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Abstract. We study the statistical properties of various directed networks using ranking of their nodes
based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average
PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes propor-
tionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that
paves the way for development of two-dimensional search engines of new type. Information flow proper-
ties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities,
Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also
analyzed.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 89.20.Hh World Wide Web, Internet

1 Introduction

During the last decade the modern society developed enor-
mously large communication networks. The well known
example is the World Wide Web (WWW) which starts
to approach to 1011 webpage [1]. The sizes of social net-
works like Facebook [2] and VKONTAKTE [3] also be-
come enormously large reaching 600 and 100 millions user
pages respectively. The information retrieval from such
huge data bases becomes the foundation and main chal-
lenge for search engines [4,5]. The fundamental basis of
Google search engine is the PageRank algorithm [6], which
ranks all websites according to the probability of the PageR-
ank vector of the Google matrix (see e.g. detailed descrip-
tion at [7], historical surveys of PageRank are given at [8,
9]).

The Google matrix G of a directed network with N
nodes is given by

Gij = αSij + (1− α)/N , (1)

where the matrix S is obtained by normalizing to unity
all columns of the adjacency matrix Ai,j , and replacing
columns with zero elements by 1/N . An element Aij of
the adjacency matrix is equal to unity if a node j points
to node i and zero otherwise. The damping parameter α
in the WWW context describes the probability (1−α) to
jump to any node for a random surfer. The value α = 0.85
gives a good classification for WWW [7] and thus we also
use this value here. A few examples of Google matrix for
various directed networks are shown in Fig. 1. The matrix
G belongs to the class of Perron-Frobenius operators [7],
its largest eigenvalue is λ = 1 and other eigenvalues have

|λ| ≤ α. The right eigenvector at λ = 1 gives the probabil-
ity P (i) to find a random surfer at site i and is called the
PageRank. Once the PageRank is found, all nodes can be
sorted by decreasing probabilities P (i). The node rank is
then given by index K(i) which reflects the relevance of
the node i. The PageRank dependence on K is well de-
scribed by a power law P (K) ∝ 1/Kβin with βin ≈ 0.9.
This is consistent with the relation βin = 1/(µin − 1)
corresponding to the average proportionality of PageR-
ank probability P (i) to its in-degree distribution win(k) ∝
1/kµin where k(i) is a number of ingoing links for a node
i [10,7]. For the WWW it is established that for the ingo-
ing links µin ≈ 2.1 (with βin ≈ 0.9) while for out-degree
distribution wout of outgoing links a power law has the
exponent µout ≈ 2.7 [11,12]. Similar values of these expo-
nents are found for the WWW British university networks
[13], the procedure call network (PCN) of Linux Kernel
software introduced in [14] and for Wikipedia hyperlink
citation network of English articles (see e.g. [15]).

The PageRank gives at the top the most known and
popular nodes. However, an example of the Linux PCN
studied in [14] shows that in this case the PageRank puts
at the top certain procedures which are not very impor-
tant from the software view point (e.g. printk). As a result
it was proposed [14] to use in addition another ranking
taking the network with inverse link directions in the ad-
jacency matrix corresponding to Aij → AT = Aji and
constructing from it an additional Google matrix G∗ ac-
cording to relation (1) at the same α. The eigenvector of
G∗ with eigenvalue λ = 1 gives then a new inverse PageR-
ank P ∗(i) with ranking index K∗(i). This ranking was
named CheiRank [15] to mark that it allows to chercher
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Fig. 1. Left column: coarse-grained density of Google matrix
elements Gi,j written in the PageRank basis K(i) with indexes
j → K(i) (in x-axis) and i → K′(i) (in a usual matrix rep-
resentation with K = K′ = 1 on top left corner); the coarse
graining is done on 500 × 500 square cells for the networks
of University of Cambridge 2006, University of Oxford 2006,
Wikipedia English articles, PCN of Linux Kernel V2.6 (from
top to bottom). Right column shows the first 200×200 matrix
elements of G matrix without coarse graining with the same
order of panels as in the left column. Here α = 0.85. Color
shows the density of matrix elements changing from black for
minimum value ((1 − α)/N to white for maximum value via
green and yellow (density is coarse-grained in left column).

