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Abstract. The conditions for emergence of Kolmogorov turbulence, and related weak wave turbulence, in
finite size systems are analyzed by analytical methods and numerical simulations of simple models. The
analogy between Kolmogorov energy flow from large to small spacial scales and conductivity in disordered
solid state systems is proposed. It is argued that the Anderson localization can stop such an energy flow.
The effects of nonlinear wave interactions on such a localization are analyzed. The results obtained for finite
size system models show the existence of an effective chaos border between the Kolmogorov-Arnold-Moser
(KAM) integrability at weak nonlinearity, when energy does not flow to small scales, and developed chaos
regime emerging above this border with the Kolmogorov turbulent energy flow from large to small scales.

1 Introduction

The concept of Kolmogorov turbulence 1941 [1–4] de-
scribes how the energy flows from large to small space
scales in a turbulent regime. According to this concept an
energy is injected on large scales, e.g. by wind, and it is
absorbed on small scales due to dissipation. As a result
a stationary algebraic distribution εk ∝ k−5/3 of energy
flow is established over wave modes k [1–4]. This con-
cept was shown to be generic not only for hydrodynamic
turbulence but also for other types of nonlinear waves.
This phenomenon became known as the weak turbulence.
With the help of diagrammatic technique Zakharov and
Filonenko [5] derived the kinetic equation for weak turbu-
lence of capillary waves and demonstrated the existence
of stationary algebraic energy flows similar to those of
Kolmogorov [1–3]. Later the concept of weak wave turbu-
lence was generalized for various types of nonlinear waves
as it is described in detail in [6,7]. However, an enigma
of turbulence still remains as it is clearly stated in a po-
etic claim [8] “Through mechanisms still only partially un-
derstood, wind transfers energy and momentum to surface
water waves”.

Indeed, the kinetic equation for energy flow from small
to large wave vectors is derived in the regime of weak non-
linearity and random phase approximation [5]. A similar
type of approach for wave-particle interactions is known in
plasma as a quasilinear approximation [9]. This hypothesis
is at the basis of the whole theory as it is directly stated by
Zhakharov and Filonenko at the first paragraph of their
fundamental paper [5]: “in the theory of weak turbulence
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nonlinearity of waves is assumed to be small; this enables
us, using the hypothesis of the random nature of the phase
of individual waves, to obtain the kinetic equation for the
mean square of the wave amplitudes”. However, in finite
size systems one has a a discrete spectrum of linear modes
and the dynamical origins and conditions for validity of
the random phase approximation and hence, for validity
of the Kolmogorov concept of energy flow from small to
large space scales, are still to be established.

In fact, it is known that a weak nonlinearity does
not always lead to global ergodicity and chaos over all
wave vectors or over all degrees of freedom. The well
known example is the Fermi-Pasta-Ulam (FPU) prob-
lem [10,11] where nonlinearity should be strong enough
to generate global chaos as it was pointed by Izrailev
and Chirikov [12]. At present the FPU problem still re-
mains under active studies aiming to understand its er-
godic properties in the limit of low energy or weak non-
linearity [13,14]. For the FPU problem it was shown that,
in the limit of very small nonlinearity combined with the
resonant approximation, which is typically used for the
derivation of the kinetic equation for wave [5–7], it is pos-
sible to have chaos only at small k-vectors with exponen-
tial decay of energies at high k-vectors (see [15] and Fig. 2
therein). Thus this result [15] shows that certain condi-
tions are required for the emergence of algebraic station-
ary flows in the weak turbulence in finite systems.

Indeed, in the case of a few degrees of freedom it is
established that in the limit of weak nonlinear perturba-
tion almost all phase space of a typical Hamiltonian non-
linear system remains in an integrable regime known as
the Kolmogorov-Arnold-Moser (KAM) integrability (see
e.g. [16,17] and Refs. therein). The rigorous form of this
statement is known as the KAM theory. The transition
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to global chaos and ergodicity requires that nonlinearity
exceeds a chaos border which can be determined by nu-
merical simulations or, in a number of cases, analytically
by the Chirikov criterion [16–18]. Below the chaos border
a main part of the phase space remains integrable and a
chaotic spreading is possible only due to the Arnold diffu-
sion via tiny chaotic web in a separatrix vicinity [16,17,19].
In the limit of small nonlinear perturbation the measure
of these chaotic layers drops exponentially [16,17] even if
for a larger number of degrees of freedom this exponential
regime can become valid only at very very small pertur-
bations [19,20].

