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Abstract. We construct the Google matrix of the entire Twitter network, dated by July 2009, and analyze
its spectrum and eigenstate properties including the PageRank and CheiRank vectors and 2DRanking of
all nodes. Our studies show much stronger inter-connectivity between top PageRank nodes for the Twitter
network compared to the networks of Wikipedia and British Universities studied previously. Our analysis
allows to locate the top Twitter users which control the information flow on the network. We argue that
this small fraction of the whole number of users, which can be viewed as the social network elite, plays the
dominant role in the process of opinion formation on the network.

PACS. 05.10.-a Computational methods in statistical physics and nonlinear dynamics – 89.20.-a Interdis-
ciplinary applications of physics – 89.75.Fb.Fb Structures and organization in complex systems

1 Introduction

Twitter is an online directed social network that enables
its users to exchange short communications of up to 140
characters [1]. In March 2012 this network had around 140
million active users [1]. Being founded in 2006, the size
of this network demonstrates an enormously fast growth
with 41 million users in July 2009 [2], only three years af-
ter its creation. The crawling and statistical analysis of the
entire Twitter network, collected in July 2009, was done by
the KAIST group [2] with additional statistical character-
istics available at LAW DSI of Milano University [3]. This
network has scale-free properties with an average power
law distribution of ingoing and outgoing links [2,3] being
typical for the World Wide Web (WWW), Wikipedia and
other social networks (see e.g [4], [5], [6]). In this work we
use this Twitter dataset to construct the Google matrix
[7,8] of this directed network and we analyze the spec-
tral properties of its eigenvalues and eigenvectors. Even
if the entire size of Twitter 2009 is very large the power-
ful Arnoldi method (see e.g. [9], [10], [11], [12]) allows to
obtain the spectrum and eigenstates for the largest eigen-
values.

A special analysis is performed for the PageRank vec-
tor, used in the Google search engine [7,8], and the Chei-
Rank vector studied for the Linux Kernel network [13,
14], Wikipedia articles network [6], world trade network
[15] and other directed networks [16]. While the compo-
nents of the PageRank vector are on average proportional
to a number of ingoing links [17], the components of the
CheiRank vector are on average proportional to a number
of outgoing links [6,13] that leads to a two-dimensional
ranking of all network nodes [16]. Thus our studies allow
to analyze the spectral properties of the entire Twitter

network of an enormously large size which is by one-two
orders of magnitude larger compared to previous studies
[6,12,14,16].

The paper is organized as follows: the construction of
the Google matrix and its global structure are described
in Section 2; the properties of spectrum and eigenvectors
of the Google matrix of Twitter are presented in Section
3; properties of 2DRanking of Twitter network are ana-
lyzed in Section 4 and the discussion of the results is given
in Section 5. Detailed data and results of our statistical
analysis of the Twitter matrix are presented at the web
page [18].

2 Google matrix construction

The Google matrix of the Twitter network is constructed
following the standard rules described in [7,8]: we consider
the elements Aij of the adjacency matrix being equal to
unity if a user (or node) j points to user i and zero oth-
erwise. Then the Google matrix of the network with N
users is given by

Gij = αSij + (1− α)/N , (1)

where the matrix S is obtained by normalizing to unity
all columns of the adjacency matrix Ai,j with at least one
non-zero element, and replacing columns with only zero
elements, corresponding to the dangling nodes, by 1/N .
The damping factor α in the WWW context describes the
probability (1 − α) to jump to any node for a random
surfer. The value α = 0.85 gives a good classification for
WWW [8] and thus we also use this value here. The matrix
G belongs to the class of Perron-Frobenius operators [8],
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its largest eigenvalue is λ = 1 and other eigenvalues have
|λ| ≤ α. The right eigenvector at λ = 1 gives the probabil-
ity P (i) to find a random surfer at site i and is called the
PageRank. Once the PageRank is found, all nodes can be
sorted by decreasing probabilities P (i). The node rank is
then given by index K(i) which reflects the relevance of
the node i. The top PageRank nodes are located at small
values of K(i) = 1, 2, ....

