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a b s t r a c t

We study the properties of the Arnold cat map on a torus with several periodic sections using the
Ulam method. This approach generates a Markov chain with the Ulam matrix approximant. We study
numerically the spectrum and eigenstates of this matrix showing their relation with the Fokker–Planck
relaxation and the Kolmogorov–Sinai entropy. We show that, in the frame of the Ulam method, the time
reversal property of the map is preserved only on a short Ulam time which grows only logarithmically
with the matrix size. Parallels with the evolution in a regime of quantum chaos are also discussed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Arnold cat map [1] is the cornerstone model of the classical
dynamical chaos [2–4]. This symplectic map belongs to the class of
Anosov systems, has the positive Kolmogorov–Sinai entropy h ≈

0.96 and is fully chaotic [4]. The map has the form

p̄ = p + x (mod L), x̄ = x + p̄ (mod 1). (1)

Here the first equation can be seen as a kick which changes
the momentum p of a particle on a torus while the second one
corresponds to a free phase rotation in the interval −0.5 ≤ x <
0.5; bars mark the new values of canonical variables (x, p). The
map dynamics takes place on a torus of integer length L in the p
direction with −L/2 < p ≤ L/2. The usual case of the Arnold
cat map corresponds to L = 1 but it is also possible to study
the chaotic properties of the map on a torus of longer integer
size L > 1 as it has been discussed e.g. in [5]. For L ≫ 1, the
spreading in p is characterized by a diffusive process described by
the Fokker–Planck equation:

∂w(p, t)/∂t = D/2∂2w(p, t)/∂2p, (2)

where the diffusion coefficient D ≈ ⟨x2⟩ = 1/12w(p, t) is
a probability distribution over momentum and t is the integer
time measured in number of iterations. As a result, for times
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t ≫ L2/D, the distribution converges to the ergodic equilibrium
with a homogeneous density in the plane (x, p). The exponential
convergence to the equilibrium state is determined by the second
eigenvalue λ2 of evolution (2) on one map iteration with |λ| =

exp(−ΓD) < 1 and the convergence rate

ΓD = 2π2D/L2 ≈ 1.6449/L2; (3)

the first eigenvalue is λ1 = 1.
The dynamical equations (1) are reversible in time, e.g. in

the middle of free rotation, but, due to chaos and exponential
instability of motion, small round-off errors break time reversal
leading to an irreversible relaxation to the ergodic equilibrium [5].

In this work, we investigate the transition from dynamical be-
havior to statistical description using the Ulam method proposed
in 1960 [6]. According to thismethod, thewhole phase space is cov-
ered by equidistant lattice (N = Np×Nx in our case). Then the tran-
sition probabilities from cell to cell are determined by propagating
a large number of trajectories Ntr from one initial cell j to all other
cells i after one iteration of the map (we used here Ntr = 105). In
this way, we generate the Markov chain [7] with a transition ma-
trix Sij = Nij/Ntr , where Nij is the number of trajectories arrived
from cell j to cell i. By construction, we have

N
i=1 Sij = 1 and thus

the matrix S belongs to the class of Perron–Frobenius operators
[1,2,8]. It is proven that for hyperbolic maps in one and higher di-
mensions the Ulammethod gives a convergence to the spectrumof
continuous system in the limit of small cell size [9–11]. At the same
time it is known that in certain cases the Ulam method gives sig-
nificant modifications of the spectrum compared to the case of the
continuous Perron–Frobenius operators [10]. Indeed, for Hamilto-
nian maps with divided phase space, the spectrum is completely
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modified (see discussions in [12,13]) due to penetration of trajec-
tories inside stability islands. From a physical view point the dis-
cretization corresponds to an effective noise in canonical variables
which amplitude is equal to the cell size. Since an arbitrary small
noise gives propagation of trajectories inside stability islands [4]
the spectrum of the Ulam matrix approximant of size N in such a
case differs from its continuous limit. A generalization of the Ulam
method, based on one ergodic trajectory, allows to obtain a con-
vergent spectrum for dynamics on a chaotic component [13].