Of course, the initial concept of Kolmogorov turbu-
lence and weak wave turbulence considers systems of large
scale with a continuous spectrum of linear waves [6,7].
However, the modern experiments on wave turbulence are
done with systems of finite size (see e.g. [21–23]). Also all
numerical simulations are done with the finite size systems
(see e.g. [24–30]). It is recognized that in such finite sys-
tems certain resonant conditions play important role for
energy flows in k-space [24,26–29]. Indeed, it is natural to
assume that a discreetness of linear frequencies in a finite
system can stop chaotic spreading if nonlinear frequency
shifts become smaller than a typical spacing between lin-
ear resonant modes. Such a criterion has been put forward
in [15] where its validity was confirmed for the FPU model
in the resonant approximation.

However, the situation may be even more complicated
and the energy spreading can be suppressed even in sys-
tems with everywhere dense spectrum. Indeed, in disor-
dered systems it is known that the spreading of quantum
(linear) waves can be stopped due to the phenomenon of
Anderson localization [31,32] even if the spectrum of linear
waves is everywhere dense and classical particles can dif-
fusively spread over the whole system. The effects of weak
nonlinearity on the Anderson localization are now under
active investigations of different groups (see e.g. [33–45]).
Usually the numerical simulations are done for a discrete
Anderson nonlinear Shröringer equation (DANSE), which
allows to perform numerical simulations in an efficient way
up to very large times and thus to study wave packet
spreading in space (see e.g. [36]). It is established that
at moderate nonlinearity β a subdiffusive wave packet
spreading continues up to enormously large times being
at least by 8 orders of magnitude larger than a typical
time scale in a system [33,36,40,41,43]. However, at small
nonlinearity being below a certain border βc (β < βc) the
spreading is absent up to maximal numerically available
times. It should be pointed out that the exact mathe-
matical results are difficult to obtain even in the limit of
β → 0 since the spectrum of the linear problem is ev-
erywhere dense so that resonances appear on large space
scales [38,39]. Due to that it is difficult to develop the
mathematical KAM theory in such a regime.

Below the critical value of nonlinearity β < βc the
wave amplitudes decay exponentially inside a disordered
layer [34,36,37,44] in a way similar to a disordered linear
media in the regime of the Anderson insulator character-
ized by an absence of conductivity in such a system [32].

It is rather appealing to expect that the spreading in
k-space of Kolmogorov turbulence will go in a way simi-
lar to the DANSE case. In fact, for the quantum Chirikov
standard map, known also as the kicker rotator, it is es-
tablished that for a periodic driving in time the quantum
localization of dynamical chaos takes place in the momen-
tum k-space in a way similar to the Anderson localization
in a coordinate space [46–49]. The extension of this linear
wave model to the case of the kicked nonlinear Schrödinger
equation (KINSE) was proposed in [50]. In this KINSE
model the nonlinear wave interaction takes place locally
in space while we are interested in the energy spreading
in the momentum k-space as it is usually the case for the
weak wave turbulence [6]. In this respect the situation is
different compared to the DANSE model where both non-
linear wave interaction and spreading take place in coor-
dinate space [36]. Even if it was argued that there is a
certain similarity between these two cases [33] a special
more detailed analysis of the KINSE model is required.
In this work the KINSE model is studied on a large time
scales and the links with the DANSE model are traced
in a firmer way. The implications of the obtained results
for the Kolmogorov turbulence in finite size systems are
discussed.

2 An example from the FPU problem

Let us discuss briefly the effects of discreteness of linear
wave spectrum on example of the α-FPU problem follow-
ing the results presented in [15]. It is shown there that
in the long wave limit the system dynamics can be de-
scribed by an effective renormalized Hamiltonian HRN

(see Eq. (5) in [15]):

HRN = −ν
M∑

k=1

k3Jk

+ 2
M∑

k1=1

M−k1∑

k2=1

(k1k2(k2+k1)Jk1Jk2Jk2+k1)
1/2

× cos(φk2+k1 − φk2 − φk1), (1)

where Jk, φk are conjugated action-phase variable of
linear k-modes, the dimensionless parameter ν ∝
1.5/(