The PageRank dependence on K is well described by
a power law P (K) ∝ 1/Kβin with βin ≈ 0.9. This is con-
sistent with the relation βin = 1/(µin − 1) correspond-
ing to the average proportionality of PageRank proba-
bility P (i) to its in-degree distribution win(k) ∝ 1/kµin

where k(i) is a number of ingoing links for a node i [8,
17]. For the WWW it is established that for the ingoing
links µin ≈ 2.1 (with βin ≈ 0.9) while for the out-degree
distribution wout of outgoing links the power law has the
exponent µout ≈ 2.7 [4,5]. Similar values of these expo-
nents are found for the WWW British university networks
[12], the procedure call network of Linux Kernel software
introduced in [13] and for Wikipedia hyperlink citation
network of English articles (see e.g. [6]).

In addition to the Google matrix G we also analyze
the properties of matrix G∗ constructed from the network
with inverted directions of links, with the adjacency ma-
trix Ai,j → Aj,i. After the inversion of links the Google
matrix G∗ is constructed via the procedure (1) described
above. The right eigenvector at unit eigenvalue of the ma-
trix G∗ is called the CheiRank [13,6]. In analogy with the
PageRank the probability values of CheiRank are pro-
portional to number of outgoing links, due to links in-
version. All nodes of the network can be ordered in a
decreasing order with the CheiRank index K∗(i) with

P ∗ ∝ 1/K∗βout with βout = 1/(µout − 1). Since each node
i of the network is characterized both by PageRank K(i)
and CheiRank K∗(i) indexes the ranking of nodes be-
comes two-dimensional. While PageRank highlights well-
know popular nodes, CheiRank highlights communicative
nodes. As discussed in [6,13,16], such 2DRanking allows to
characterized an information flow on networks in a more
efficient and rich manner. It is convenient to character-
ize the interdependence between PageRank and CheiRank
vectors by the correlator

κ = N

N
∑

i=1

P (K(i))P ∗(K∗(i))− 1 . (2)

As it is shown in [13,16], we have κ ≈ 0 for Linux Kernel
network, transcription gene networks and κ ≈ 2 − 4 for
University and Wikipedia networks.

In this work we apply the Google matrix analysis de-
veloped in [6,12,13,14,15,16] to the Twitter 2009 net-
work available at [2,3]. The total size of the Google ma-
trix is N = 41652230 and the number of links is Nℓ =
1468365182. This matrix size is by one-two orders of mag-
nitude larger than those studied in [12,14,16]. The num-
ber of links per node is ξℓ = Nℓ/N ≈ 35 being by a factor
1.5− 3.5 larger than for Wikipedia network or Cambridge
University 2006 network [16]. The matrix elements of G

Fig. 1. Google matrix of Twitter: matrix elements of G
(left column) and G∗ (right column) are shown in the basis
of PageRank index K (and K′) of matrix GKK′ (left column

panels) and in the basis of CheiRank index K∗ (and K∗
′

) of
matrix G∗

K∗K∗
′ (right column panels). Here, x (and y) axis

show K (and K
′

) (left column) (and respectively K∗ and K∗
′

on right column) with the range 1 ≤ K,K′ ≤ 200 (top pan-
els); 1 ≤ K,K′ ≤ 400 (middle panels); 1 ≤ K,K′ ≤ N (bottom
panels). All nodes are ordered by PageRank indexK of the ma-
trix G and thus we have two matrix indexes K,K′ for matrix

elements in this basis (left column) and respectively K∗,K∗
′

for matrix G∗ (right column). Bottom panels show the coarse-
grained density of matrix elements GK,K′ and G∗

K∗K∗
′ ; the

coarse graining is done on 500 × 500 square cells for the en-
tire Twitter network. We use a standard matrix representation
with K = K′ = 1 on top left panel corner (left column) and

respectively K∗ = K∗
′

= 1 (right column). Color shows the
amplitude of matrix elements in top and middle panels or their
density in the bottom panels changing from blue for minimum
zero value to red at maximum value. Here the damping factor
is α = 1.

and G∗ are shown in Fig. 1 on a scale of top 200 (top
panels) and 400 (middle panels) values of K (for G) and
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K∗ (for G∗) and in a coarse grained image for the whole
matrix size scale (bottom panels).

