gray curve), model graphene (red/gray curve)
and 2DEG (blue/black curve); when f is changing the system
parameters are kept as Fig. 1. The bottom straight dashed line
shows the fit dependence for 2DEG (3), the top dashed curve
shows the fit dependence for model graphene (4) and the mid-
dle straight dashed line shows the fit dependence for graphene
(5).

Detailed analysis of this enhancement and comparison
of ratchet transport for graphene, model graphene and
2DEG, as a function of microwave driving force, are shown
in Fig. 3. We fix VF /s = 2 choosing pF to be the same for
graphene and 2DEG that corresponds to the same elec-
tron density ne. For 2DEG the velocity of ratchet drops
quadratically with force and is well described by the de-
pendence

|v̄x|/VF = CF (frd/EF )
2 , CF = 0.45 , (3)

thus being in a good agreement with numerical data and
theory presented in [14,15,16]. In a case of model graphene
the field dependence is strikingly different and can be ap-
proximately described by the equation

|v̄x|/s = Cg1frd/(EF+Cg2frd) , Cg1 = 1.39, Cg2 = 18.87.
(4)

According to Fig. 3 and Eqs. (3),(4) we have the enhance-
ment factor for model graphene of approximately 100 and
103 at frd/EF = 0.02 and 0.002 respectively.

However, for graphene we find approximately quadratic
field dependence with

|v̄x|/s = Cg(frd/EF )
2 , Cg = 1.3 , (5)

formal fit gives a power exponent 1.8 being close to 2.
Thus in this case the ratchet velocity is comparable with
the one of 2DEG.

Data presented for model graphene in the top panel
of Fig. 4 show that the ratchet velocity is only weakly
affected by increase of temperature T , which can become
comparable with EF , if the rate of impurity scattering is
kept fixed. This is in agreement with the known results for
2DEG [14,15]. An increase of impurity scattering (increase
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Fig. 4. (Color online) Rescaled ratchet velocity |v̄x| as a func-
tion of rescaled force frd/EF at polarization θ = 0 for model
graphene in top panel, and graphene in bottom panel, for the
same values given in Fig. 1 with modifications of frequency,
temperature or impurity scattering angle. Dashed orange/gray
curves are for ωrd/s = 0.25, T/EF = 0.05, αi = π/10;
solid red/gray curves are for ωrd/s = 0.5, T/EF = 0.05,
αi = π/10 (Fig. 3 case); dotted-dashed blue/black line are
for ωrd/s = 0.5, T/EF = 0.3, αi = π/10; dotted orange/gray
curves are for ωrd/s = 0.5, T/EF = 0.05, αi = π; dashed black
curves are for ωrd/s = 0.1, T/EF = 0.05, αi = π/10.

of αi) gives a reduction of v̄x but still the dependence
on f remains approximately linear for frd << EF . A
decrease of frequency gives only a slight increase of v̄x
for ωrd/s ≤ 0.5 while for ωrd/s ≥ 1 we start to see a
drop of v̄x with ω. Such a dependence is in agreement
with general theory [15] according to which the ratchet
velocity is independent of frequency for ωrd/s ≪ 1 and
drops with frequency for ωrd/s ≫ 1. It is interesting to
note that at ωrd/s = 1 the velocity v̄x starts to decrease at
large f . We will discuss this point later. For the graphene
case the dependence of rescaled force f is shown in the
bottom panel of Fig. 4 at same parameters. Here for all
cases the velocity of ratchet increases with f , it is smaller
compared to the case of model graphene in the top panel.