10
0

10
2

10
4

10
6

K, K*
10

-7

10
-5

10
-3

10
-1

P(
K

),
  P

*(
K

*)

Fig. 2. Dependence of probabilities of PageRank P (K) (red
curve) and CheiRank P ∗(K∗) (blue curve) on corresponding
ranks K and K∗ for the network of University of Cambridge
in 2006 (dashed curve) and in 2011 (full curve). The power law
dependencies with the exponents β ≈ 0.91; 0.59, corresponding
to the relation β = 1/(µ−1) with µ = 2.1; 2.7 respectively, are
shown by dotted straight lines.

l’information in a new way. Indeed, for the Linux PCN
the CheiRank gives at the top more interesting and im-
portant procedures compared to the PageRank [14] (e.g.
start kernel). While the PageRank ranks the network nodes
in average proportionally to a number of ingoing links,
the CheiRank ranks nodes in average proportionally to a
number of outgoing links. Since each node belongs both to
CheiRank and PageRank vectors the ranking of informa-
tion flow on a directed network becomes two-dimensional.

An example of variation of PageRank probability P (K)
with K and CheiRank probability P ∗(K∗) with K∗ are
shown in Fig. 2 for the WWW network of University of
Cambridge in years 2006 and 2011. Other examples for
PCN Linux Kernel and Wikipedia can be find in [14,15].
Detailed parameters of networks which we analyze in this
paper and their sources are given in Appendix.

A detailed comparative analysis of PageRank and
CheiRank two-dimensional classification was done in [15]
on the example of Wikipedia hyperlink citation network
of English articles. It was shown that CheiRank highlights
communicative property of nodes leading to a new way of
two-dimensional ranking. While according to the PageR-
ank top three countries are 1. USA, 2. UK, 3. France
the CheiRank gives 1.India, 2.Singapore, 3.Pakistan as
most communicative Wikipedia country articles. Top 100
personalities of PageRank has the following percents in
5 main category activities 58 (politics), 10 (religion), 17
(arts), 15 (science), 0 (sport). Clearly the significance of
politicians is overestimated. In contrast, the CheiRank
gives more balanced distribution over these categories with
15, 1, 52, 16, 16 respectively. It allows to classify informa-
tion in a new way finding composers, architects, botanists,
astronomers who are not well known but who, for example,
discovered a lot of Australians butterflies (George Lyell) or
many asteroids (Nikolai Chernykh). The 2DRanking was
also applied to the brain model of neuronal network [16]
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and the business process management network [17] and
it was shown that it gives a new useful way of informa-
tion treatment in these networks. The 2DRanking in the
PageRank-CheiRank plane also naturally appears for the
world trade network corresponding to import and export
trade flows [18]. Thus the 2DRanking based on PageR-
ank and CheiRank paves the way to a development of 2D
search engines which can become more intelligent than the
present Google search based on 1D PageRank algorithm.

In this work we study the statistical properties of such
a 2DRanking using examples of various real directed net-
works including the WWW of British, French and Italian
University networks [19], Wikipedia network [15], Linux
Kernel networks [14,20], gene regulation networks [21,22]
and other networks. The paper is constructed as following:
in Section 2 we study the properties of node density in the
plane of PageRank and CheiRank, in Section 3 the corre-
lator properties between PageRank and CheiRank vectors
are analyzed for various networks, information flow on the
plane of PageRank and CheiRank is analyzed in Section 4,
methods of control of SPAM outgoing links are discussed
in Section 5, 2DRanking applications for the gene regu-
lation networks are considered in Section 6, discussion of
results is presented in Section 7. The parameters of the
networks and references on their sources are given in Ap-
pendix.