It is interesting to note that the coarse-grained image
has well visible hyperbolic onion curves of high density
which are similar to those found in [16] for Wikipedia and
University networks. In [16] the appearance of such curves
was attributed to existence of specific categories. We as-
sume that for the Twitter network such curves are a result
of enhanced links between various categories of users (e.g.
actors, journalists etc.) but a detailed origin is still to be
established.

In the following sections we also compare the proper-
ties of the Twitter network with those of the Wikipedia
articles network from [6]. Some spectral properties of the
Wikipedia network with N = 3282257 nodes and Nℓ =
71012307 links are analyzed in [12,16]. We also compare
certain parameters with the networks of Cambridge and
Oxford Universities of 2006 with N = 212710 and N =
200823 nodes and with Nℓ = 2015265 and Nℓ = 1831542
links respectively. The properties of these networks are
discussed in [12,16]. The gallery of the Google matrix G
images for these networks, as well as for the Linux Ker-
nel network, are presented in [16]. The comparison with
the data shown in Fig. 1 here shows that for the Twitter
network we have much stronger interconnection matrix at
moderate K values. We return to this point in Sections
4,5.

3 Spectrum and eigenstates of Twitter

To obtain the spectrum of the Google matrix of Twitter
we use the Arnoldi method [9,10,11]. However, at first,
following the approach developed in [12], we determine
the invariant subspaces of the Twitter network. For that
for each node we find iteratively the set of nodes that can
be reached by a chain of non-zero matrix elements of S.
Usually, there are several such invariant isolated subsets
and the size of such subsets is smaller than the whole
matrix size. These subsets are invariant with respect to
applications of matrix S. We merge all subspaces with
common members, and obtain a sequence of disjoint sub-
spaces Vj of dimension dj invariant by applications of S.
The remaining part of nodes forms the wholly connected
core space. Such a classification scheme can be efficiently
implemented in a computer program, it provides a subdi-
vision of network nodes in Nc core space nodes (typically
70-80% of N for British University networks [12]) and Ns

subspace nodes belonging to at least one of the invariant
subspaces Vj inducing the block triangular structure,

S =

(

Sss Ssc

0 Scc

)

. (3)

Here the subspace-subspace block Sss is actually com-
posed of many diagonal blocks for each of the invariant
subspaces. Each of these blocks corresponds to a column
sum normalized matrix of the same type as G and has
therefore at least one unit eigenvalue thus explaining the

high degeneracy. Its eigenvalues and eigenvectors are eas-
ily accessible by numerical diagonalization (for full matri-
ces) thus allowing to count the number of unit eigenvalues.
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Fig. 2. Spectrum of the Twitter matrix S (S∗ with inverted
direction of links) for the Twitter network shown on left pan-
els (right panels). Top panel: Subspace eigenvalues (blue dots)
and core space eigenvalues (red dots) in λ-plane (green curve
shows unit circle); there are 17504 (66316) invariant subspaces,
with maximal dimension 44 (2959) and the sum of all subspace
dimensions is Ns = 40307 (180414). The core space eigenval-
ues are obtained from the Arnoldi method applied to the core
space subblock Scc of S with Arnoldi dimension 640 as ex-
plained in Ref. [12]. Bottom panels: Fraction j/N of eigenval-
ues with |λ| > |λj | for the core space eigenvalues (red bottom
curve) and all eigenvalues (blue top curve) from raw data of
top panels. The number of eigenvalues with |λj | = 1 is 34135
(129185) of which 17505 (66357) are at λj = 1; this number is
(slightly) larger than the number of invariant subspaces which
have each at least one unit eigenvalue. Note that in the bottom
panels the number of eigenvalues with |λj | = 1 is artificially
reduced to 200 in order to have a better scale on the vertical
axis. The correct number of those eigenvalues corresponds to
j/N = 8.195 × 10−4 (3.102 × 10−3) which is strongly outside
the vertical panel scale.