The polarization dependence of ratchet flow is shown
in Fig. 5 for 2DEG and graphene; for 2DEG and model
graphene the polarization dependence is shown in Fig. 6.
For 2DEG the dependence is close to those of Eq. (1) being
in agreement with previous studies [14,15,16]. A similar
polarization dependence is present also for graphene. In
contrast to that for model graphene the dependence on
θ is not purely harmonic and appearance of flat domains
near velocity maxima is well visible. In part the origin of
this flattering can be understood from the picture of av-
erage flow inside one periodic cell shown in Fig. 7. While
for θ = 0 the flow is relatively regular, for θ = 5π/32
there is emergence of vortexes that may be at the origin
of flattering in Fig. 6. It is clear that a theoretical descrip-
tion of such a vortex flow is a challenging task for further
studies. We note that in agreement with theory [15] the
polarization dependence on temperature is rather weak. It
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Fig. 5. (Color online) Polarization dependence of ratchet ve-
locity in x (red/gray curves) and y (blue/black curves) di-
rections. Data for graphene are taken at frd/EF = 0.2 and
T/EF = 0.02 (full curves), 0.3 (dotted curves). Data for 2DEG
are shown for frd/EF = 0.2 and T/EF = 0.02 (dashed curves).
Other parameters are as Fig. 1.
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Fig. 6. (Color online) Polarization dependence of ratchet ve-
locity in x (red/gray curves) and y (blue/black curves) direc-
tions. Data for model graphene are taken at frd/EF = 0.05
and T/EF = 0.02 (full curves), 0.3 (dotted curves). Data for
2DEG are shown for frd/EF = 0.2 and T/EF = 0.02 (dashed
curves). Other parameters are as Fig. 1.

is interesting that in the case of graphene even unpolar-
ized radiation gives an average current along x−direction
with v̄x < 0. This is different from 2DEG case where for
semidisks there is no directed current for unpolarized radi-
ation [15]. We attribute this to the fact that for graphene
P (E) becomes energy dependent that acts in a similar
way when scattering time τ(E) is energy dependent and
when even unpolarized radiation creates a directed trans-
port [15].

The important theoretical task is to understand the
origin of a slow decrease of ratchet velocity with f for
model graphene while for the graphene case the depen-
dence remains quadratic as for 2DEG. We argue that this
is due to the linear dispersion law for graphene which dras-
tically modify the dependence of velocity v on momentum
and force. Indeed, in absence of collisions and impurities
we have v = (p0 + f/ω sinωt)/m where p0 is initial mo-
mentum. Thus a small force gives only a small oscillating
component of velocity and thus the ratchet flow appears

only in a second order perturbation theory being propor-
tional only to f2 [15]. The situation is strongly different for
model graphene. In absence of collisions and impurities we
obtain from (1) v = s(p0 + f/ω sinωt)/|(p0+ f/ω sinωt)|.
Thus even for small force we have a large variation of ve-
locity direction being of the order of radian for |p0| ∼ f/ω.
These direction variations have many frequency harmon-
ics in contrast to 2DEG. In presence of semidisk asym-
metry and relaxation such oscillations should create a di-
rected transport with ratchet velocity v̄ ∼ s. However, in
the Fermi-Dirac distribution the fraction w of electrons
with such small momenta p0 < f/ω is w ∼ fs/(ωEF ) ∼
frd/EF , where we took into account that in the case
of small ω the collisions with semidisks will restrict the
length s/ω by a length proportional to rd. These argu-
ments lead to the ratchet velocity v̄ ∼ sw ∼ sfrd/EF

being compatible with the dependence (4) found numeri-
cally. According to them a physical origin of slow decrease
of v̄ with f is related to linear dispersion and Dirac singu-
larity in graphene. In such a case electrons with momen-
tum p ≪ pF still have a large velocity s and give a large
contribution to the ratchet flow in contract to 2DEG.

It is interesting to note that at high frequencies ω only
few collisions happen during a period of oscillations so
that in average we have < |p| >≈

√

p2
0
+ f2/2ω2 that

looks like an appearance of effective mass at large f . This
mass effectively drives the system to a situation similar to
2DEG given a reduction of v̄ at large f (see black dashed
curve in Fig. 2 inset).