The majority of numerical studies with the Ulam method
has been done for one-dimensional maps (see e.g. [14–16]) but
recently the studies were extended to the two-dimensional maps
(see e.g. [12,13,17,18]). For example, a geometrical description of
coherent flow structures and their invariant manifolds has been
developed in [17], the fractal Weyl law for dissipative maps was
discussed in [18]. In a certain respect the interest to such studies
was generated by similarities between properties of the Ulam
matrix approximant for dynamical maps, which can be viewed as
the Ulam networks, and the Googlematrix of theWorldWideWeb
as it is discussed in [12,16]. For 2D dissipative maps it was found
that the spectrum is characterized by the fractal Weyl law [12,18].

In a difference from the previous studies of the Ulam method
in 2D maps here we choose the Arnold cat map on a torus of size
L since it is fully chaotic, it has well defined diffusive relaxation
to the ergodic state at large L, and it is time reversible. Thus
the aim of this work is to understand the interplay of all these
features in the frame of the Ulam method and the finite size
Markov chain with the Ulam matrix approximant S generated by
this method. The previous studies of toral automorphisms by the
Ulam method performed in [13,17] were done for the regimes
where the diffusion time scale was comparable with the time scale
given by the inverse Lyapunov exponent. In the case considered
here we have the diffusion time being significantly larger than the
Lyapunov time scale, thus our studies are done in the regimewhich
satisfies the Bogolubov criterion on time scales separation required
for a statistical description.

The paper is composed as follows: in Section 2 we describe the
properties of spectrum and eigenstates of thematrix S, the features
of time reversal are analyzed in Section 3 and discussion of the
results is presented in Section 4.

2. Spectrum and eigenstates of the Ulammatrix approximant

The complex eigenvalues λi and right eigenvectors ψi of the
Ulam matrix approximant S satisfy the equation Sψi = λiψi
and are determined numerically by direct diagonalization. In
agreement with the Perron–Frobenius theorem [8] the maximal
eigenvalue is λ1 = 1 with the corresponding eigenstate being real,
nonnegative and homogeneously distributed over thewhole phase
space.

The global distributions of eigenvalues λi in the complex plane
are shown in Fig. 1 for even and odd number of cells. Usually
we keep Np = LNx to have exactly the same amount of cells in
each of L sections of the continuous map. The results show that
2D distributions are different for even and prime values of Nx (see
Fig. 1). For the even case λ-values are homogeneous inside a circle
of a certain radius. For the odd case the distribution has a form of
a ring without eigenvalues at |λ| ≈ 0 (or with a smaller density
at zero). The arithmetic properties of the number of cells Nx and
Np = LNx play a visible role. Thus for Nx = 47 we have a formation
of star with 16 star rays while for Nx = 43 there are 44 rays
which are much less visible (for Nx = 37 we obtain a similar
type of distribution with 38 rays). We obtain a similar type of ring
spectrum also for Nx = 51 (bottom right panel in Fig. 1). In the
case when both Nx and Np are primes, e.g. Nx = 47,Np = 191,
(and hence we have only approximate relation Np ≈ LNx) the

Fig. 1. Complex spectrum λ of the Ulam matrix approximant S for the Arnold cat
map. Top three rows: right columnhasNx = 47 and L = 3, 4, 8 (from top to bottom);
left column has Nx = 43 and L = 3, 4, 8 (from top to bottom). Bottom row is for
L = 4 with Nx = 50 (left) and Nx = 51 (right). The total matrix size is N = NpNx
with Np = LNx and all eigenvalues are shown for each panel. Unit circle is shown in
red. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

visibility of rays also decreases (data not shown). It is clear that the
arithmetic properties of the discretized lattice play an important
role at small lattice sizes. However, we argue that they will be not
so important in the limit of large lattice size.

Indeed, we expect that in the limit of large Nx and Np = LNx
with fixed L the distribution will converge to a limiting one
in agreement with the spirit of mathematical theorems about
the convergence of Ulam matrix approximant for fully chaotic
maps [9–11]. A confirmation of this is seen in Fig. 2 where
the density distributions of eigenvalues dW/dγ are shown as a
function of the relaxation rate γ = −2 ln |λ|. Indeed, the density
is essentially size independent showing two distinct distributions
for even and odd values of Nx. We suppose that this difference
between two cases can be related to the effect of discretization
on the continuous map symmetry x → −x. The third type of size
independent distribution appears in the case of prime values of Nx
and Np ≈ LNx (see Fig. 2) but in this case the difference should
be attributed to the fact that this discretization does not preserve
exactly L identical classical segments of the continuous map.