We find for the G matrix of Twitter 2009 that there
are Ns = 40307 subset sites with a maximal subspace
dimension of 44 (most subspaces are of dimension 2 or 3).
For the matrix G∗ we find Ns = 180414 also with a lot
of subspaces of dimension 2 or 3 and a maximal subspace
dimension of 2959. The remaining eigenvalues of S can be
obtained from the projected core block Scc which is not
column sum normalized (due to non-zero matrix elements
in the block Ssc) and has therefore eigenvalues strictly

inside the unit circle |λ
(core)
j | < 1. We have applied the

Arnoldi method (AM) [9,10,11] with Arnoldi dimension
nA = 640 to determine the largest eigenvalues of Scc which
required a machine with 250 GB of physical RAM memory
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to store the non-zero matrix elements of S and the 640
vectors of the Krylov space.

In general the Arnoldi methods provides numerically
accurate values for the largest eigenvalues (in modulus)
but their number depends crucially on the Arnoldi di-
mension. In our case there is a considerable density of real
eigenvalues close to the points 1 and−1 where convergence
is rather difficult. Comparing the results for different val-
ues of nA, we find that for the matrix S (S∗) the first 200
(150) eigenvalues are correct within a relative error below
0.3 % while the marjority of the remaining eigenvalues
with |λj | ≥ 0.5 (|λj | ≥ 0.6) have a relative error of 10 %.
However, the well isolated complex eigenvalues, well vis-
ible in Fig. 2, converge much better and are numerically
accurate (with an error ∼ 10−14). The first three core
space eigenvalues of S (S∗) are also numerically acurrate
with an error of ∼ 10−14 (∼ 10−8).

The composed spectrum of subspaces and core space
eigenvalues obtained by the Arnoldi method is shown in
Fig. 2 for G and G∗. The obtained results show that the
fraction of invariant subspaces with λ = 1 (g1 = Ns/N ≈
10−3) is by orders of magnitude smaller than the one found
for British Universities (g1 ≈ 0.2 at N ≈ 2× 105) [12]. We
note that the cross and triple-star structures are visible
for Twitter spectrum in Fig. 2 but they are significantly
less pronounced as compared to the case of Cambridge
and Oxford network spectrum (see Fig.2 in [12]). It is in-
teresting that such a triplet and cross structures naturally
appear in the spectra of random unistochastic matrices of
size N = 3 and 4 which have been analyzed analytically
and numerically in [19]. A similar star-structure spectrum
appears also in sparse regular graphs with loops studied
recently in [20] even if in the later case the spectrum goes
outside of unit circle. This shows that even in large size
networks the loop structure between 3 or 4 dominant types
of nodes is well visible for University networks. For Twit-
ter network it is less pronounced probably due to a larger
number ξℓ of links per node. At the same time a circle
structure in the spectrum remains well visible both for
Twitter and University networks. The integrated number
of eigenvalues as a function of |λ| is shown in the bot-
tom panels of Fig. 2. Further detailed analysis is required
for a better understanding of the origin of such spectral
structures.

It is interesting to note that a circular structure, formed
by eigenvalues λi with |λi| being close to unity (see red and
blue point in top left and right panels of Fig. 3), is rather
similar to those appearing in the Ulam networks of inter-
mittency maps studied in [21] (see Fig.4 there). Following
an analogy with the dynamics of these one-dimensional
maps we may say that the eigenstates related to such a
circular structure corresponds to quasi-isolated communi-
ties, being similar to orbits in a vicinity of intermittency
region, where the information circulates mainly inside the
community with only a very little flow outside of it.

The eigenstates of G and G∗ with |λ| being unity or
close to unity are shown in Fig. 3. For the PageRank P
(CheiRank P ∗) we compare its dependence on the corre-
sponding index K (K∗) with the PageRank (CheiRank)
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Fig. 3. The left (right) panel shows the PageRank P
(CheiRank P ∗) versus the corresponding rank index K (K∗)
for the Google matrix of Twitter at the damping parame-
ter α = 0.85 (thick black curve); for comparison the PageR-
ank (CheiRank) of the Google matrix of Wikipedia network
[6] is shown by the gray curve at same α. The colored thin
curves (shifted down by factor 1000 for clarity) show the
modulus of four core space eigenvectors |ψi| (|ψ