2 Node Density of 2DRanking

A few examples of the Google matrix for four directed net-
works are shown in Fig. 1. There is a significant similarity
in the global structure of G for Universities of Cambridge
and Oxford with well visible hyperbolic curves (left col-
umn) even if at small scales the matrix elements are rather
different (right column) in these two networks (see Fig. 1).
Such hyperbolic curves are also visible in the Google ma-
trix of Wikipedia (left column) even if here they are less
pronounced due to much larger averaging inside the cells
which contain about 15 times larger number of nodes (see
network parameters in Appendix). At small scaleGmatrix
of Wikipedia is much more dense compared to the cases
of Cambridge and Oxford (right column). We attribute
such an increase of density of significant matrix elements
to a stronger connectivity between nodes with large K in
Wikipedia compared to the case of universities where the
links have more hierarchical structure. Partially this in-
crease of density can be attributed to a larger number of
links per node in the case of Wikipedia but this increase
by a factor 2.1 is not so strong and cannot explain all the
differences of densities at small K scale. For Wikipedia
there is about 20% of nodes at the bottom of the matrix
where there are almost no links. For PCN of Linux Kernel
this fraction becomes significantly larger with about 60%
of nodes. The hyperbolic curves are still well visible for
Linux PCN inside remaining 40% of nodes. On a small
scale the density of matrix elements for Linux is rather
small compared to the three previous cases. We attribute
this to a much smaller number of links per node which is

Fig. 3. Density distribution W (K,K∗) = dNi/dKdK∗ for
networks of four British Universities in the plane of PageRank
K and CheiRank K∗ indexes in log-scale (logN K, logN K∗).
The density is shown for 100 × 100 equidistant grid in
logN K, logN K∗

∈ [0, 1], the density is averaged over all nodes
inside each cell of the grid, the normalization condition is∑

K,K∗ W (K,K∗) = 1. Color varies from black for zero to
yellow for maximum density value WM with a saturation

value of W
1/4
s = 0.5W

1/4
M so that the same color is fixed for

0.5W
1/4
M ≤ W 1/4

≤ W
1/4
M to show in a better way low den-

sities. The panels show networks of University of Cambridge
(2006) with N = 212710 (top left); University of Oxford with
N = 200823 (top right); University of Bath with N = 73491
(bottom left); University of East Anglia with N = 33623 (bot-
tom right).

by factor 5 smaller for Linux compared to the university
networks of Fig. 1 (see data in Appendix).

The distributions of density of nodes W (K,K∗) =
dNi/dKdK∗ in the plane of PageRank and CheiRank in
log-scale are shown for four networks of British Univer-
sities in Fig. 3. Here dNi is a number of nodes in a cell
of size dKdK∗ (see detailed description in [15]). Even if
the coarse-grained G matrices for Cambridge and Oxford
look rather similar the density distributions in (K,K∗)
plane are rather different. The density distributions for
all four universities clearly show that nodes with high
PageRank have low CheiRank that corresponds to zero
density at low K, K∗ values. At large K, K∗ values there
is a maximum line of density which is located not very
far from the diagonal K ≈ K∗. The presence of such a
line should correspond to significant correlations between
P (K(i)) and P ∗(K∗(i)) vectors that will be discussed in
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Fig. 4. Density distribution W (K,K∗) = dNi/dKdK∗ of four
Linux Kernel networks shown in the same frame as in Fig. 3.
The panels show networks for Linux versions V2.0 with N =
14080 (top left); V2.3 with N = 41117 (top right); V2.4 with
N = 85757 (bottom left); V2.6 with N = 285510 (bottom
right). Color panel is the same as in Fig. 3 with a saturation

value of W
1/4
s = 0.2W

1/4
M so that the same color is fixed for

0.2W
1/4
M ≤ W 1/4

≤ W
1/4
M to show in a better way low densities.

more detail in next Section. The presence of correlations
between P (K(i)) and P ∗(K∗(i)) leads to a probability
distribution with one main maximum along a diagonal at
K +K∗ = const. This is similar to the properties of den-
sity distribution for the Wikipedia network discussed in
[15] (see also bottom right panel in Fig. 13 below).

The density of nodes for Linux networks is shown in
Fig. 4. In these networks the density is homogeneous along
lines K +K∗ = const that corresponds to absence of cor-
relations between P (K(i)) and P ∗(K∗(i)). Indeed, in ab-
sence of such correlations the distribution of nodes in K,
K∗ plane is given by the product of independent proba-
bilities. In the log-scale format used in Fig. 4 this leads
to a homogeneous density of nodes in the top right corner
of (logN K, logN K∗) plane as it was discussed in [15] (see
right panel in Fig. 4 there). Indeed, the distributions in
Fig. 4 are very homogeneous inside top-right triangle. We
note that, a part of fluctuations, the distributions remain
rather stable even if the size of the network is changed
by factor 20 from V2.0 to V2.6 version. The physical rea-
sons for absence of correlations between P (i) and P ∗(i)
have been explained in [14] on the basis of the concept
of ”separation of concerns” used in software architecture.
We discuss the properties of these correlations in the next
Section.
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Fig. 5. Correlator κ as a function of the number of nodes N
for different networks: Wikipedia network, 17 British Universi-
ties, 10 versions of Kernel Linux Kernel PCN, Escherichia Coli
and Yeast Transcription Gene networks, Brain Model Network
and Business Process Management Network. The parameters
of networks are given in Appendix.