The maximum of the distribution dW/dγ is located approx-
imately at γ = 2 ≈ 2h corresponding to the value of the
Kolmogorov–Sinai entropy h. Thus these γ values describe the pro-
cess of exponential divergence of nearby trajectories and are re-
lated to the exponential correlations decay generated by chaotic
dynamics. In addition to these values γ ∼ 1 there is also the value
of λ2 = exp(−γ2/2) which is positive and is very close to the
unit value λ1 = 1. It corresponds to the second eigenvalue of the
Fokker–Planck equation describing diffusive relaxation to the er-
godic steady-state. Indeed, the dependence of the gap∆ = 1−λ2,
shown in Fig. 3, is well in agreement with the dependence (3): a
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Fig. 2. (Color online) Dependence of density of states dW/dγ on the decay rate γ
for the Ulam matrix approximant of the cat map with L = 4. The number of cells
Nx and Np are even–even on the top panel, prime–even on the middle panel, and
prime–prime on the bottom panel. The corresponding values are shown on legends
with the notation Nx × Np . The densities of states are normalized by the condition 10
0 dW/dγ dγ = 1.

Fig. 3. (Color online) Spectral gap ∆ = 1 − |λ2| as a function of L. Solid (black)
and dashed (red) curves represent the cases of Nx = 23 and Nx = 47 respectively;
Np = LNx . Dotted (blue) line shows the theoretical dependence∆ ∝ L−2 .

formal fit for 3 ≤ L gives ∆ ∝ 1/Lµ with the exponent µ = 1.97
for Nx = 23 and 1.94 for Nx = 47 being close to the theoretical
value µ = 2. The fit at the fixed exponent µ = 2 gives the nu-
merical constant a in the relation ∆ = a/L2 being 1.56 ± 0.05 for
Nx = 23 and 1.33±0.05 forNx = 47 that is close to the theoretical
value a = 2π2D = 1.64 . . . . A small deviation can be attributed to
the effect of finite size discretization.

On the basis of the results presented above we expect that
in the limit of small cell size the spectrum of the Ulam matrix
approximant S has a large continuous component related to the
Lyapunov exponent (concentrated mainly in the range of a ring
with 1 < γ < 3) and a discrete part of the spectrum related to
diffusive relaxation. We also expect that the star-like structures
seen in Fig. 1 at Nx = 47 disappear at large values of N as it
is happen in the bottom row of Fig. 1. It is appealing to try to
use periodic orbit approach (see e.g. [19]) to obtain the star-like
structure of eigenvalues (Fig. 1). However, the data of Fig. 3 clearly
show that we are in the diffusive regime where the relaxation
is described by the Fokker–Planck equation (2) and the diffusive
relaxation time is rather long compared to the period of short
orbits. Due to that it should be rather difficult to obtain the whole
spectrumof Swith short periodic orbits and thus a special research,
being out of the scope of this work, should be done for further
development of this approach.

Two examples of eigenstates ψ2 and ψ27 of the matrix S are
shown in Fig. 4 (the numbering is done in a decreasing order of
|λ|). According to the Fokker–Planck equation (2) we expect to
have two double degenerate values of λ2 with the corresponding

Fig. 4. (Color online) Eigenstates of the matrix S shown on the whole phase space
for L = 4,Nx = 47 and Np = LNx . The top panel shows the eigenfunction ψ2 ,
which is real and has λ2 = 0.917;middle and bottom panels represent respectively
the real and imaginary parts of the eigenstate ψ27 corresponding to the eigenvalue
λ27 ≃ 0.516+i0.507. In all panels, red corresponds to positive, and blue to negative
values. The phase space is rotated 90 degrees clockwise so that positive values of p
are on the right hand side of the plot.

running wave eigenstates ψ2 ∝ exp(±ik2πp/L) with k = ±1 or
their linear combination. The numerically found eigenstate ψ2 is
real up to a numerical level of precision of matrix diagonalization,
corresponding to a real λ2 value. It shows a certain amplitude
oscillations along p but its main feature is the sign change along
x, which is absent in the Eq. (2). A dependence of eigenstates on
x variable remains strongly visible and for other eigenstates (see
Fig. 4). For example, the state ψ27 has density concentration at
points x = 0 and x = ±0.5 corresponding to zero force point and
discontinuity point respectively.