∗

i |) of S (S∗)
versus their own ranking indexes Ki (K∗

i ). Red and green
lines are the eigenvectors corresponding to the two largest
core space eigenvalues (in modulus) λ1 = 0.99997358, λ2 =
0.99932634 (λ1 = 0.99997002, λ2 = 0.99994658); blue and
pink lines are the eigenvectors corresponding to the two com-
plex eigenvalues λ151 = 0.09032572 + i 0.90000530, λ161 =
−0.47504961+ i 0.76576321 (λ457 = 0.38070896+ i 0.39207668,
λ105 = −0.45794117+ i 0.80825210). Eigenvalues and eigenvec-
tors are obtained by the Arnoldi method with Arnoldi dimen-
sion 640 as for the data in Fig. 2.

of the Wikipedia network analyzed in [6,12,16] which size
N (number of links Nℓ) is by a factor of 10 (20) smaller.
Surprisingly we find that the PageRank P (K) of Twit-
ter, approximated by the algebraic decay P (K) = a/Kβ,
has a slower drop as compared to Wikipedia case. Indeed,
we have β = 0.540 ± 0.004 (a = 0.00054 ± 0.00002) for
the PageRank of Twitter in the range 1 ≤ log10 K ≤ 6
(similar value as in [22] for the range log10 K ≤ 5.5) while
we have β = 0.767 ± 0.0005 (a = 0.0086 ± 0.00035) for
the same range of PageRank of Wikipedia network. Also
we have a sharper drop of CheiRank with β = 0.857 ±
0.003 (a = 0.0148± 0.0004) compared to those of PageR-
ank of Twitter while for CheiRank of Wikipedia network
we find an opposite tendency (β = 0.620 ± 0.001, a =
0.0015±0.00002) in the same index range. Thus for Twit-
ter network the PageRank is more delocalized compared
to CheiRank (e.g. P (1) < P ∗(1)) while usually one has the
opposite relation (e.g. for Wikipedia P (1) > P ∗(1)). We
attribute this to the enormously high inter-connectivity
between the top PageRank nodes K ≤ 104 which is well
visible in Fig. 1.

We should also point out a specific property of PageR-
ank and CheiRank vectors which has been already noted
in [23]: there are some degenerate plateaus in P (K(i)) or
P ∗(K∗(i)) with absolutely the same values of P or P ∗

for a few nodes. For example, for the Twitter network
we have the appearance of the first degenerate plateau at
P = 7.639× 10−7 for 196489 ≤ K ≤ 196491. As a result
the PageRank index K can be ordered in various ways.
We attribute this phenomenon to the fact that the matrix
elements of G are composed from rational elements that
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leads to such type of degeneracy. However, the sizes of
such degenerate plateaus are relatively short and they do
not influence significantly the PageRank order. Indeed,
on large scales the curves of P (K), P ∗(K∗) are rather
smooth being characterized by a finite slope (see Fig, 3).
Similar type of degenerate plateaus exits for networks of
Wikipedia, Cambridge and Oxford Universities.

Other eigenvectors of G and G∗ of Twitter network are
shown by color curves in Fig. 3. We see that the shape of
eigenstates with λ1 and λ2, shown as a function of their
monotonic decrease index Ki, is well pronounced in P (K).
Indeed, these vectors have a rather small gap separating
them from unity (|∆λ| ∼ 2 × 10−5) and thus they signif-
icantly contribute to the PageRank at α = 0.85. At the
same time we note that the gap values are significantly
smaller than those for certain British Universities (see e.g.
Fig.4 in [12]). We argue that a larger number of links ξℓ for
Twitter is at the origin of moderate spectral gap between
the core space spectrum and λ = 1. The eigenvectors of G∗

have less slope variations and their decay is rather similar
to the decay of CheiRank vector P ∗(K∗).
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Fig. 4. Fraction of invariant subspaces F with dimensions
larger than d as a function of the rescaled variable x = d/〈d〉,
where 〈d〉 is the average subspace dimension. Left (right) panel
corresponds to the matrix S (S∗) for the Twitter network
(thick red curve) with 〈d〉 = 2.30 (2.72). The tail can be fit-
ted for x ≥ 0.5 (x ≥ 10) by the power law F (x) = a/xb with
a = 0.092±0.011 and b = 2.60±0.07 (a = 0.0125±0.0008 and
b = 0.94 ± 0.02). The thin black line is F (x) = (1 + 2x)−1.5

which corresponds to the universal behavior of F (x) found in
Ref. [12] for the WWW of British university networks.