The above arguments attribute the strong ratchet trans-
port to contribution of trajectories in a vicinity of Dirac
critical point in the model graphene. In this model the
measure P (E) of such trajectories is independent of en-
ergy E → 0. However, for real graphene this measure
drops with energy P (E) ∝ E and therefore the contri-
bution of this region gives a weaker quadratic dependence
on the driving force f that is compatible with the numeri-
cally established dependence (5). The numerical factor Cg

is larger than in 2DEG but the enhancement of ratchet
transport is not so strong as for model graphene.

The electron current produced by ratchet flow is given
by relation j = enev̄. According to (3),(5) we have for
2DEG

jF ≈ 0.4eneVF (frd/EF )
2 (6)

≈ JF (n0/ne)
1/2(frd/1K)2 , JF ≈ 4 · 10−5A/cm ;

and for graphene

jg ≈ 1.3enes(frd/EF )
2 ≈ 1.3e(frd)

2/πs~2 (7)

≈ Jg(frd/1K)2 , Jg ≈ 1.5 · 10−5A/cm ;

where we normalize data in respect to typical parameters
of 2DEG in [13] with n0 = 2.5 · 1011cm−2, m = 0.067me,
f/e = 1V/cm, rd = 1µm, frd ≈ 1K, EF ≈ 100K,
VF ≈ 2.2 · 107cm/s and usual parameters of graphene
s ≈ 108cm/s [3,5]. It is interesting that for graphene the
ratchet current is independent of electron density ne (we
use the relation ne = p2F /π~

2 [3]).
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Fig. 7. (Color online) Map of local averaged velocities inside
one cell in plane (x, y) for graphene at θ = 0 (top left panel)
and θ = 5π/32 (top right panel) with parameters of Fig. 5; for
model graphene at θ = 5π/32 (bottom left panel) and param-
eters of Fig. 6; for 2DEG at θ = 5π/32 (bottom right panel)
and parameters of Fig. 5; polarization is shown by bar inside
semidisk. The velocities are shown by arrows which size is pro-
portional to the velocity amplitude, which is also indicated by
color (from large (yellow/gray) to small (blue/black) ampli-
tudes).

The comparison of estimates for 2DEG (6) and graphene
(7) show that the ratchet currents in these two materials
have comparable values. Of course, the above Eqs. (6),(7)
assume that the mean free path in graphene is larger than
the semidisk radius rd ∼ 1µm. For 2DEG the mobility
drops significantly with increase of temperature and the
ratchet transport disappears according to theory at small
mean free path [15] and according to experimental re-
sults presented in [13]. For 2DEG the experiments [13]
show that the ratchet transport at such rd values per-
sists only up to T ≈ 70K while at room temperature the
mean free path becomes smaller than semidisk size and the
ratchet effect disappears. According to experiments with
suspended monolayer graphene [5,6] the mean free path
can be larger than rd ∼ 1µm at room temperature so that
the graphene ratchet transport should be well visible at
room temperature. At present it is possible to realize large
size samples with epitaxial graphene [26,27] and chemi-
cal vapor deposition [28] with room temperature mobility
of 20000cm2/V s. For graphene even at room temperature
the mean free path can be rather large and thus the ratchet
transport can be significant even at room temperature. For
strong microwave fields of 10V/cm ratchet currents can be
of the order of 10−3A/cm.

In conclusion, our theoretical studies show that graphene
ratchet transport in asymmetric antidot arrays, at micron

antidot size, should be well visible at room temperature
in contrast to the case of 2DEG. This shows that such
graphene structures can have future promising applica-
tions for simple room temperature sensors of microwave
and terahertz radiation. A decrease of antidot size can
make such structures to be sensitive to infrared radiation
with possible photovoltaic applications.

We thank A.D.Chepelianskii for useful discussions and
for pointing to us promising properties of graphene [4,5,
6] for ratchet transport. We also thank M.V.Entin and
L.I.Magarill for critical remarks. This work is supported
in part by ANR PNANO project NANOTERRA.
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