These results show that the Fokker–Planck equation gives
only a first approximation for the statistical description of
dynamics of the Arnold cat map. In contrast to that the Ulam
matrix approximant gives much more detailed description. The
understanding of all features of this statistical description requires
further more detailed studies. We note that according to (2) there
should be a series of eigenstates with λk = exp(−ΓDk2). We
well resolved the case of k = 0,±1 but we found difficult to
define accurately the corresponding higher values. It is possible
that they enter rapidly in the dense balk region of ring with
many eigenvalues and become mixed with them. Probably larger
values of L should be studied to resolve such eigenvalues in a
better way. We note that such a series of eigenvalues has been
seen for the Chirikov standard map at the critical value of chaos
parameter where the diffusion rate is relatively small and thus
these eigenvalues are better separated from the balk region [13].

3. Time reversal features and the Ulam time

Even if the exact dynamics is time reversible it becomes eas-
ily broken by small errors due to dynamical chaos and exponential
instability of motion (see e.g. [5,20]). In the quantum case the evo-
lution is described by the linear Schrödinger equation that together
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Fig. 5. (Color online) Time evolution of ⟨p2⟩ for an initial distribution with p = 0
obtained with the Ulam matrix approximant of the Arnold cat map at L = 8,Np =

LNx and Nx = 11 (top-left panel), 51 (top-right panel), 251 (bottom-left panel) and
751 (bottom-right panels). The time inversion is done at tr = 2, 6, 10, 14. Yellow
dashed line shows the theoretical prediction with ⟨p2⟩ = Dt and D = 1/12. The
arrows on the top-left panel shows the values of time a, b, c, d plotted in Fig. 6.

Fig. 6. (Color online) Time evolution of a p = 0 state with the Ulam matrix of the
Arnold cat map at L = 8,Nx = 51 and Np = LNx = 408. Panels show distribution
in the whole phase space at the moments of time a, b, c, d marked by arrows in
Fig. 5: (a) at t = 6 (top-left panel); (b) at t = 10 with p-inversion in t = 6
(top-right panel); (c): t = 12 with p-inversion in t = 6 (bottom-left panel); (d) at
t = 12 without p-inversion (bottom-right panel). Probability density is shown by
color with blue for zero density and red for maximal density on a given panel. The
values of ⟨p2⟩ are marked in green arrows on the top-right panel of Fig. 5.

with the uncertainty principle leads to stability of time reversal in
respect to small errors [5,20,21]. Let us now study the time reversal
in the frame of the Ulammethod where the evolution is described
by a linear matrix transformation. For that we start from an initial
line in the phase space at p = 0 with a homogeneous density in
x, with w(p, t = 0) = 1/Nx and zero otherwise. Then we follow
the evolution given by the matrix multiplication w(p, x, t + 1) =

Sw(p, x, t) where time t is measured in the number of map iter-
ations t . The growth of the second moment ⟨p2(t)⟩ as a function
of time is shown in Fig. 5. The second moment grows diffusely
with time in agreement with the Fokker–Planck equation (2). Af-
ter tr iterationswe perform time reversal by inverting all momenta
p → −p. We see that after tr the second moment ⟨p2(t)⟩ starts to
decrease during a certain time interval tU , where its value becomes
minimal, and after that the diffusion restarts again. This time tU is
the Ulam time scale during which we have anti-diffusive process
which also describes relaxation in a vicinity of big fluctuations [22].

The spreading of probability in the whole phase space is
displayed in Fig. 6 at different moments of time. These data show

Fig. 7. (Color online) Evolution of the Arnold cat image generated by the Ulam
matrix approximant S with Nx = 51 (left column) and Nx = 751 (right column)
at L = 8,Np = LNx . From top to bottom: initial image t = 0; image at the moment
of time reversal t = tr = 4; image at the moment of return t = 8; image at the
return moment t = 10 when the time reversal is made after t = tr = 5 iterations.
Color is proportional to density with blue for zero and red for maximum; only the
central initial section −0.5 ≤ x < 0.5,−0.5 ≤ x < 0.5 is shown.

that time reversal gives a temporary shrinking of the distribution
followed by diffusive spreading continued. Thus the time reversal
is preserved only on the Ulam time scale tU .