Finally, in Fig. 4 we use the approach developed in
[12] and analyze the dependence of the fraction of in-
variant subspaces F (x) with dimensions larger than d on
the rescaled variable x = d/〈d〉 where 〈d〉 is the average
subspace dimension. In [12] it was found that the British
University networks are characterized by a universal func-
tional distribution F (x) = 1/(1 + 2x)3/2. For the Twitter
network we find significant deviations from such a depen-
dence as it is well seen in Fig. 4. The tail can be fitted by
the power law F (x) ∼ x−b with the exponent b = 2.60 for
G and b = 0.94 for G∗. It seems that with the increase of
number of links per node ξℓ we start to see deviations from
the above universal distribution: it is visible for Wikipedia
network (see Fig.7 in [12]) and becomes even more pro-
nounced for the Twitter network. We assume that a large
value of ξℓ for Twitter leads to a change of the perco-
lation properties of the network generating other type of

distribution F which properties should be studied in more
detail in further.

4 CheiRank versus PageRank of Twitter

As discussed in [13,6,16] each network node i has its own
PageRank index K(i) and CheiRank index K∗(i) and,
hence, the ranking of network nodes becomes a two-dimen-
sional (2DRanking). The distribution of Twitter nodes
in the PageRank-CheiRank plane (K,K∗) is shown in
Fig. 5 (left column) in comparison to the case of the Wiki-
pedia network from [6,16] (right column). There are much
more nodes inside the square of size K,K∗ ≤ 1000 for
Twitter as compared to the case of Wikipedia. For the
squares of larger sizes the densities become comparable.
The global logarithmic density distribution is shown in the
bottom panels of Fig. 5 for both networks. The two den-
sities have certain similarities in their distributions: both
have a maximal density along a certain ridge along a line
lnK∗ = lnK+const. However, for the Twitter network
we have a significantly larger number of nodes at small
values K,K∗ < 1000 while in the Wikipedia network this
area is practically empty.

The striking difference between the Twitter and Wiki-
pedia networks is in the number of points NK , located
inside a square area of size K × K in the PageRank-
CheiRank plane. This is directly illustrated in Fig. 6: at
K = 500 there are 40 times more nodes for Twitter, at
K = 1000 we have this ratio around 6. We note that a
similar dependence NK was studied in [16] for Wikipedia,
British Universities and Linux Kernel networks (see Fig.8
there), where in all cases the initial growth of NK was
significantly smaller as compared to the Twitter network
considered here.

Another important characteristics of 2DRanking is the
correlator κ (2) between PageRank and CheiRank vectors.
We find for Twitter the value κ = 112.60 which is by a
factor 30 - 60 larger compared to this value for Wikipedia
(4.08), Cambridge and Oxford University networks of 2006
considered in [6,12,16]. The origin of such a large value
of κ for the Twitter network becomes more clear from the
analysis of the distribution of individual node contribu-
tions κi = NP (K(i))P ∗(K∗(i)) in the correlator sum (2)
shown in Fig. 7. We see that there are certain nodes with
very large κi values and even if there are only few of them
still they give a significant contribution to the total cor-
relator value. We note that there is a similar feature for
the Cambridge University network in 2011 as discussed
in [16] even if there one finds a smaller value κ = 30.
Thus we see that for certain nodes we have strongly cor-
related large values of P (K(i)) and P ∗(K∗(i)) explaining
the largest correlator value κ among all networks studied
up to now. We will argue below that this is related to a
very strong inter-connectivity between top K PageRank
users of the Twitter network.
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Fig. 5. Density of nodes W (K,K∗) on PageRank-CheiRank
plane (K,K∗) for Twitter (left panels) and Wikipedia (right
panels). Top panels show density in the range 1 ≤ K,K∗ ≤
1000 with averaging over cells of size 10 × 10; middle panels
show the range 1 ≤ K,K∗ ≤ 104 with averaging over cells of
size 100×100; bottom panels show density averaged over 100×
100 logarithmically equidistant grids for 0 ≤ lnK, lnK∗ ≤
lnN , the density is averaged over all nodes inside each cell of
the grid, the normalization condition is

∑
K,K∗ W (K,K∗) = 1.

