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Abstract
The PageRank algorithm enables us to rank the nodes of a network through
a specific eigenvector of the Google matrix, using a damping parameter
α ∈]0, 1[. Using extensive numerical simulations of large web networks, with
a special accent on British University networks, we determine numerically and
analytically the universal features of the PageRank vector at its emergence
when α → 1. The whole network can be divided into a core part and a group of
invariant subspaces. For α → 1, PageRank converges to a universal power-law
distribution on the invariant subspaces whose size distribution also follows a
universal power law. The convergence of PageRank at α → 1 is controlled by
eigenvalues of the core part of the Google matrix, which are extremely close to
unity, leading to large relaxation times as, for example, in spin glasses.

PACS numbers: 05.40.Fb, 89.20.Hh, 89.75.Hc

(Some figures may appear in colour only in the online journal)

1. Introduction

The PageRank algorithm (PRA) [1] is a cornerstone element of the Google search engine,
which allows us to perform an efficient information retrieval from the World Wide Web
(WWW) and other enormous directed networks created by modern society over the last two
decades [2]. The ranking based on the PRA finds applications in such diverse fields as the
Physical Review citation network [3, 4], scientific journals rating [5], ranking of tennis players
[6] and many others [7]. The PRA allows us to efficiently find the PageRank vector of the
Google matrix of the network, whose values enable us to rank the nodes. For a given network
with N nodes, the Google matrix is defined as

G = αS + (1 − α)eeT /N, (1)

where the matrix S is obtained from an adjacency matrix A by normalizing all nonzero columns
to 1 (

∑
j Si j = 1) and replacing columns with only zero elements by 1/N (dangling nodes). For

the WWW, an element Ai j of the adjacency matrix is equal to unity if a node j points to node i
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Figure 1. PageRank P and CheiRank P∗ versus the corresponding rank indexes K and K∗ for the
WWW networks of Cambridge 2006 (left panel) and Oxford 2006 (right panel); here N = 212 710
(200 823) and the number of links is L = 2015 265 (1831 542) for Cambridge (Oxford).

and zero otherwise. Here e = (1, . . . , 1)T is the unit column vector and eT is its transposition.
The damping parameter α in the WWW context describes the probability (1 − α) to jump to
any node for a random surfer. For the WWW, the Google search uses α ≈ 0.85 [2].

The matrix G belongs to the class of Perron–Frobenius operators naturally appearing for
Markov chains and dynamical systems [2, 8]. For 0 < α < 1, there is only one maximal
eigenvalue λ = 1 of G. The corresponding eigenvector is the PageRank vector which has non-
negative components P(i) with

∑
i P(i) = 1, which can be ranked in decreasing order to give

the PageRank index K(i). For the WWW, it is known that the probability distribution w(P) of
P(i) values is described by a power law w(P) ∝ 1/Pμ with μ ≈ 2.1 [9], corresponding to the
related cumulative dependence P(i) ∝ 1/Kβ (i) with β = 1/(μ − 1) ≈ 0.9 at α ∼ 0.85.

PageRank performs ranking, which on average is proportional to the number of ingoing
links [2, 10], putting at the top the best known and popular nodes. However, in certain networks
outgoing links also play an important role. Recently, in examples of the procedure call for the
network of Linux Kernel software [11] and the Wikipedia article network [12], it was shown
that a relevant additional ranking is obtained by considering the network with inverse link
directions in the adjacency matrix corresponding to (Ai j) → AT = (Aji) and constructing
from it a reverse Google matrix G∗ according to relation (1) at the same α. The eigenvector
of G∗ with eigenvalue λ = 1 gives then a new PageRank P∗(i) with the ranking index K∗(i),
which was named CheiRank [12]. This rates nodes on average in proportion to the number of
outgoing links highlighting their communicative properties [11, 12]. For the WWW, one finds
μ ≈ 2.7 [9] so that the decay of CheiRank P∗ ∝ 1/K∗β is characterized by a slower decay
exponent β ≈ 0.6 compared to PageRank. In figure 1, we show PageRank and CheiRank
distributions for the WWW networks of the Universities of Cambridge and Oxford (2006),
obtained from the database [13].

Due to the importance of PageRank for information retrieval and ranking of various
directed networks [7] it is important to understand how it is affected by variation of the
damping parameter α. In the limit α → 1, PageRank is determined by the eigenvectors of the
highly degenerate eigenvalue 1 [14]. These eigenvectors correspond by definition to invariant
subspaces through the matrix S. It is known [15] that in general these subspaces correspond
to sets of nodes with ingoing links from the rest of the network but no outgoing link to it.
These parts of the network have been given different names in the literature (rank sink, out
component, bucket, and so on). In this paper, we show that for large matrices (of size up to
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several millions) the structure of these invariant subspaces is universal and we study in detail
the universal behavior of PageRank at α → 1 related to the spectrum of G, using an optimized
Arnoldi algorithm.

We note that this behavior is linked to the internal structure of the network. Indeed, it is
possible to randomize real networks by randomly exchanging the links while keeping exactly
the same number of ingoing and outgoing links. It was shown in [16] that this process generally
destroys the structure of the network and creates a huge gap between the first unit eigenvalue
and the second eigenvalue (with modulus below 0.5). In this case, PageRank simply goes for
α → 1 to the unique eigenvector of the matrix S associated with the unit eigenvalue.

The paper is organized as follows: in section 2 we discuss the spectrum and subspace
structure of the Google matrix, in section 3 we present the construction of invariant subspaces,
the numerical method of PageRank computation at small damping factors is given in
section 4, the projected power method is described in section 5, universal properties
of PageRank are analyzed in section 6 and a discussion of the results is given in
section 7.