√
EsN

3/2) depends on initial energy Es, lattice size,
it is inversely proportional to the nonlinear coefficient of
the α-FPU model. This Hamiltonian is only a resonance
approximate description of the initial FPU problem. How-
ever, it is important to see what are the properties of
this Hamiltonian itself, since it has a typical form of res-
onant Hamiltonians considered in the theory of weak tur-
bulence. This Hamiltonian HRN = HRN0 + HRNint has
an unperturbed part HRN0 ∝ k3Jk corresponding to the
renormalized linear spectrum of long waves and a part
describing the renormalized resonant interacting waves
HRNint ∝ cos(φk2+k1 − φk2 − φk1 ) usually used in the
theory of weak turbulence [6] (here Jk, φk are conjugated
pairs of action-phase variables). It is shown in [15] that
even if the dynamics of Hamiltonian HRN is chaotic for
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waves with k ∼ 1 this chaos does not create energy flow
to high wave vectors k and the energy density drops expo-
nentially at large k (see Fig. 2 in [15]). This shows that the
random phase approximation assumed in the weak turbu-
lence theory can be not correct and that there can be no
Kolmogorov flow from small to large wave vectors in fi-
nite size systems. Here, for us it is important to stress the
properties of the renormalized Hamiltonian (1) and not of
the original α-FPU model where an excitation of high k
waves starts at very long times (see e.g. [13,14]). The rea-
son for this is that the Hamilonian (1) has the usual form
of wave-wave interaction Hamiltonians of the weak tur-
bulence [6,7]. It gives a direct example that chaos on low
wave vectors can be localized and isolated from integarble
dynamics at high wave vectors.

3 The KINSE model description

We focus here on the KINSE model described by

i�
∂ψ

∂τ
= −1

2
∂2ψ

∂2x
+ β|ψ|2ψ − k cosxψ

∞∑

m=−∞
δ(τ −mT ),

(2)
where β characterizes nonlinearity, k is kick potential am-
plitude, T is a period between δ-function kicks periodic in
time, in the following we put � = 1. We impose the peri-
odic boundary conditions with ψ(x+2π) = ψ(x) and nor-
malization condition

∫ 2π

0
|ψ(x)|2dx = 1. The linear wave

expansion has the form ψ(x) =
∑

n ψn exp(−inx)/√2π
with conserved normalization

∑
n |ψn|2 = 1. The second

moment is defined as σ(t) =
∑

(n − n0)2|ψn(t)|2, in the
following we measure time t in the number of kicks (n0 is
the initial mode).

The linear model at β = 0 has been studied in a great
detail (see e.g. [46–49]). The semiclassical regime of this
model corresponds to k � 1, T � 1 with the classi-
cal chaos parameter K = kT = const. In fact K is the
chaos parameter in the Chirikov standard map which de-
scribes the classical dynamics [16,17]. The classical dy-
namics is globally chaotic for K > 1 with a diffusive
growth on energy proportional to σ with σ = Dt and
the diffusion rate D ≈ k2/2 for K > 4. In the quantum
case this diffusion is localized due to quantum interfer-
ence effects with exponentially localized Floquet states
|ψn| ∝ exp(−2|n − n0|/) and the localization length
 ≈ D/2 [46,47,49]. This dynamical, or Chirikov local-
ization, is similar to the Anderson localization in disor-
dered linear lattices where the momentum states n play
the role of spacial coordinate [48,49]. In a difference from
the Anderson localization, which takes place in presence of
disorder, the Chirikov localization takes place in a purely
dynamical system without any randomness, but due to dy-
namical chaos the mechanism of localization of dynamical
diffusion is similar to the one of Anderson localization. In
absence of kick (K = 0) the model is reduced to the inte-
grable nonlinear Schödinger equation. The KINSE model
has been realized experimentally with the cold atoms and
Bose-Einstein condensates (BEC) in kicked optical lattices

(see e.g. [51,52]). The Chirikov localization at β = 0 was
observed experimentally [51], the studies of effects of BEC
nonlinearity on this localization are now within experi-
mental reach [52].