Color varies from blue at zero value to red at maximal density
value. At each panel the x-axis corresponds to K (or lnK for
the bottom panels) and the y-axis to K∗ (or lnK∗ for the
bottom panels).

5 Discussion

In this work we study the statistical properties of the
Google matrix of Twitter network including its spectrum,
eigenstates and 2DRanking of PageRank and CheiRank
vectors. The comparison with Wikipedia shows that for
Twitter we have much stronger correlations between Page-
Rank and CheiRank vectors. Thus for the Twitter network
there are nodes which are very well known by the commu-
nity of users and at the same time they are very com-
municative being strongly connected with top PageRank
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Fig. 6. Dependence of number of nodes NK , counted inside
the square of size K ×K on PageRank-CheiRank plane, on K
for Twitter (blue curve) and Wikipedia (red curve); left panel
shows data for 1 ≤ K ≤ 1000 in linear scale, right panel shows
data in log-log scale for the whole range of K.
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Fig. 7. Histogram of frequency appearance of correlator com-
ponents κi = NP (K(i))P ∗(K∗(i)) for networks of Twitter
(blue) and Wikipedia (red). For the histogram the whole in-
terval 10−10 ≤ κi ≤ 102 is divided in 240 cells of equal size in
logarithmic scale.

nodes. We attribute the origin of this phenomenon to a
very strong connectivity between top K nodes for Twitter
as compared to the Wikipedia network. This property is
illustrated in Fig. 8 where we show the number of nonzero
elements NG of the Google matrix, taken at α = 1 and
counted in the top left corner with indexes being smaller or
equal to K (elements in columns of dangling nodes are not
taken into account). We see that for K ≤ 1000 we have for
Twitter the 2D density of nonzero elements to be on a level
of 70% while for Wikipedia this density is by a factor 10
smaller. For these two networks the dependence of NG on
K atK ≤ 1000 is well described by a power lawNG = aN b

with a = 0.72 ± 0.01, b = 1.993 ± 0.002 for Twitter and
a = 2.10± 0.01, b = 1.469± 0.001 for Wikipedia. Thus for
Twitter the top K ≤ 1000 elements fill about 70% of the
matrix and about 20% for size K ≤ 104. For Wikipedia
the filling factor is smaller by a factor 10 − 20. An effec-
tive number of links per node for top K nodes is given
by the ratio NG/K which is equal to ξℓ at K = N . The
dependence of this ratio on K is shown in Fig. 8 in right



K.M.Frahm and D.L.Shepelyansky: Google matrix of Twitter 7

panel. We see a striking difference between Twitter net-
work and networks of Wikipedia, Cambridge and Oxford
Universities. For Twitter the maximum value of NG/K
is by two orders of magnitude larger as compared to the
Universities networks, and by a factor 20 larger than for
Wikipedia. Thus the Twitter network is characterized by
a very strong connectivity between top PageRank nodes
which can be considered as the Twitter elite [22].
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Fig. 8. Left panel: dependence of the area density gK =
NG/K

2 of nonzero elements of the adjacency matrix among top
PageRank nodes on the PageRank index K for Twitter (blue
curve) and Wikipedia (red curve) networks, data are shown in
linear scale. Right panel: linear density NG/K of same matrix
elements shown for the whole range of K in log-log scale for
Twitter (blue curve), Wikipedia (red curve), Oxford University
2006 (magenta curve) and Cambridge University 2006 (green
curve) (curves from top to bottom at K = 100).