2. Spectrum and subspaces of the Google matrix

In order to obtain the invariant subspaces, for each node we determine iteratively the set of
nodes that can be reached by a chain of non-zero matrix elements. If this set contains all
nodes of the network, we say that the initial node belongs to the core space Vc. Otherwise, the
limit set defines a subspace which is invariant with respect to the applications of the matrix
S. In a second step, we merge all subspaces with common members, and obtain a sequence
of disjoint subspaces Vj of dimension d j invariant by applications of S. This scheme, which
can be efficiently implemented using a computer program, provides a subdivision of network
nodes in Nc core space nodes (typically 70–80% of N) and Ns subspace nodes belonging to at
least one of the invariant subspaces Vj inducing the block triangular structure,

S =
(

Sss Ssc

0 Scc

)
(2)

where the subspace–subspace block Sss is actually composed of many diagonal blocks for
each of the invariant subspaces. Each of these blocks corresponds to a column sum normalized
matrix of the same type as G and has therefore at least one unit eigenvalue, thus explaining
the high degeneracy. Its eigenvalues and eigenvectors are easily accessible by numerical
diagonalization (for full matrices) thus allowing us to count the number of unit eigenvalues,
e.g., 1832 (2360) for the WWW networks of Cambridge 2006 (Oxford 2006) and also to
verify that all eigenvectors of the unit eigenvalue are in one of the subspaces. The remaining
eigenvalues of S can be obtained from the projected core block Scc which is not column sum
normalized (due to non-zero matrix elements in the block Ssc) and therefore has eigenvalues
strictly inside the unit circle

∣∣λ(core)
j

∣∣ < 1. We have applied the Arnoldi method (AM)
[17–19] with Arnoldi dimension nA = 20 000 to determine the largest eigenvalues of Scc.
For both example networks, this provides at least about 4000 numerical accurate eigenvalues
in the range |λ| � 0.7. For the two networks the largest core space eigenvalues are given
by λ

(core)

1 = 0.999 874 353 718 (0.999 982 435 081) with a quite clear gap 1 − λ
(core)

1 ∼ 10−4

(∼10−5). We also mention that the largest subspace eigenvalues with modulus below 1 also
have a comparable gap ∼10−5. In order to obtain this accuracy it is highly important to apply
the AM to Scc and not to the full matrix S (see more details below). In the latter case the
AM fails to determine the degeneracy of the unit eigenvalue, and for the same value of nA it
produces less accurate results.
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Figure 2. Left panels (right panels) correspond to Cambridge 2006 (Oxford 2006). Top row:
subspace eigenvalues of the matrix S (blue dots or crosses) and core space eigenvalues (red dots)
in the λ–plane (green curve shows unit circle); here Ns = 48 239 (30 579). There are 1543 (1889)
invariant subspaces, with maximal dimension 4656 (1545) and the sum of all subspace dimensions
is Ns = 48 239 (30 579). The core space eigenvalues are obtained from the AM applied to the
block Scc with Arnoldi dimension 20 000 and are numerically accurate for |λ| � 0.7. Middle row:
eigenvalue spectrum for the matrix S∗, corresponding to CheiRank, with red dots for core space
eigenvalues (obtained by the AM applied to Scc

∗ with nA = 15000), blue crosses for subspace
eigenvalues and the green curve showing the unit circle. Bottom row: fraction j/N of eigenvalues
with |λ| > |λ j| for the core space eigenvalues (red bottom curve) and all eigenvalues (blue top
curve) from top row data. The number of eigenvalues with |λ j| = 1 is 3508 (3275) of which 1832
(2360) are at λ j = 1; it is larger than the number of invariant subspaces which have each at least
one unit eigenvalue.

In figure 2, we present the spectra of subspace and core space eigenvalues in the complex
plane λ as well as the fraction of eigenvalues with modulus larger than |λ|, showing that
subspace eigenvalues are spread around the unit circle being closer to |λ| = 1 than core
eigenvalues. The fraction of states with |λ| > |λ j| has a sharp jump at λ = 1, corresponding
to the contribution of Ns, followed by an approximate linear growth.

We now turn to the implications of this structure to the PageRank vector P; it can be
formally expressed as

P = (1 − α) (1 − αS)−1 e/N. (3)
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Let us first assume that S is diagonalizable (with no non-trivial Jordan blocks). We denote by
ψ j its (right) eigenvectors and expand the vector N−1 e = ∑

j c j ψ j in this eigenvector basis
with coefficients c j. Inserting this expansion in equation (3), we obtain

P =
∑
λ j=1

c j ψ j +
∑
λ j �=1

1 − α

(1 − α) + α(1 − λ j)
c j ψ j. (4)

In the case of non-trivial Jordan blocks, we may have in the second sum contributions
∼(1 − α)/(1 − α λ j)

q with some integer q smaller or equal to the size of the Jordan block
[14]. Suppose we have, for example, a Jordan block of dimension 2 with a principal vector
ψ̃ j such that S ψ̃ j = λ jψ̃ j + ψ j, with ψ j being the corresponding eigenvector. From this we
obtain, for an arbitrary integer n, the following condition on the 1-norm of these vectors:
‖ψ̃ j‖1 � ‖Snψ̃ j‖1 = ‖λn

jψ̃ j + nλn−1
j ψ j‖1 � ||λ j|n‖ψ̃ j‖1 − n|λ j|n−1‖ψ j‖1| showing that one

should have ψ j = 0 if |λ j| = 1. Even if |λ j| < 1, this condition is hard to fulfil for all n if |λ j|
is close to 1. In general, the largest eigenvalues with modulus below 1 are not likely to belong
to a non-trivial Jordan block; this is indeed well verified for our university networks since the
largest core space eigenvalues are not degenerate.