The KINSE model was introduced and studied in [50].
It was shown there that a narrow soliton has a long live
time during which it follows an integrable or chaotic tra-
jectory of the Chirikov standard map. In a regime when a
soliton is destroyed it was found that there is still a sup-
pression of classical diffusive growth of σ. In [33] it was
conjectured that this growth is similar to the case of the
nonlinear kicked rotator (KNR) model, where there is a
nonlinear phase shift for linear modes in momentum rep-
resentation (it takes place during each kick period and is
proportional to β|ψn|2). The evolution of the KNR model
is described by a nonlinear map for the wave function [33]:

ψ̄n = exp(−iT n̂2/2 − iβ|ψn|2) exp(−ik cos x̂)ψn. (3)

Here the bar marks the wave function after one period
of perturbation, the operator cos x̂ gives the Bessel cou-
pling between the momentum states ψn. It was also ar-
gued [33] that the KNR behavior is similar to the case
of the DANSE model, where the linear modes are also
exponentially localized. The DANSE has the form

i∂ψn/∂τ = Enψn + β| ψn |2ψn + V (ψn+1 + ψn−1), (4)

where β characterizes nonlinearity, V = 1 is a hopping
matrix element, on-site energies are randomly distributed
in the range −W/2 < En < W/2. The spreading in this
model at moderate β ∼ 1 is characterized by a subdiffusive
growth of the second moment σ of probability distribution:

σ(t) ∝ tα (5)

with the exponent α ≈ 0.3−0.4 (see details in [36,40,41]).
The similar values of the spreading exponent α have been
found for the KNR model [33,40,53].

If to consider the lattice sites n in (4) as the momen-
tum states then it is clear that the nonlinear coupling
in (4) is local while in the KINSE model (2) it is strongly
nonlocal in momentum or k-space, as it is usual for non-
linear wave interaction in the regime of weak turbulence.
Hence, the KINSE model is more adapted to the studies
of the Kolmogorov turbulence in finite systems. Indeed,
the kicks take place on a spacial scale of the whole sys-
tem (of size 2π) and can be considered as a model of wind
which pumps energy from small k-vectors (small |n|) to
large ones. The numerical studies of the model (2) are
presented in the next section.

4 Numerical results for KINSE model

To integrate numerically the evolution described by (2)
it is convenient to use unitary small step integrator mak-
ing small kicks in coordinate space with the local space
nonlinearity and returning back and forth to the momen-
tum space n with the fast Fourier transform as described
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Fig. 1. (Color online) Left panel: dependence of the second
moment σ on time t measured in number of kicks in (2). Right
panel: probability distribution wn over linear wave modes n
at times t = 103 (blue), 104 (green), 105 (magenta), 106 (red)
(all curves are superimposed). Here β = 1, T = 2, k = 0.3,
K = kT = 0.6 the initial state is at zero mode n = 0.

in [50]. However, on very large times t ∼ 106 the nonlinear-
ity can generate exponential instability on high k-modes
which is of a purely numerical origin related to discretiza-
tion. To eliminate this artificial instability the simulations
are done on each step in an enlarged space size (approxi-
mately 4 times larger than the size of physical modes) and
after each small step the amplitudes out of the physical
size are suppressed to zero. Such a method is similar to the
aliasing approach [54] which efficiently suppresses numer-
ical instability on high modes1. Usually the simulations
are done with the total number of states Ntot = 210 and
the size of physical state N = 220 (−110 ≤ n ≤ 110). The
number of small steps Ns on one kick period varied be-
tween 100 and 1000 with a special check that it does not af-
fect the accuracy of the results. The numerical integration
method preserves the total probability up to a numerical
double precision, the energy is conserved with the relative
accuracy of 1% to 0.1% in absence of kicks. The similar
symplectic integration method was used for the DANSE
model in [36,40]. More advanced integration schemes used
in [41–44] give the same results for the spreading behavior
in the DANSE model. The maximal value of t reached in
the present numerical simulations is t = 107.

The time evolution of the second moment σ(t) and
probability distribution over linear modes wn = |ψn|2
in (2) are shown in Figure 1 for the case of moderate non-
linearity β = 1 and a small kick amplitude k = 0.3 cor-
responding to the chaos parameter K = 0.6 being below
the global chaos border Kc ≈ 1 for the Chirikov standard
map [16]. It is clear that there are only quasi-periodic
oscillation of σ and that the distribution in momentum
space remains exponentially localized. Thus, in this regime
there is no energy flow to small scales and random phase
approximation assumed in weak turbulence [5–7] is not
valid. This result is similar to a usual observation that a
small wind (small k here) is not able to produce a turbu-
lent storm.