3 Correlations between PageRank and

CheiRank

The correlations between PageRank and CheiRank can be
quantitatively characterized by the correlator

κ(τ) = N

N
∑

i=1

P (K(i) + τ)P ∗(K∗(i))− 1 . (2)

Such a correlator was introduced in [14] for τ = 0 and we
will use the same notation κ = κ(τ = 0).

The values of κ for networks of various size N are
shown in Fig. 5. The two types of networks are well visi-
ble according to these data. The human created university
and Wikipedia networks have typical values of κ in the
range 1 < κ < 8. Other networks like Linux PCN, Gene
Transcription networks, brain model and business process
management networks have κ ≈ 0.

The dependence of κ(τ) on the correlation “time” τ
is shown in Fig. 6. For the PCN of Linux there are no
correlations at any τ while for the university networks we
find that the correlator drops to small values with increase
of |τ | (e.g. |τ | > 5) even if at certain rather large values
of |τ | significant values of correlator κ can reappear.

It is interesting to see what are typical values κi =
NP (K(i))P ∗(K∗(i)) of contributions in the correlator sum
(2) at τ = 0. The distribution of κi values for a few net-
works are shown in Fig. 7. All of them follow a power law
with an exponent a =1.23 for PCN Linux, 0.70 Wikipedia
and Univ. of Cambridge 0.76 (2006) and 0.66 (2011). We
note that further studies are required to obtain analyti-
cally the values of the exponent a. In the later two cases
the exponent and the distribution shape remains stable
in time, however, in 2011 there appear few nodes with
very large κi values which give a significant increase of
the correlator from κ = 1.71 (in 2006) up to κ = 30.0 (in
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τ in the main and inset panel respectively. The Kernel Linux
PCN V 2.6 and V 2.4 are shown by dashed curves while and
Universities networks of Cambridge and Oxford are shown by
full curves.
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Fig. 7. Histogram of frequency appearance of correlator com-
ponents κi = NP (K(i))P ∗(K∗(i)) for networks of Wikipedia
(black), University of Cambridge in 2006 (green) and in 2011
(red), and PCN of Linux Kernel V2.6 (blue). For the histogram
the whole interval 10−8

≤ κi ≤ 102 is divided in 200 cells of
equal size in logarithmic scale.

2011). It is possible that such a situation can appear if it
is imposed that practically any page points to the main
university page which may have rather high CheiRank due
to many outgoing links to other departments and univer-
sity divisions. We will return to a discussion of university
networks collected in 2011 in Section 7.

Another way to analyze the correlations between PageR-
ank and CheiRank is simply to count the number of nodes
∆(n) inside a square 1 ≤ K(i),K∗(i) ≤ n. For a to-
tally correlated distribution with K(i) = K∗(i) we have
∆(n)/N = n/N while in absence of correlations we should
have points homogeneously distributed inside a square
n × n that gives ∆(n)/N = (n/N)2. The dependence of
such point-count correlator ∆(n) on size n is displayed in
Fig. 8 for various networks. These data clearly show that
the Linux PCN is uncorrelated being close to the limit-
ing uncorrelated dependence while Wikipedia and British

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5
n/N

0

0.1

0.2

0.3∆(
n)

/N
Fig. 8. Dependence of the point-count correlation function
∆(n)/N on n/N for networks of Wikipedia, British Univer-
sities, and Kernel Linux PCN. The curves in the top panel
show the cases of Wikipedia (solid violet) and four versions of
PCN of Linux Kernel with V 2.0 (solid black), V 2.3 (dashed
red), V 2.4 (dot-dashed green), and V 2.6 (dotted blue). The
curves in the bottom panel show the cases of British Univer-
sities with East Anglia (solid black), Bath (dashed red), Ox-
ford (dot-dashed green), and Cambridge 2006 (dotted blue).
Dotted orange curves represent the totally correlated case
with ∆(n)/N = n/N , and the totally uncorrelated one with
∆(n)/N = (n/N)2.