Here equation (4) indicates that in the limit α → 1 PageRank converges to a particular
linear combination of the eigenvectors with λ = 1, which are all localized in one of the
subspaces. For a finite value of 1 − α the scale of this convergence is set by the condition
1 − α 
 1 − λ

(core)

1 ∼ 10−4 (10−5) and the corrections for the contributions of the core
space nodes are ∼(1 − α)/(1 − λ

(core)

1 ). In order to test this behavior we have numerically
computed the PageRank vector for values 10−8 � 1 − α � 0.15. For 1 − α ≈ 10−8, the
usual power method (iterating the matrix G on an initial vector) is very slow and in many
cases fails to converge with a reasonable precision. In order to get the PageRank vector in
this regime, we use a combination of power and AMs that allows us to reach the precision
‖P − G(α)P‖1 < 10−13: after each ni iteration with the power method, we use the resulting
vector as an initial vector for an Arnoldi diagonalization, choosing an Arnoldi matrix size
nA; the resulting eigenvector for the largest eigenvalue is used as a new vector to which we
apply the power method and so on until convergence by the condition ‖P − G(α)P‖1 < 10−13

is reached. For the university network data of [13] in most cases the values ni = 104 and
nA = 100 (nA = 500 for Cambridge 2006) provide convergence with ∼10 iterations of the
process (for 1 − α = 10−8). Additional details are given below.

3. Construction of invariant subspaces

In order to construct the invariant subspaces we use the following scheme which we
implemented using an efficient computer program.

For each node j = 1, . . . , N we determine iteratively a sequence of sets En, with E0 = { j}
and En+1 containing the nodes k which can be reached by a non-zero matrix element Skl from
one of the nodes l ∈ En. Depending on the initial node j there are two possibilities: (a) En

increases with the iterations until it contains all nodes of the network, especially if one set
En contains a dangling node connected (by construction of S) to all other nodes, or (b) En

saturates at a limit set E∞ of small or modest size d j < N. In the first case, we say that the
node j belongs to the core space Vc. In the second, the limit set defines a subspace Vj of
dimension dj, which is invariant with respect to the applications of the matrix S. We call the
initial node j the root node of this subspace; subsequently, the members of E∞ do not need
to be tested themselves as initial nodes since they are already identified as subspace nodes. If
during the iterations a former root node appears as a member in a new subspace one can absorb
its subspace in the new one and this node loses its status as a root node. Furthermore, the
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scheme is greatly simplified if during the iterations a dangling node or another node already
identified as a core space node is reached. In this case one can immediately attribute the initial
node j to the core space as well.

For practical reasons it may be useful to stop the iteration if the set En contains a
macroscopic number of nodes larger than B N, where B is some constant of order 1, and in
this case to attribute the node j to the core space. This does not change the results provided
that B N is above the maximal subspace dimensions. For the university networks we studied,
the choice B � 0.1 turned out to be sufficient since there is always a considerable number of
dangling nodes.

In this way, we obtain a subdivision of the nodes of the network in Nc core space nodes
(typically 70–80% of N) and Ns subspace nodes belonging to at least one of the invariant
subspaces Vj. However, at this point it is still possible, even likely, that two subspaces have
common members. Therefore, in a second step we merge all subspace with common members
and choose arbitrarily one of the root nodes as the ‘root node’ of the new bigger subspace,
which is of course also invariant with respect to S.

We can also mention that most of the subspaces contain one or more ‘zero nodes’ (of
first order) with outgoing links to the subspace but no incoming links from the same or other
subspaces (but they may have incoming links from core space nodes as every subspace node).
These nodes correspond to complete zero lines in the corresponding diagonal block for this
subspace in the matrix S and therefore they produce a trivial eigenvalue zero. Furthermore,
there are also zero nodes of higher order j (� 2) which have incoming subspace links only from
other zero nodes of order j−1 resulting in a non-trivial Jordan block structure with eigenvalue
zero. In other words, when one applies the matrix S to a vector with non-zero elements on all
nodes of one subspace, one eliminates successively the zero nodes of orders 1, 2, 3, . . . and
finally the resulting vector will have non-zero values only for the other ‘non-zero nodes’. Due
to this any subspace eigenvector of S with an eigenvalue different from zero (and in particular
the PageRank vector) cannot have any contribution from a zero node.

In a third step of our scheme we therefore determined the zero nodes (of all orders) and
the reduced subspaces without these zero nodes. The results of the distribution of subspace
dimensions are discussed in section 6 (see the left panel of figure 7). The distribution is
essentially unchanged if we use the reduced subspaces since the number of zero nodes is
below 10% of Ns for most of the universities. Only for the matrix S∗ of Wikipedia, we have
about 45% of zero nodes, that reduces the value of Ns from 21 198 to 11 625.

Once the invariant subspaces of S are known it is quite easy to obtain numerically the
exact eigenvalues of the subspaces, including the exact degeneracies. Thus, using the AM we
determine the largest remaining eigenvalues of the core-projected block Scc. In figure 2, the
complex spectra of subspace and core space eigenvalues of S and S∗ are shown for the two
networks of Cambridge 2006 and Oxford 2006 as well as the fraction of eigenvalues with
modulus larger than |λ|, indicating a macroscopic fraction of about 2% of eigenvalues with
|λ j| = 1.

In table 1, we summarize the main quantities of the networks studied: network size N,
number of network links L, number of subspace nodes Ns and average subspace dimension
〈d〉 for the university networks considered in figure 4 and the matrix S∗ of Wikipedia.

4. Numerical method of PageRank computation

Let us now discuss the numerical techniques that we developed in order to compute PageRank.
The standard method to determine PageRank is the power method [1, 2]. However, this method
fails to converge at a sufficient rate in the limit α → 1 and therefore we need a more refined

6
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Table 1. Network parameters.