The strong effects of exponential instability on time reversal
breaking are also well seen in Fig. 7. Here, the initial image of the
Arnold cat cannot be recovered even if the time reversal is done
after only tr = 4 map iterations for the discretization level with
Nx = 51. Only for a much finer discretization level with Nx = 751
the initial image is approximately recovered for tr = 4 but it
degrades rapidly already at time reversal performed after tr = 5.
This illustrates the exponentially rapid breaking of time reversal
after the Ulam time tU .

The dependence of the Ulam time tU , characterized by the
anti-diffusion during time reversal process seen in Fig. 5, on the
discretization scale Nx is shown in Fig. 8. We see that the results
are well described by the dependence

tU = lnNx/h = | ln h̄eff |/2h, h̄eff = 1/N2
x , (4)
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Fig. 8. (Color online) Dependence of the Ulam time tU with anti-diffusion on the
number of cellsNx of theUlammatrix approximant at L = 8 andNp = LNx . An initial
state at momentum p = 0 and homogeneous in x is evolved up to time t = tr = 30
when a time reversal operation is applied. The dashed line shows the dependence
tU = lnNx/h.

where h̄eff = 1/N2
x can be considered as an effective Planck

constant which gives the area of discretized cells. In this form the
Ulam time scale tU is similar to the Ehrenfest time tE [23] which
appears in the semiclassical limit of systems of quantum chaos. In
both cases the mechanism is related to the exponential growth of
a wave packet of minimal size with time h̄eff exp(ht) due to which
the packet size becomes comparable with the whole system size
after time tE or in our case after time tU .

In spite of this similarity we should note that in the quantum
case the time reversal is preserved under rather generic conditions
(see [5,20,21] and Refs. therein). In contrast to that in the frame of
theUlammethod,which also describes the linearmatrix evolution,
the time reversal is broken after the Ulam time tU . The main
reason of this difference is related to the fact that the Ulammatrix
approximant describes dynamicswith eigenvaluemodulus smaller
than unity while the quantum dynamics is unitary. This result can
be also understood from the view point of noise which have a size
of discretized cells and which also breaks time reversal.

The above results on time reversibility are obtained in the frame
of the Ulammethodwhich intrinsically generates noise transitions
betweennearby cells. Of course, it is possible to performdiscretiza-
tion in such a way that the discretizedmapwill be symplectic with
keeping time reversal property (see e.g. [5,20,24]). In such a case
the errors in the last bit still propagates exponentially. Such a situa-
tion has been discussed in detail in [5,20] andwewill not elaborate
it here.

4. Discussion

In this work we studied the properties of the Ulam matrix
approximant S, generated by the Ulam method, for the Arnold
cat map on a torus of a few integer sections L. We show that the
eigenvalues of S converge to a limiting distribution in the limit
of small cell discretization and large matrix size N . The main part
of this spectrum have relaxation rates γ with approximate values
of the Kolmogorov–Sinai entropy in this system. There are also
eigenvalues with much smaller relaxation rate which is in a good
agreement with the statistical description by the Fokker–Planck
equation.

The continuous model has the property of time reversal but in
the frame of the Ulam method the time reversibility is broken on
the Ulam time scale tU which grows only logarithmically with the
decrease of the cell size in the Ulam method. Such a dependence
has certain parallels with that one found for the Ehrenfest time
scale in systems of quantum chaos. However, even if in both
cases the evolution is described by the linear matrix equations

the quantum systems preserves the property of time reversal in
presence of weak perturbations, while for the Ulam method the
time reversal is broken after the Ulam time scale tU . Further studies
are required for a better understanding of relations between
the spectrum of the Ulam matrix approximant, chaos, diffusion,
correlations decay and other statistical properties of dynamical
chaos in the Arnold cat map and other chaos systems. Thus this
simple model of Vladimir Arnold still keeps its scientific wonder.
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