University networks show intermediate strength of corre-
lations being between the two limiting functions of ∆(n).

4 Information flow of 2DRanking

According to 2DRanking all network nodes are distributed
on a two-dimensional plane (K,K∗). The directed links of
the network create an information flow in this plane. To
visualize this flow we use the following procedure:
a) each node is represented by one point in the (K,K∗)
plane;
b) the whole space is divided in equal size cells with in-
dexes (i, i∗) with the number of nodes inside each cell be-
ing ni,i∗ , in Fig. 9 we use cells of equal size in usual (left
column) and logarithmic (right column) scales;
c) for each node inside the cell (i, i∗), pointing to any other
cell (i′, i∗′), we compute the vector (i′− i, i∗′− i∗) and av-
erage it over all nodes ni,i∗ inside the cell (the weight of
links is not taken into account);
d) we put an arrow centered at (i, i∗) with the modulus
and direction given by the average vector computed in c).

Examples of such average flows for the networks of
Fig. 1 are shown in Fig. 9. All flows have a fixed point
attractor. The fixed point is located at rather large values
K,K∗ ∼ N/4 that is due to the fact that in average nodes
with maximal values K,K∗ ∼ N point to lower values.
At the same time nodes with very small K,K∗ ∼ 1 still
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Fig. 9. Information flow on PageRank - CheiRank plane
(K,K∗) generated by directed links of the networks of Fig. 1.
Outgoing links flow is shown in linear scale (K,K∗) with
K,K∗

∈ [1, N ] on left panels, and in logarithmic scale
(logN K, logN K∗) for logN K, logN K∗

∈ [0, 1] on right panels.
The flow is shown by arrows which size is proportional to the
vector amplitude, which is also indicated by color [from yellow
for large to blue for small amplitudes]. The rows corresponds to
University of Cambridge (2006); University of Oxford (2006),
Wikipedia English articles, PCN of Linux Kernel V.2.6 (from
top to bottom).

point to some nodes which have larger values of K,K∗

that places the fixed point at certain intermediate K,K∗

values. A more detailed analysis of statistical properties of
information flows on PageRank-CheiRank plane requires
further studies.

5 Control of spam links

For many networks ingoing and outgoing links have their
own importance and thus should be treated on equal grounds
by PageRank and CheiRank as it is described above. How-
ever, for the WWW it is more easy to manipulate outgoing
links which are handled by an owner of a given web page,
while ingoing links are handled by other users. This re-
quires to introduce some level of control on the outgoing
links which should be taken into account for the ratings.
Since it is very easy to create links to highly popular sites,
we will call “spam links” links for which the destination
site is much more popular than the source. A quantita-
tive measure of popularity can be provided by the Pager-
anks of the sites. We do not think that spam links are
frequent in control networks such as procedure calls in
the Linux kernel and gene regulation. Indeed an excessive
number of such links can become harmful for the network
performance. However, for WWW networks spam links
are probably more widespread. Some websites may try to
improve their rating by carefully choosing their outgoing
links. Also it is a common policy to have links back to a
website’s root pages to facilitate navigation. Naturally, a
good rating should not be sensitive to the presence of such
links. Thus it is imporant to treat spam-links appropri-
ately in order to construct a two dimensional web-search
engine.

With this aim we propose the following filter proce-
dure for computation of CheiRank. The standard pro-
cedure described above is to invert the directions of all
links of the network and then to compute the CheiRank.
The filter procedure inverts a link from j to i only if
ηP (K(j)) > P (K(i)) where η is some positive filter pa-
rameter. After a such inversion of certain links, while other
links remain unchanged, the matrix S∗ and G∗ are com-
puted and the CheiRank vector P ∗(K∗(i)) of G∗ is de-
termined in a usual way. From the definition it is clear
that for η = 0 there are no inverted links and thus after
filtering P ∗ is the same as the PageRank vector P . In the
opposite limit η = ∞ all links are inverted and P ∗ is then
the usual CheiRank discussed in previous sections. Thus
intermediate values of η allow to handle the properties of
CheiRank depending on a wanted strength of filtering.