N L Ns 〈d〉
Cambridge 2002 140 256 752 459 23 903 20.36
Cambridge 2003 201250 1182 527 45 495 24.97
Cambridge 2004 206 998 1475 945 44 181 26.14
Cambridge 2005 204 760 1505 621 44 978 29.30
Cambridge 2006 212 710 2015 265 48 239 31.26
Oxford 2002 127450 789 090 14 820 14.01
Oxford 2003 144 783 883 672 19 972 19.85
Oxford 2004 162 394 1158 829 29 729 19.18
Oxford 2005 169 561 1351 932 36 014 23.34
Oxford 2006 200 823 1831 542 30 579 16.19
Glasgow 2006 90 218 544 774 20 690 28.54
Edinburgh 2006 142 707 1165 331 24 276 26.24
UCL 2006 128 450 1397 261 25 634 28.64
Manchester 2006 99 930 1254 939 23 648 26.07
Leeds 2006 94 027 862 109 12 605 31.20
Bristol 2006 92 262 1004 175 9143 19.49
Birkbeck 2006 54 938 1186 854 3974 19.11
Wikipedia (S∗) 3282 257 71 012 307 21 198 3.96

method. First, we briefly discuss how the power method works and then how it can be modified
to improve the convergence.

Let P0 be an initial vector which is more or less a good approximation of PageRank.
Typically, one may choose P0 = e/N, where e = (1, . . . , 1)T . For simplicity, let us also
suppose that the matrix G(α) can be diagonalized. The eventual existence of principal vectors
and non-trivial Jordan blocks does not change the essential argument and creates only minor
technical complications. The initial vector can be developed in the eigenvector basis of G(α)

as

P0 = P +
∑
j�2

Cj ϕ j, (5)

where P = ϕ1 is the exact PageRank, which is for α < 1 the only (right) eigenvector of G(α)

with eigenvalue 1. Here, ϕ j denote for j � 2 other (right) eigenvectors with eigenvalues λ j

such that |λ j| � α and Cj are the expansion coefficients. We note that eT ϕ j = 0 for j � 2,
since e is the first left eigenvector bi-orthogonal to other right eigenvectors, and for sufficiently
small Cj the expansion coefficient of P in P0 is exactly 1, if P0 and P are both normalized by
the 1-norm. Iterating the initial vector by G(α) one obtains after i iterations:

Pi = Gi(α) P0 = P +
∑
j�2

Cj λ
i
j ϕ j. (6)

Therefore, the convergence of the power method goes with ∼ λi
2, where λ2 is the second

largest eigenvalue. In the case of realistic networks, λ2 is typically highly degenerate and
equal to α. Typically, there are also complex eigenvalues with non-trivial phases where only
the modulus is equal to α and whose contributions imply the same speed of convergence. In
the limit α → 1, the power method becomes highly ineffective due to these eigenvalues. For
example, to verify the condition αi < ε one needs i > 3 × 109 iterations for 1 − α = 10−8

and ε = 10−13.
In order to obtain a faster convergence we propose a different method based on the AM

[17–19]. The idea of the AM is to diagonalize the matrix representation of G(α) on the Krylov
space generated by P0, P1, . . . , PnA−1, where nA is the Arnoldi dimension. For reasons of
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Figure 3. Convergence of the combined power–AM to calculate the PageRank for 1 − α = 10−8.
Shown is the quantity ‖Pi − G(α)Pi‖1 to characterize the quality of the approximate PageRank Pi

versus the number of iterations i made by the power method. The green line at 10−13 shows the line
below which convergence is reached. The upper-left panel shows the data for Oxford 2006 with
nA = 100 and ni = 10 000. The upper-right panel corresponds to Cambridge 2006 with nA = 500
and ni = 50 000 (red dots) or ni = 10 000 (blue crosses). The lower-left panel shows the case
of Cambridge 2003 with nA = 500 and ni = 50 000, for which it is particularly hard to obtain
convergence. The lower-right panel compares for the case of Cambridge 2002 the choice nA = 500
and ni = 50 000 (red dots) with nA = 500 and ni = variable (blue crosses), with ni determined by
the criterion that the relative change of ‖Pi − G(α)Pi‖1 between i and i + 100 is less than 10−4.

numerical stability, one constructs by Gram–Schmidt orthogonalization an orthogonal basis
of the Krylov space, which also provides the matrix elements of the matrix representation of
G(α) in this basis. In the particular case, where the number of non-vanishing coefficients Cj

in equation (5) is not too large, the AM should even provide the exact PageRank, obtained as
the eigenvector of the largest eigenvalue on the Krylov space, and exactly suppress the other
eigenvector contributions provided that the dimension nA of the Krylov space is sufficiently
large to contain all other eigenvectors contributing in equation (5). Of course, in reality the
number of non-vanishing coefficients Cj is not small, but one can use a strategy which consists
first of applying the power method with ni iterations to reduce the contributions of the large
majority of eigenvectors whose eigenvalues have a reasonable gap from the unit circle, and in
a second step the AM to eliminate the remaining ‘hard’ eigenvectors whose eigenvalues are
too close to the unit circle for the power method. Even though this strategy does not provide
the numerical ‘exact’ PageRank, it considerably improves the quality of the initial vector as
an approximation of the PageRank, and repeating this scheme with the new approximation as
an initial vector (with suitable values for ni and nA) one obtains an algorithm which efficiently
computes the PageRank to a high precision as can be seen in figure 3. To measure the quality
of the PageRank vector we compute the quantity ‖Pi − G(α)Pi‖1 and iterate our algorithm
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until this is below 10−13. Using this convergence criterion for most university networks from
the database [13], the choice of ni = 10 000 and nA = 100 provides convergence typically
with about ten steps of this procedure.

In figure 3, we show the convergence of this method for several university network cases
with the initial vector P0 = e/N and 1 − α = 10−8. The typical situation is shown in the
upper-left panel for Oxford 2006. During the first power method cycle there is nearly no
improvement in the quality of PageRank. This is completely normal in view of the small value
of 1−α. However, the first Arnoldi step improves the quality by four orders of magnitude. The
subsequent power method iterations of the second cycle continue to improve the convergence
quality but their effect saturates after a certain number of iterations. The second Arnoldi step
seems at first to reduce the PageRank quality, but after a few power method iterations (in the
third cycle) this loss is compensated for and its quality improves until the next saturation and
the next Arnoldi step. In total, this provides a nice exponential convergence and after seven
Arnoldi steps and 75 000 power method iterations the convergence is reached with very high
accuracy. Apparently, the AM is efficient at reducing the coefficients Cj associated with the
eigenvectors with eigenvalues close to the circle of radius α, but the approximation due to the
truncation of the Arnoldi matrix to the Krylov space at nA creates some artificial contributions
from other eigenvectors whose eigenvalues have a quite big gap from 1 and whose contributions
may be eliminated by a relatively modest number of power method iterations.