Let us now consider the regime above the classical
chaos border with K = 6. In his regime the classical sys-
tem, described by the Chirikov standard map [16], has

1 I thank A.S. Pikovsky for a suggestion to use this aliasing
method.
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Fig. 2. (Color online) Dependence of the second moment σ of
probability distribution over wave modes n on time t for (2).
Here, k = 3, T = 2, K = kT = 6, β = 0.5 (blue curve) and β =
1 (red curve); σ(t) is averaged over logarithmically equidistant
time intervals; the initial state is n0 = 0. The dashed line shows
an anomalous diffusion σ ∼ tα with the exponent α = 0.4; the
fit of data in the range 3.5 ≤ log10 t ≤ 7 gives α = 0.346±0.014
(for β = 0.5), α = 0.438 ± 0.007 (for β = 1). The horizontal
dashed black curve shows data at β = 0, it practically coincides
with the data for β = 0.05 shown by green curve.

diffusive energy growth with σ ≈ k2t/2 ≈ 4t. The results
of Figure 2 at β = 0 show that this diffusion is local-
ized by quantum interference with the localization length
 ≈ k2/4 ≈ 2.2 and σ ∼ 2 ∼ 10 (the value of sigma is
slightly higher than 2 due to mesoscopic fluctuations of
 [49]). A very weak nonlinearity β = 0.05 does not af-
fect this localization which persists up to maximal times
t = 107 reached in numerical simulations. We note that
following [36] the values of σ are averaged over logarithmi-
cally equidistant time intervals that suppress fluctuations
at large times.

However, at moderate nonlinearity β = 0.5 and β = 1
the second moment shows a subdiffusive growth with the
algebraic exponent α ≈ 0.4. The exact fit values of α
are given in the caption of Figure 2. As in [36] the sta-
tistical error bars are relatively small but there are long
time correlations that can affect the real α value on large
time scales as discussed in [36,40–42]. A similar value of
α ≈ 0.4 has been found by Pikovsly for numerical simula-
tions of the KINSE model by another numerical method
for t ≤ 106 [55]. It is interesting to note that the growth
of the second moment (Fig. 2) starts at t > 103 while
for DANSE it is visible at t > 10. A probable reason of
this is a relatively smaller effective coupling between lin-
ear modes in the case of KINSE model: here the coupling
is given by density fluctuations in space which have rela-
tively smaller amplitude, compared to DANSE which has
a direct coupling between modes, since kicks excite about
3–4 modes this gives a reduction of amplitude of density
fluctuations in space.

The evolution of probability distribution wn with time
is shown in Figure 3 for β = 0.5; 1. It is clear that nonlin-
earity destroys localization: an approximately flat plateau
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Fig. 3. (Color online) Probability distribution wn over linear
wave modes n in (2) at times t = 103 (blue), 105 (green), 107

(red) for β = 0.5 (left panel), 1 (right panel); other parameters
are as in Figure 2. The dashed curve shows the probability
distribution at β = 0, t = 107.
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Fig. 4. (Color online) Probability distribution wn over linear
wave modes n in (2) at time 107 for β = 0.0 (dashed black),
0.05 (blue), 0.5 (magenta), 1 (red); other parameters are as in
Figure 2.

of probability is formed (“chapeau”) which size is slowly
growing with time. The data for wn at large time t = 107

show that there is a significant increase of the distribution
size for β = 0.5, 1, while for β = 0.05 the probability re-
mains localized in a way similar to the linear case β = 0.
These data qualitatively confirm existence of chaos bor-
der in nonlinearity with a certain βc ∼ 1/10. However, it
is not excluded that some very slow processes related to
the Arnold diffusion can lead to “escape” of some small
probability to larger n values at exponentially large times.
Due to that reasons it is rather difficult to get an exact
value of βc and moreover, it is possible that there is a
certain region of β values where the transition from one
regime to another takes place. At the same time the re-
sults presented for β ∼ 1 > βc and β = 0.05 < βc give a
clear evinces of qualitatively different behavior above and
below a certain βc ∼ 1/10.

It is interesting to note that the probability decay on
the tails of the distribution (see Fig. 3) is notably slower
compared to the linear case, while they were the same in
the DANSE model. This is definitely related to the long
range coupling between modes in the momentum space

for the KINSE model. However, in spite of this long range
coupling the decay on the tails remains exponential.