The dependence of the fraction f of inverted links (de-
fined as a ration between the number of inverted links
to the total number of links) on the filter parameter η is
shown for various networks in Fig. 10. There is a signifi-
cant jump of f at η ≈ 1 for British University networks. In
fact the condition η ≈ 1 corresponds approximately to the
border relation P (K) ≈ P (K ′) with K ≈ K ′ that marks
the diagonal of the G matrix shown in Fig. 1 which has
a significant density of matrix elements. As a result for
η > 1 we have a significant increase of inversion of links
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parameter ηK for Linux networks versions shown by different
curves. Grey curves from left to right are the theory curves with
a = 1, ν = 0 (dashed); a = 0.4, ν = 0 (dotted); a = 0.4, ν = 0.8
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leading to a jump of f present in Fig. 10. The diagonal
density is most pronounced for university networks so that
for them the jump of f is mostly sharp.

It is also convenient to consider another condition for
link inversion defined not for P (Ki) but directly in the
plane (K,K ′) defined by the condition: links are inverted
only if K(j) < ηKK(i) (where node j points to node i,
j → i). In a first approximation we can assume that the

Fig. 12. Density distribution W (K,K∗) = dNi/dKdK∗ for
Wikipedia in the plane of PageRank and filtered CheiRank in-
dexes, (logN K, logN K∗), in a equidistant 100×100 lattice with
logN K, logN K∗

∈ [0, 1]. The filter parameter is η = 10 (left-
top panel), 100 (right-top panel), 1000 (left-bottom panel),
105 where all links are inverted (right-bottom panel). The
color panel is the same as in Fig. 3 with the saturation value

W
1/4
s = 0.5W

1/4
M .

links are homogeneously distributed in the plane of tran-
sitions from K to K ′. This density is similar to the den-
sity distribution of Google matrix elements GK′K shown
in Fig. 1. For the homogeneous distribution the fraction
f of inverted links is given by an area ηK/2 of a trian-
gle, which hight is 1 and the basis is ηK , for ηK ≤ 1. In
a similar way we have f = 1 − 1/2ηK for ηK ≥ 1. We
can generalize this distribution assuming that there are
only links with 1 ≤ K ′ ≤ aN , that is approximately the
case for Linux network where a = 0.4 (see Fig. 1 bottom
row), and that inside this interval the density of links de-
creases as 1/(K ′)ν . Then after computing the area we ob-
tain the expression for the fraction of inverted links valid
for 0 ≤ ν < 1:

f(ηK) =

{

1−ν
2−ν

(aηK) ηK ≤ 1/a

1 +
(

1−ν
2−ν

− 1
)

(aηK)
ν−1

ηK > 1/a
(3)

The comparison of this theoretical expression with the
numerical data for Linux PCN is shown in Fig. 11. It shows
that the data for Linux are well described by the theory
(3) with a = 0.4 and ν = 0.8. The last value takes into
account the fact that the density of links decreases with
PageRank index K ′ as it is well visible in Fig. 1.

The variation of nodes density in the plane of PageR-
ank and filtered CheiRank (K,K∗) for the Wikipedia net-
work is shown in Fig. 12 with the filtering by η for P (K)
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Fig. 13. Distribution of nodes in the plane of PageRank K
and CheiRank K∗ for Escherichia Coli, and Yeast transcription
networks on left and right panels respectively (network data are
taken from [22]). The top five nodes of PageRank, CheiRank
and 2DRank are labeled by their corresponding node names.

and P (K ′) values. At moderate values η = 10 the den-
sity is concentrated near diagonal, with further increase
of η = 100; 1000 a broader density distribution appears at
large K values which goes to smaller and smaller K un-
til the limiting distribution without filtering is established
at very large η. The top 100 Wikipedia articles obtained
with filtered CheiRank at the above values of η are given
at [23]. We also give there top articles in 2DRank which
gives articles in order of their appearance on the borders of
a square of increasing size in (K,K∗) plane (see detailed
description in [15]). These data clearly show that filter-
ing eliminates articles with many outgoing links and gives
a significant modification of top CheiRank articles. Thus
the described method can be efficiently used for control of
spam links present at the WWW.