The number nA = 100 appears very modest if compared to the degeneracy of the second
eigenvalue λ2 = α, which may easily be about 1000–2000. Fortunately, the exact degeneracy
of the eigenvalues close to or on the circle of radius α does not really count, since for each
degenerate eigenspace only one particular eigenvector appears in the expansions (5) and (6),
which can be relatively easily ‘eliminated’ by an Arnoldi step with the modest value of nA.
However, the total number of different eigenvalues (with different phases) on the circle of
radius α is important and if this number is too big the convergence of the method is more
difficult. This is actually the case for the university networks of Cambridge as can be seen in the
upper-left panel of figure 2, where the subspace eigenvalues of S for Cambridge 2006 nearly
fill out the unit circle and indeed for these cases we have to increase the Arnoldi dimension to
nA = 500 in order to achieve a reasonable convergence. In the upper-right panel of figure 3,
we show the PageRank convergence for Cambridge 2006 with nA = 500 and two choices of
ni = 10 000 and ni = 50 000. For this particular example, the first choice is more efficient, but
this is not systematic and is different for other cases. We also see that by increasing the value of
ni the convergence is not immediately improved (the PageRank error does not really decrease
during the power method cycle), but the positive effect of the next Arnoldi step will be much
better, because the bigger number of power method iterations allows us to reduce the effect
of more eigenvectors in the eigenvector expansion of Pi. In the lower-left panel of figure 3,
we show the case of Cambridge 2003 which is particularly hard to converge and requires 28
Arnoldi steps with ni = 50 000 and nA = 500. Actually, the choice ni = 10 000 (not shown in
the figure) is less efficient with nearly doubled power method iterations and about 235 Arnoldi
steps. In the lower-right panel, we consider the case of Cambridge 2002 where we need three
Arnoldi steps for the parameters nA = 500 and ni = 50 000. For this case, we also tried a
different strategy which consists of using a variable value of ni determined by the criterion
that when the relative change of ‖Pi − G(α)Pi‖1 from i to i + 100 is below 10−4 we perform
one Arnoldi step but at the latest after 50 000 power method iterations for each cycle. For
this example, this strategy does not really pay off since the overall number of power method
iterations is even slightly increased and additionally we have 11 instead of 3 quite expensive
Arnoldi steps. However, this approach has the advantage that one does not need to search
in advance for which ni parameters work best. In practical calculations when calculating the
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PageRank for a continuous set of values of α one may also improve convergence simply by
using PageRank at a certain value of α as the initial vector for the next value α+�α. However,
in figure 3, we simply used the same initial vector P0 = e/N for all cases in order to study the
effectiveness of the method.

The computational costs of the method are increased quite strongly with nA, since the
Arnoldi steps correspond to n2

A N + nA L elementary operations (with L being the number of
links in the network) due to the Gram–Schmidt orthogonalization scheme and nA applications
of G(α) on a vector, while one step with the power method costs L operations. Therefore, one
Arnoldi step corresponds to ∼(

n2
A (N/L) + nA

)
steps of the power method, which is ∼1000

(∼25 000) for nA = 100 (nA = 500) and L/N ∼ 10 (typical value for most university networks
of [13]).

We mention that the method does not converge if we use only Arnoldi steps without
intermediate power method iterations (i.e. ni = 0). Golub et al [18] have suggested a different
variant of the AM, where they determine the improved vector not as the eigenvector of the
largest eigenvalue of the truncated squared Arnoldi matrix but as the vector corresponding
to the smallest singular value of a matrix obtained from the full non-truncated rectangular
Arnoldi matrix. We have also implemented this variant and confirmed for some examples that
convergence by simply repeating these ‘refined’ Arnoldi steps is possible, but in general the
computational time for convergence is much longer if compared to our method. We have also
tested the combination of power method and refined Arnoldi steps and find that this approach
is in general comparable to our first method, with a slight advantage for one or the other
method depending on the network that is studied.

5. Projected power method for the case of a small core space eigenvalue gap

The behavior of PageRank in the limit α → 1 is determined by the core space eigenvalue gap
1 − λ

(core)

1 , where λ
(core)

1 < 1 is the maximal eigenvalue of the core space projected matrix Scc

(see equation (2)). This eigenvalue and its eigenvector ψ
(core)

1 can in principle be determined
by the AM applied to Scc. However, for certain university networks of [13], Cambridge 2002,
2003, 2005 and Leeds 2006, we find that λ

(core)

1 is extremely close to 1. Since the results of
the AM are obtained by standard double precision arithmetic operations, it gives a largest
core space eigenvalue which is numerically equal to 1 for these cases (up to an error of order
∼10−14), This is not sufficient to provide an accurate value for the gap 1 − λ

(core)

1 apart from
the information that this gap is below 10−14.

To overcome this computational problem we note that λ
(core)

1 and ψ
(core)

1 can also be
numerically determined by a different algorithm. The main idea is to apply the power method,
eventually with intermediate Arnoldi steps to accelerate convergence, as described in the
previous section, to the matrix Scc which first provides the eigenvector ψ

(core)

1 and once the
eigenvector is known, its eigenvalue is simply obtained as λ

(core)

1 = ∥∥Scc ψ
(core)

1

∥∥
1 if the

normalization is given by
∥∥ψ

(core)

1

∥∥
1 = 1. In this section, it is understood that Scc is the matrix

S multiplied left and right by the projection operator on the core space (and similarly for Ssc and
Sss). We have implemented this method and verified for some examples that it indeed provides
the same results as the AM. Actually, it may even be more efficient than the direct AM which
may require a quite large Arnoldi dimension for a reliable first eigenvector. However, at this
stage this approach also suffers from the same problem concerning the numerical inaccuracy
for the cases of a very small core space gap.