The results obtained for the KINSE model (2) show
that the behavior of this model is qualitatively similar
to the one found in the KNR (3) and DANSE (4) mod-
els: the spreading in the momentum remains localized be-
low a certain chaos border in nonlinearity strength, while
above this border the spreading continues in a subdiffu-
sive way with the algebraic exponent being close to the
value α ≈ 0.4 found previously for KNR and DANSE. The
main difference from DANSE is that for KINSE we have
interchange between momentum and coordinate spaces.
However, such a similarity between momentum and co-
ordinate space is well known [48,49] and was already dis-
cussed for the KNR model in [33]. The main new aspect of
the KINSE model is a long range coupling in the momen-
tum space due to the locality of wave interaction in the
coordinate space. However, due to a localized nature of
linear eigenmodes in the momentum space this long range
coupling still can give transitions only on a size of local-
ization length  and this does not produce a qualitative
difference from the case of short range integration appear-
ing in DANSE. A similar situation appears for the model
of two particles with Coulomb interaction in the regime of
Anderson localization as it is discussed in [56].

One of the features of the KINSE model is its inte-
grability in absence of kicks, since it is reduced to the
nonlinear Schrödinger equation. However, the presence of
kicks generates chaos of classical rays and due to this the
above integrability becomes unimportant. Indeed, we see
that KINSE shows the behavior similar to DANSE and
KNR models, and with the KNR model with random ro-
tating energies (see [53]). All the above models have a
generic type on linear modes spectrum, known as a pure
point spectrum in the field of Anderson localization. Due
to that a generic nonlinear perturbation of this spectrum
is expected to generate a generic behavior that is indeed
confirmed by the results presented here and in works on
other models.

5 Kolmogorov turbulence in Sinai billiard

On a first glace one can get an impression that the KINSE
model is a rather specific one: it is one-dimensional, there
are kicks etc. However, it is known that the Chirikov stan-
dard map is generic and describes a variety of real physical
systems [16,17]. Also it is known that the Chirikov local-
ization found first in the linear KINSE and NKR mod-
els at β = 0 appears in a variety of real systems (see
e.g. [57,58]). Thus we expect that the behavior found here
for the KINSE model at finite nonlinearity β will appear
in more realistic systems.

Let us discuss an example of such a system. For that
we consider the nonlinear Schödinger equation in a two-
dimensional chaotic billiard (e.g. the Sinai billiard [59]) in
a presence of a monochromatic driving:

i∂ψ/∂τ = −Δψ/2+V (x, y)ψ+β|ψ|2ψ+F sin(ωτ)xψ. (6)
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Here Δ is 2D Laplace operator, the potential V (x, y) is
determined by a rigid boundary of the billiard, F and ω
are the amplitude and frequency of a monochromatic force
acting on a particle inside the chaotic billiard. We assume
that the classical dynamics inside the billiard is chaotic
that leads to quantum chaos and ergodicity of the eigen-
states of the linear problem (see e.g. [60]). The microwave
monochromatic force acting on a classical particle creates
a diffusive growth of its energy with time but the quantum
interference effects lead to exponential localization of this
diffusion (at β = 0) [61], in a way similar to the KINSE
and KNR models at β = 0. It is interesting to know how
the nonlinear term with β in (6) will affect this localiza-
tion and if nonlinearity can create the Kolmogorov flow of
energy from small to large wave vectors. An analogy with
the models of the previous sections gives an idea that at
weak F and β there will be no energy flow to high level
numbers of the linear quantum billiard. However, for the
quantum billiard there is a new element which we discuss
below.