6 2DRanking of gene regulation networks

The method of 2DRanking described above is rather generic
and can be applied to various types of directed networks.
Here we apply it to gene regulation networks of Escherichia
Coli and Yeast with the network links taken from [22].
Such transcription regulation networks control the expres-
sion of genes and have important biological functions [21].

The distribution of nodes in PageRank-CheiRank plane
is shown in Fig. 13. The top 5 nodes in CheiRank are those
which send many outgoing orders, top 5 in PageRank are
those which obtain many incoming signals and the top 5
in 2DRank combine these two functions. For these net-
works the correlator κ is close to zero (even slightly nega-
tive) which indicates the statistical independence between
outgoing and ingoing links quite similarly to the case of
the PCN for the Linux Kernel. This may indicate that
a slightly negative correlator κ is a generic property for
the data flow network of control and regulation systems.
Whether the obtained ratings can bring some insights on
the functioning of gene regulation can only be assessed by
experts in the field. However, we hope that such an anal-
ysis will prove to be useful for a better understanding of
gene regulation networks.

Fig. 14. Density distribution W (K,K∗) = dNi/dKdK∗

shown in the same frame as in Fig. 3 for networks collected in
2011: University of Cambridge (top left), University of Bologna
(top right), ENS Paris for crawling level 5 (bottom left) and 7
(bottom right). The color panel is the same as in Fig. 3 with

the saturation value W
1/4
s = 0.5W

1/4
M .

7 Discussion

Above we presented extensive studies of statistical prop-
erties of 2DRanking based of PageRank and CheiRank
for various types of directed networks. All studied net-
works are of a free-scale type with an algebraic distri-
bution of ingoing and outgoing links with a usual val-
ues of exponents. In spite of that their statistical char-
acteristics related to PageRank and CheiRank are rather
different. Some networks have high correlators between
PageRank and CheiRank (e.g. Wikipedia, British Uni-
versities), while others have practically zero correlators
(PCN of Linux Kernel, gene regulation networks). The
distribution of nodes in PageRank-CheiRank plane also
varies significantly between different types of networks.
Thus 2DRanking discussed here gives more detailed clas-
sification of information flows on directed networks.

We think that 2DRanking gives new possibilities for
information retrieval from large databases which are grow-
ing rapidly with time. Indeed, for example the size of the
Cambridge network increased by a factor 4 from 2006 to
2011 (see Appendix and Fig. 2). At present, web robots
start automatically generate new webpages. These fea-
tures can be responsible for appearance of gaps in density
distribution in (K,K∗) plane at large K,K∗ ∼ N values
visible for large scale university networks of Cambridge
and ENS Paris in 2011 (see Fig. 14). Such an automatic
generation of links can change the scale-free properties
of networks. Indeed, for ENS Paris we observe appear-
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ance of large step in the PageRank distribution P (K)
shown in Fig. 15. This step for P (K) remains not sen-
sitive to the deepness of crawling which goes on a level
of 3, 5 and 7 links. However, the CheiRank distribution
changes with the deepness level becoming more and more
flat (see Fig. 15). Such a tendency in a modification of
network statistical properties is visible in 2011 for large
size university networks, while networks of moderate size,
like University of Bologna 2011 (see data in Figs. 14,15),
are not yet affected. A sign of ongoing changes is a signifi-
cant growth of the correlator value κ which increases up to
very large value (30 for Cambridge 2011 and 63 for ENS
Paris). There is a danger that automatic generation of
links can lead to a delocalization transition of PageRank
that can destroy efficiency of information retrieval from
the WWW. We note that it is known that PageRank de-
localization can appear in certain models of Markov chains
and Ulam networks [24]. Such a delocalization of PageR-
ank would make the ranking of nodes inefficient due to
high sensitivity of ranking to fluctuations that would cre-
ate a very dangerous situation for the WWW information
retrieval and ranking.