10
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Fortunately, the approach can be modified to be more accurate. To see this, we
use equation (2) and the fact that the columns of S are sum normalized which implies∥∥Ssc ψ

(core)

1

∥∥
1 + ∥∥Scc ψ

(core)

1

∥∥
1 = 1 and therefore

1 − λ
(core)

1 = ∥∥Ssc ψ
(core)

1

∥∥
1 =

∑
j∈VSP

∑
l∈Vc

S jl ψ
(core)

1 (l), (7)

where VSP denotes the set of subspace nodes and Vc is the set of core space nodes (note that
ψ

(core)

1 (l) � 0). This expression, which relates the core space gap to the sum of all transitions
from a core space node to a subspace node (the ‘escape probability’ from the core space), is
the key to determining the gap accurately.

First, we note that a numerically small core space gap (below 10−14) implies that the
eigenvector components ψ

(core)

1 (l) are also numerically small for the core space nodes l which
are directly connected to a subspace node j by a non-vanishing matrix element Sjl > 0. To be
more precise, it turns out that for this situation the eigenvector ψ

(core)

1 is strongly localized on a
modest number of about 100 nodes out of 105 nodes in total and numerically small on the other
nodes. Obviously, the nodes inside the small localization domain are not directly connected
to a subspace node (by the matrix S). The important point is that we can also determine the
eigenvector accurately for the very small tails (below 10−15) by the pure power method (without
intermediate Arnoldi steps) if we choose as an initial vector a vector localized at the maximum
node. The reason is that the non-vanishing matrix elements Sjl connect only sites for which
the eigenvector components are comparable to the order of magnitude. Therefore, numerical
round-off errors are minimized despite the fact that the resulting vector will contain components
with a size ratio significantly above 1015 between maximal and minimal components. This is
similar to certain localization problems in disordered quantum systems where it is in certain
cases possible to numerically determine exponentially small tails of localized eigenvectors
even if these tails are far below 10−15.

Therefore, in practice, we implement the following projected power method.

(i) Determine the first approximation of ψ
(core)

1 by the direct AM, which is accurate inside
the localization domain but numerically incorrect for the very small tails on the nodes
outside the localization domain. From these data we determine the node lmax at which
ψ

(core)

1 (lmax) is maximal.
(ii) Choose as an initial vector (on the full space including core space and subspace nodes)

the vector localized on the node lmax, i.e. ψ(l) = δl,lmax .
(iii) Make a copy of the vector: ψold = ψ .
(iv) Apply the matrix S to the actual vector: ψ = S ψ , which produces artificially non-zero

values ψ( j) on certain subspace nodes j.
(v) According to equation (7) compute the quantity

∑
j∈VSP

ψ( j) as an approximation of the
gap 1 − λ

(core)

1 .
(vi) Project the vector on the core space: ψ( j) = 0 for all subspace nodes j ∈ VSP.

(vii) Normalize the vector by the 1-norm: ψ = ψ/‖ψ‖1.
(vii) Stop the iteration if ‖ψ − ψold‖1 < ε1 and max l∈Vc |ψ(l) − ψold(l)|/|ψ(l)| < ε2.

Otherwise go back to step (iii).

This algorithm produces an accurate vector very rapidly on the localization domain (less
than 100 iterations), but in order to obtain an accurate value of the gap by equation (7)
the eigenvector needs to be accurate with a small relative error also in the very small tails
and therefore the convergence criterion has to take into account the relative error for each
component. We have chosen ε1 = 10−13 and ε2 = 10−6 which provides convergence with 106

iterations for the cases of Cambridge 2002, 2003 and 2005. In the case of Leeds 2006, we
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10-9

10-7

10-5

10-3

103 104 105

1-
λ 1(c

or
e)

N

Figure 4. Core space eigenvalue gap 1 − λ
(core)
1 versus network size N for the universities of

Glasgow, Cambridge, Oxford, Edinburgh, UCL, Manchester, Leeds, Bristol and Birkbeck (years
2002–2006) and Bath, Hull, Keele, Kent, Nottingham, Aberdeen, Sussex, Birmingham, East Anglia,
Cardiff, York (year 2006). Red dots correspond to data with 1 − λ

(core)
1 > 10−9 and blue crosses

(shifted up by a factor of 109) to the cases Cambridge 2002, 2003 and 2005 and Leeds 2006 with
1 − λ

(core)
1 < 10−16, where the maximal core space eigenvalue is determined by the projected

power method. The data point at 1 − λ
(core)
1 = 2.91 × 10−9 is for Cambridge 2004.

Table 2. Gap values.

1 − λ
(core)

1

Cambridge 2002 3.996 × 10−17

Cambridge 2003 4.01 × 10−17

Cambridge 2004 2.91 × 10−9

Cambridge 2005 4.01 × 10−17

Leeds 2006 3.126 × 10−19

even obtain convergence with ε1 = ε2 = 10−15 after 2× 105 iterations. For the particular case
of Cambridge 2004 (where the gap ∼10−9 is still ‘accessible’ by the AM) the convergence is
more difficult and we have stopped the iteration at ε1 = 10−12 and ε2 = 3.2 × 10−6.

The choice of the initial vector localized at the maximum node is very important for the
speed of the convergence. If we choose the delocalized vector e/N as the initial vector, it is
virtually impossible to obtain convergence in the tails which stay at ‘large’ values ∼10−8,
unless we use intermediate Arnoldi steps, but this destroys the fine structure of the tails below
10−15 which is crucial to determine the very small gap.