Indeed, the density of energy levels inside the 2D quan-
tum billiard is approximately constant, up to quantum
fluctuations [60]. Due to that the energies of quantum
levels grow with the level number n, approximately as
En ∼ ρn where ρ is the average density of levels. Such
a behavior of energy levels is different from the case of
DANSE where all unperturbed energy levels are located
inside a finite energy band. A linear growth of En with n
corresponds to a presence of a static Stark field with an
additional term δEn = fn. Such a DANSE model with
a Stark field has been studied in [62] and it was shown
that a subdiffusive spreading goes in a way similar to the
DANSE model at moderate values of f . However, for a bil-
liard there is a minimal energy so that we have only n ≥ 0
(like a triangular potential). To model such a situation
one needs to assume that in the DANSE model (4) there
is an additional energy shift δEn = f |n|. Thus the DANSE
model with such a modulus Stark term reproduces the en-
ergy growth with level number typical of the quantum bil-
liard. We will call this the Stark DANSE model of billiard
(SDANSEBIL model). The numerical simulations of this
SDANSEBIL can be done in the same rather efficient way
as it is described in [62]. The comparison of the results
at moderate nonlinearity β = 1 for f = 0 (DANSE) and
f = 0.5 (SDANSEBIL) is presented in Figures 5 and 6.
It shows that a finite f reduces the value of σ almost
by two orders of magnitude and that the probability dis-
tribution over levels is localized in a much stronger way
compared to the case with f = 0. The physical origin of
this suppression should be attributed to the energy con-
servation which for f > 0 leads to a more rapid decrease of
probability on high levels: for a homogeneous probability
distribution on levels 0 ≤ n ≤ nmax the energy conser-
vation imposes |ψnmax |2 ∼ 1/(fn2

max) while at f = 0 the
restriction from norm conservation gives slower decay of
probability with |ψnmax |2 ∼ 1/nmax. Due to this reason
the spearing over levels is suppressed stronger in the pres-
ence of finite static field f and triangular form of energies
δEn ∝ |n|. We note that the case with δEn ∝ n, con-
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σ

Fig. 5. (Color online) Dependence of the second moment σ in
the DANSE model (4) at W = 4, V = 1, β = 1 (red curve)
and in the DANSE model with additional static field potential
(SDANSBIL model)) with δEn = f |n| at f = 0.5 (blue curve)
at the above parameters and the same disorder realization. The
initial state is at n = 0.
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Fig. 6. (Color online) Probability distribution wn over linear
wave modes n at times 108 for the two cases of Figure 5 with
the same attribution of colors; two panels show the same data
on different scale.

sidered in [62], does not give additional restrictions due
to cancellations of negative and positive n contributions.
The obtained results show that the transition to ergod-
icity in the SDANSEBIL model is practically absent and
thus there is no energy flow to high wave vectors.

It should be noted that the numerical results presented
in this section are done for SDANSEBIL model described
in the previous paragraph. It is argued that this model
captures the main features of the more physical initial
model of equation (6). Some arguments related to the den-
sity of energy levels are give above. There are however cer-
tain differences between two models, e.g. the energy is con-
served in SDANSEBIL but not in equation (6). However,
the DANSE and KINSE models have the same type of dif-
ference and still they show the similar behavior. Thus, due
to similarity between DANSE and KINSE and KNR mod-
els discussed in previous sections we make a conjecture
that the behavior similar to the one found for SDANSE-
BIl model will take place for the evolution in the nonlin-
ear billiard model (6). As a results of that observation it
is possible to make a conjecture that there will be no en-
ergy flow to high wave vectors for the Kolmogorov turbu-
lence in Sinai billiard described by equation (6). Of course,
it would be very interesting to perform direct numerical
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simulations of the model (6) but this would require much
more advanced and heavy numerical simulations.

6 Discussion

In this work we discussed the properties of weak wave
turbulence in finite systems. On the basis of numerical
simulations and analytical results we argue that the dis-
crete spectrum of linear frequencies, typical for finite sys-
tems, imposes specific conditions for appearance of the
Kolmogorov energy flow from large to small spacial scales.
In absence of random phase approximation such a flow
can appear only above a chaos border at a sufficiently
large nonlinear coupling between linear modes and/or
strong driving force. The considered models show that the
Anderson localization, appearing in the wave vector space
of linear modes, can stop the energy flow from large to
small scales if nonlinearity is below the chaos border and
the system is in the regime of KAM integrability. A similar
situation appears at a small amplitude of energy pump-
ing. In a qualitative way such a regime corresponds to a
small wind which cannot generate turbulent ocean waves.
Of course, the models analyzed here are relatively simple
and hence, the numerical and experimental studies of more
realistic systems, like e.g. the model (6), are highly desir-
able. Such studies will allow to understand a new regime of
nonlinear waves where interplay between Anderson local-
ization, nonlinearity, KAM integrability and Kolmogorov
turbulence in finite systems opens new interesting and un-
solved questions.