Our studies of 2DRanking pave the way to develop-
ment of two-dimensional search engines which will use
the advantages of both PageRank and CheiRank. While
the Google search engine uses as the fundamental ba-
sis one-dimension ranking related to PageRank [7], the
new two-dimensional search engine, which we callDvvadi
from Russian “dva (two)” and “dimension”, will use the
complementary ranking abilities of both PageRank and
CheiRank. We think that such Dvvadi engine/motor [23]
will find useful applications for treatment of enormously
large databases created by modern society.

Acknowledgments: We thank K.M.Frahm and
B.Georgeot for useful discussions of properties of British
University networks.

8 Appendix

In this work we used the directed networks listed below
(number of nodes N , number of links Nlinks and correlator
between PageRank and CheiRank κ). Additional data can
be find at [23].

Linux Kernel Procedure Call Networks taken from [14]
(see also [20]) with the parameters for various kernel ver-
sions:
V1.0 with N = 2752, Nlinks = 5933, κ = −0.11;
V1.1 with N = 4247, Nlinks = 9710, κ = −0.083;
V1.2 with N = 4359, Nlinks = 10215, κ = −0.048;
V1.3 with N = 10233, Nlinks = 24343, κ = −0.102;
V2.0 with N = 14080, Nlinks = 34551, κ = −0.037;
V2.1 with N = 26268, Nlinks = 59230, κ = −0.058;
V2.2 with N = 38767, Nlinks = 87480, κ = −0, 022;
V2.3 with N = 41117, Nlinks = 89355, κ = −0.081;
V2.4 with N = 85757, Nlinks = 195106, κ = −0.034;
V2.6 with N = 285510, Nlinks = 588861, κ = 0.022.

Web networks of British Universities dated by year
2006 are taken from [19]:
RGU (Abardeen) with N = 1658, Nlinks = 15295, κ =
1.03; Uwic (Wales) with N = 5524, Nlinks = 111733,
κ = 0.82; NTU (Nottingham) with N = 6999, Nlinks =
143358, κ = 0.50; Liverpool with N = 11590, Nlinks =
141447, κ = 1.49; Hull with N = 16176, Nlinks = 236525,
κ = 5.31; Keele with N = 16530, Nlinks = 117944, κ =
3.24; UCE (Birmingham) with N = 18055, Nlinks =
351227, κ = 1.67;KentwithN = 31972,Nlinks = 277044,
κ = 2.65; East Anglia with N = 33623,Nlinks = 325967,
κ = 5.50; Sussex with N = 54759, Nlinks = 804246,
κ = 7.29; York with N = 59689, Nlinks = 414200, κ =
8.13; Bath with N = 73491, Nlinks = 541351, κ = 3.97;
Glasgow with N = 90218, Nlinks = 544774, κ = 2.22;
Manchester with N = 99930, Nlinks = 1254939, κ =
3.47;UCL (London)withN = 128450,Nlinks = 1397261,
κ = 2.33; Oxford with N = 200823, Nlinks = 1831542,
κ = 4.66;Cambridge (2006)withN = 212710,Nlinks =
2015265, κ = 1.71.

We also developed a special code with which we per-
formed crawling of university web networks in January
- March 2011 with the data given below: University of
Cambridge (2011)withN = 898262,Nlinks = 15027630,

κ = 30.0; École Normale Supérieure, Paris (ENS
2011) with N = 28144,Nlinks = 971856, κ = 1.67 (crawl-
ing deepness level of 3 links), N = 129910, Nlinks =
2111944, κ = 16.2 (crawling deepness level of 5 links),
N = 1820015, Nlinks = 25706373, κ = 63.6 (crawling
deepness level of 7 links); University of Bologna with
N = 339872, Nlinks = 16345488, κ = 2.63.

The data for hyperlink network of Wikipedia En-
glish articles (2009) are taken from [15] with N =
3282257, Nlinks = 71012307, κ = 4.08.

Transcription Gene networks are taken from [22].
We have for them: Escherichia Coli with N = 423,
Nlinks = 519, κ = −0.0645;Yeast withN = 690,Nlinks =
1079, κ = −0.0497; for all links the weight is take to be
the same.

Business Process Management network is taken
from [17] with N = 175, Nlinks = 240, κ = 0.164.
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Brain Model network is take from [16] with N =
10000, Nlinks = 1960108, κ = −0.054 (unweighted), κ =
−0.065 (weighed).
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