Using the above algorithm we obtain the gap values given in table 2. In figure 4 we
compare these gap values to the other university networks, which we found by the AM larger
gaps 1 − λ

(core)

1 > 10−7.
In figure 5, we show the eigenvectors ψ

(core)

1 obtained by the projected power method
versus their rank index K(core) defined by the ordering of the components of theses vectors. We
can clearly identify the exponential localization on 40 nodes for Leeds 2006 or 110 nodes for
Cambridge 2002, 2003 and 2005, with values below 10−18 (Leeds 2006) or 10−14 (Cambridge
2002, 2003 and 2005). The case of Cambridge 2004 with a quite large gap ∼10−9 provides at
first the same exponential localization as the other three cases of Cambridge but after 50 nodes
goes over to a tail in the range of 10−8 to 10−10. In all cases the range of values of the small
tail is in qualitative agreement with the gap values in the table 2 and expression (7).
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1(c
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K (core)
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Cambridge 2004
Cambridge 2005

Leeds 2006

Figure 5. First core space eigenvector ψ
(core)
1 versus its rank index K(core) for the university

networks with a small core space gap 1 − λ
(core)
1 < 10−8.

When the iteration with the matrix S starts at the maximal node, the vector diffuses first
quite slowly inside the localization domain for a considerable number of iterations (46 for
Leeds 2006 and 35 for Cambridge 2002, 2003 and 2005) until it reaches a dangling node, at
which point the diffusion immediately extends to the full network since the dangling node
is artificially connected to all nodes. However, at this point the probability of the amplitude
is already extremely small. Therefore, the initial node belongs technically to the core space
(since it is ‘connected’ to all other nodes), but practically it defines a quasi-subspace (since
the probability of leaving the localization domain is very small ∼10−19 or ∼10−17). At
1 − α = 10−8, which is much larger than the gap, this quasi-subspace also contributes to the
PageRank in the same way as the exact invariant subspaces. This provides somehow a slight
increase in the effective value of Ns, but it does not change the overall picture as described in
section 2.

Figure 5 also shows that apparently the particular network structure responsible for this
quasi-subspace behavior is identical for the three cases: Cambridge 2002, 2003 and 2005. For
Cambridge 2004, this structure also exists but there is one additional dangling node which
is reached at an earlier point of the initial slow diffusion providing delocalization on a scale
∼10−10–10−8. For the case of Cambridge 2006 with a ‘large’ gap ∼10−4 this structure seems
to be completely destroyed but this may be due to one single modified matrix element Sjl if
compared to the networks of previous years.

6. Universal properties of PageRank and subspace distribution

Using the powerful numerical methods described above, we turn to the analysis of universal
properties of PageRank. Figure 6 clearly confirms the theoretical picture given in section 2
of the limit behavior for PageRank at α → 1. In particular, one can clearly identify the limit
where it is localized in the invariant subspaces1 with only small corrections ∼(1 − α) at the
core space nodes. We also determine the eigenvector of the largest core space eigenvalue
λ

(core)

1 of the projected matrix Scc. In the lower panels of figure 6, we compare PageRank at
1−α = 10−8 with this vector (normalized by the 1-norm) multiplied by (1−α)/(1−λ

(core)

1 ).

1 In certain invariant subspaces, there are nodes with no ingoing links from the same subspace, which do not contribute
to PageRank for α → 1. Except for Wikipedia (CheiRank), they are very few in our data and their effect is not visible
in the figures.
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Figure 6. Left panels (right panels) correspond to Cambridge 2006 (Oxford 2006). Top
row: PageRank P(K) for 1 − α = 0.1, 10−3, 10−5, 10−7. Numerical precision is such that
‖P − G(α)P‖1 < 10−13. Bottom row: P(K) at 1 − α = 10−8. Blue crosses correspond to the
eigenvector of the largest core space eigenvalue λ

(core)
1 = 0.999 874 353 718 (0.999 982 435 081)

multiplied by (1 − α)/(1 − λ
(core)
1 ). The arrow indicates the first position where a site of the core

spaceVc contributes to the rank index; all sites at its left are in an invariant subspace. The Inset shows
the residual weight w(α) with w(α) = ∑

j∈Vc
P(α)( j) of the core space Vc in PageRank and the

difference f (α)− f (1) versus 1−α, where f (α) is the PageRank fidelity with respect to α = 0.85,
i.e. f (α) = <P(α) | P(0.85)>/(‖P(α)‖2 ‖P(0.85)‖2). Note that ‖P(α)‖2 �= 1 since the PageRank is
normalized through the 1-norm: ‖P(α)‖1 = 1. The limiting value f (1) = 0.188 400 463 202
(0.097 481 331 613) is obtained from linear extrapolation from the data with smallest values of
1 − α which we verified to be exact up to machine precision.

We observe that except for a very small number of particular nodes, this vector approximates
quite well the core space correction of PageRank even though the corrections due to the second
term in (4) are more complicated with contributions from many eigenvectors. In the insets,
we also show the fidelity of PageRank, which decays from 1 at 1 − α = 0.15 to about 0.188
(0.097) at 1 − α = 10−8, and the residual weight w(α) = ∑

j∈Vc
P(α)( j) of the core space Vc

in PageRank, which behaves as w(α) ≈ 221.12 (1−α) [≈ 607.12 (1−α)] for 1−α < 10−5.
As mentioned in the previous section, we also determine the subspace structure and the

PageRank at 1 − α = 10−8 for other university networks available in [13] and for the matrix
S∗ of Wikipedia [12] with N = 3282 257 and Ns = 21 198 (it turns out that the matrix S for
Wikipedia provides only very few small size subspaces with no reliable statistics). A striking
feature is that the distribution of subspace dimensions dj is universal for all networks considered
(figure 7 left panel). The fraction of subspaces with dimensions larger than d is well described
by the power law F(x) = (1+x/(b−1))−b with the dimensionless variable x = d/〈d〉, where
〈d〉 is the average subspace dimension. The fit of all cases gives b = 1.608 ± 0.009 ≈ 1.5.