Finally, it is useful to note that a quasiperiodic driving
of the KINSE model at β = 0 with two incommensurate
frequencies can create the Anderson transition with ap-
pearance of energy flow to high momentum states [63,64].
Such a transition has been observed recently in experi-
ments with cold atoms in kicked optical lattices [65]. Thus
it is possible that a transition to weak turbulence in fi-
nite systems is somewhat similar to the Anderson tran-
sition in disordered solids. In such a scenario the regime
of Anderson insulator corresponds to laminary waves and
absence of energy flow from small wave vectors to large
ones, while the metallic phase allows to have a turbulent
energy flow from small to larger wave vectors. The analy-
sis of possible links between these phenomena requires fur-
ther investigations. The modern techniques of ultra cold
atoms and BEC (see e.g. [51,52,65]) allow to study experi-
mentally the effects of nonlinear wave interactions in such
systems.

I thank A.S. Pikovsky for stimulating discussions and critical
remarks.
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M. Tsubota, Phys. Rev. B 84, 054525 (2011)
31. P.W. Anderson, Phys. Rev. 109, 1492 (1958)
32. E. Akkermans, G. Montambaux, Mesoscopic Physics

of Electrons and Photons (Cambridge University Press,
Cambridge, 2007)

33. D.L. Shepelyansky, Phys. Rev. Lett. 70, 1787 (1993)
34. D.L. Shepelyansky, Physica D 86, 45 (1995)
35. M.I. Molina, Phys. Rev. B 58, 12547 (1998)
36. A.S. Pikovsky, D.L. Shepelyansky, Phys. Rev. Lett. 100,

094101 (2008)
37. S. Tietsche, A. Pikovsky, Europhys. Lett. 84, 10006 (2008)
38. J. Bourgain, W.-M. Wang, J. Eur. Math. Soc. 10, 1 (2008)

http://www.epj.org


Page 8 of 8 Eur. Phys. J. B (2012) 85: 199

39. S. Fishman, Y. Krivolapov, A. Soffer, in Nonlinearity
arXiv:1108.2956 (2011)

40. I. Garcia-Mata, D.L. Shepelyansky, Eur. Phys. J. B 71,
121 (2009)

41. S. Flach, D.O. Krimer, C. Skokos, Phys. Rev. Lett. 102,
024101 (2009)

42. T.V. Laptyeva, J.D. Bodyfelt, D.O. Krimer, Ch. Skokos,
S. Flach, Europhys. Lett. 91, 30001 (2010)

43. M. Mulansky, A. Pikovsky, Europhys. Lett. 90, 10015
(2010)

44. M. Johansson, G. Kopidakis, S. Aubry, Europhys. Lett.
91, 50001 (2010)

45. A. Pikovsky, S. Fishman, Phys. Rev. E 83, 025201 (2011)
46. B.V. Chirikov, F.M. Izrailev, D.L. Shepelyansky, Sov.

Scient. Rev. C 2, 209 (1981) [Sec. Math. Phys. Rev.],
Harwood Acad. Publ., Chur, Switzerland

47. B.V. Chirikov, F.M. Izrailev, D.L. Shepelyansky, Physica
D 33, 77 (1988)

48. S. Fishman, D.R. Grempel, R.E. Prange, Phys. Rev. Lett.
49, 509 (1982)

49. D.L. Shepelyansky, Physica D 28, 103 (1987)
50. F. Benvenuto, G. Casati, A.S. Pikovsky, D.L.

Shepelyansky, Phys. Rev. A 44, R3423 (1991)
51. M. Raizen, D.A. Steck, Scholarpedia 6, 10468 (2011)

52. A. Ullah, M.D. Hoogerland, Phys. Rev. E 83, 046218
(2011)

53. G. Gligoric, J.D. Bodyfelt, S. Flach, Europhys. Lett. 96,
30004 (2011)

54. Wikipedia contributors, Aliasing (Wikipedia, The Free
Encyclopedia, 2012)

55. A.S. Pikovsky, private comminication, 2011
56. D.L. Shepelyansky, Phys. Rev. B 61, 4588 (2000)
57. S. Fishman, Scholarpedia 5, 9816 (2010)
58. D. Shepelyansky, Scholarpedia 7, 9795 (2012)
59. I.P. Kornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory

(Springer, New York, 1982)
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