14



J. Phys. A: Math. Theor. 44 (2011) 465101 K M Frahm et al

10-6

10-5

10-4

10-3

10-2

10-1

100

10-2 10-1 100 101 102

F
(x

)

x

10-8

10-6

10-4

10-2

100

102

10-4 10-2 100

P
N

s 
, P

* N
s

K/Ns , K
*/Ns

Figure 7. Left panel: fraction of invariant subspaces F with dimensions larger than d as a function of
the rescaled variable x = d/〈d〉. Upper curves correspond to Cambridge (green) and Oxford (blue)
for years 2002–2006 and middle curves (shifted down by a factor of 10) to the university networks of
Glasgow, Cambridge, Oxford, Edinburgh, UCL, Manchester, Leeds, Bristol and Birkbeck for year
2006 with 〈d〉 between 14 and 31. The lower curve (shifted down by a factor of 100) corresponds
to the matrix S∗ of Wikipedia with 〈d〉 = 4. The thick black line is F(x) = (1 + 2x)−1.5.
Right panel: rescaled PageRank P Ns versus rescaled rank index K/Ns for 1 − α = 10−8 and
3974 � Ns � 48 239 for the same university networks as in the left panel (upper and middle
curves, the latter shifted down and left by a factor of 10). The lower curve (shifted down and left by
a factor of 100) shows the rescaled CheiRank of Wikipedia P∗ Ns versus K∗/Ns with Ns = 21 198.
The thick black line corresponds to a power law with exponent −2/3.

It is interesting to note that the value of b is close to the exponent of Poincaré recurrences
in dynamical systems [19]. Possible links with the percolation on directed networks (see e.g.
[20]) are still to be elucidated. The rescaled PageRank PNs (or CheiRank P∗Ns for the case of
Wikipedia) takes a universal form with a power law P ∼ K−c for K < Ns with an exponent
c = 0.698 ± 0.005 ≈ 1/b = 2/3 and P ∼ (1 − α) close to zero for K > Ns (see the right
panel of figure 7).

For certain university networks, Cambridge 2002, 2003 and 2005 and Leeds 2006, there
is a specific complication. Indeed, the AM (with nA = 10 000) provides a maximal core
space eigenvalue λ

(core)

1 numerically equal to 1, which should not be possible. A more careful
evaluation by a different algorithm, based on the power method (iterating S with a subsequent
core space projection) and measuring the loss of probability at each iteration, shows that this
eigenvalue is indeed very close but still smaller than 1. For the three cases of Cambridge, we
find 1 − λ

(core)

1 ≈ 4.0 × 10−17 and for Leeds 2006: 1 − λ
(core)

1 ≈ 3.1 × 10−20 (see details
in section 5). The corresponding eigenvectors are exponentially localized on a small number
of nodes (about 110 nodes for Cambridge and 40 nodes for Leeds 2006) being very small
(<10−14 for Cambridge and < 10−18 for Leeds 2006) on other nodes. These quasi-subspaces
with a small number of nodes belong technically to the core space, since they are eventually
linked to a dangling node, but when starting from the maximal node of these eigenvectors, it
takes a considerable number of iterations with a strong reduction of probability to reach the
dangling node. Since their eigenvalue is very close to 1, these quasi-subspaces also contribute
to PageRank at 1 − α = 10−8 in the same way as the exact invariant subspaces. However,
since the size of these quasi-subspaces is small they do not change the overall picture and we
can still identify a region of large PageRank with Ns subspace or quasi-subspace nodes and
vanishing PageRank for the other core space nodes. For most of the other universities and also
the matrix S∗ of Wikipedia, we have 1−λ

(core)

1 � 10−6 (and 1−λ
(core)

1 ∼ 10−9 for Cambridge
2004).
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7. Discussion

Our results show that for α → 1, the PageRank vector converges to a universal distribution
P ∼ 1/Kc determined by the invariant subspaces (with c ≈ 2/3). The fraction of nodes which
belong to these subspaces varies greatly depending on the network, but the distribution of the
subspace sizes is described by a universal function F(x) = 1/(1 + 2x)3/2 that reminds the
properties of critical percolation clusters. When α decreases from 1, PageRank undergoes a
transition which allows us to properly rank all nodes. This process is controlled by the largest
eigenvalues of the core matrix Scc, which are strictly below 1 but can be extremely close
to it. Their distance from 1 sets the scale of the transition, and the associated eigenvectors
of Scc control the new ranking of nodes. Although at α = 1 the eigenspace for eigenvalue
1 can be very large, for α sufficiently larger in norm than the eigenvalues of Scc, PageRank
remains fixed when α → 1, in a way reminiscent of degenerate perturbation theory in quantum
mechanics. Our highly accurate numerical method based on alternations of Arnoldi iterations
and direct iterations of the G matrix enables us to determine the correct PageRank even where
the scale of this transition is extremely small (1 − λ

(core)

1 ≈ 10−20) and the matrix size is
very large (up to several millions). The very slow convergence of the power method in this
regime is reminiscent of very long equilibration times in certain physical systems (e.g. spin
glasses), and thus Arnoldi iterations can be viewed as a certain kind of a simulated annealing
process which enables us to select the correct eigenvector among many others with very close
eigenvalues. PageRank in this regime of α → 1 shows universal properties different from the
usual PageRank at α ≈ 0.85, with a different statistical distribution. This can be used to refine
search and ranking in complex networks and hidden communities extraction.

Finally, we note that usually in quantum physics one deals with unitary matrices with a
real spectrum. In the case of directed Markov chains, we naturally obtain a complex spectrum.
In physical quantum systems a complex spectrum appears in positive quantum maps [21],
problems of decoherence and quantum measurements [22] and random matrix theory of
quantum chaotic scattering [23]. Thus we hope that a cross-fertilization between complex
matrices and directed network will highlight in a new way the properties of complex networks.
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