It is interesting to note that for K ≤ 20 the Wikipedia
network has a larger value of the ratio NG/K

2 compared
to the Twitter network, but the situation is changed for
larger values of K > 20. In fact the first top 20 nodes of
Wikipedia network are mainly composed from world coun-
tries (see [6]) which are strongly interconnected due to his-
torical reasons. However, at larger values of K Wikipedia
starts to have articles on various subjects and the ratio
NG/K

2 drops significantly. On the other hand, for the
Twitter network we see that a large group of very impor-
tant persons (VIP) with K < 104 is strongly intercon-
nected. This dominant VIP structure has certain similar-
ities with the structure of transnational corporations and
their ownership network dominated by a small tightly-knit
core of financial institutions [24]. The existence of a solid
phase of industrially devoloped, strongly linked countries
is also established for the world trade network obtained
from the United Nations COMTRADE data base [25]. It
is possible that such super concentration of links between
top Twitter users results from a global increase of num-
ber of links per node characteristic for such type of social
networks. Indeed, the recent analysis of the Facebook net-
work shows a significant decrease of degree of separation
during the time evolution of this network [26]. Also the
number of friendship links per node reaches as high value
as ξℓ ≈ 100 at the current Facebook snapshot studied
in [26] (see Table 2 there). This significant growth of ξℓ
during the time evolution of social networks leads to an
enormous concentration of links among society elite at top
PageRank users and may significantly influence the pro-
cess of strategic decisions on such networks in the future.

The growth of ξℓ leads also to a significant decrease of the
exponent β of algebraic decay of PageRank which is known
to be β ≈ 0.9 for the WWW (see e.g. [4,5,8]) while for
the Twitter network we find β ≈ 0.5 (see also [22]). This
tendency may be a precursor of a delocalization transition
of the PageRank vector emerging at a large values of ξℓ.
Such a delocalization would lead to a flat PageRank prob-
ability distribution and a strong drop of the efficiency of
the information retrieval process. It is known that for the
Ulam networks of dynamical maps such a delocalization
indeed takes place under certain conditions [21,27].

Our results show that the strong inter-connectivity of
VIP users with about top 1000 PageRank indexes domi-
nates the information flow on the network. This result is
in line with the recent studies of opinion formation of the
Twitter network [22] showing that the top 1300 PageRank
users of Twitter can impose their opinion for the whole
network of 41 million size. Thus we think that the statis-
tical analysis presented here plays a very important role
for a better understanding of decision making and opinion
formation on the modern social networks.

The present size of the Twitter network is by a fac-
tor 3.5 larger as compared to its size in 2009 analyzed
in this work. Thus it would be very interesting to extend
the present analysis to the current status of the Twitter
network which now includes all layers of the world soci-
ety. Such an analysis will allow to understand in an better
way the process of information flow and decision making
on social networks.
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quantum chaos”.

References

1. Wikipedia (The Free Encyclopedia) Twitter
http://en.wikipedia.org/wiki/Twitter (2012)

2. H. Kwak, C.Lee, H. Park and S. Moon, Proc. 19th Int.
Conf. WWW2010, p.591, ACM, New York, N.Y. (2010).

3. Twitter web data of [2] are downloaded
from the web site maintained by S.Vigna
http://law.dsi.unimi.it/webdata/twitter-2010/

4. D. Donato, L. Laura, S. Leonardi and S. Millozzi, Eur.
Phys. J. B 38, 239 (2004).

5. G. Pandurangan, P. Raghavan and E. Upfal, Internet
Math. 3, 1 (2005).

6. A.O. Zhirov, O.V. Zhirov and D.L. Shep-
elyansky, Eur. Phys. J. B 77, 523 (2010);
http://www.quantware.ups-tlse.fr/QWLIB/2drankwikipedia/

7. S.Brin and L.Page, Computer Networks and ISDN Systems

30, 107 (1998)
8. A.M. Langville and C.D. Meyer, Google’s PageRank and

Beyond: The Science of Search Engine Rankings, Prince-
ton University Press, Princeton (2006)

9. G.W. Stewart, Matrix Algorithms Volume II: Eigensys-

tems, SIAM (2001)



8 K.M.Frahm and D.L.Shepelyansky: Google matrix of Twitter

10. G.H. Golub and C. Greif, BIT Num. Math. 46, 759 (2006)
11. K.M. Frahm and D.L. Shepelyansky, Eur. Phys. J. B 76,

57 (2010)
12. K.M. Frahm, B. Georgeot and D.L. Shepelyansky, J. Phys.

A: Math. Theor. 44, 465101 (2011)
13. A.D. Chepelianskii, arXiv:1003.5455[cs.SE] (2010),

http://www.quantware.ups-tlse.fr/QWLIB/linuxnetwork/

14. L. Ermann, A.D. Chepelianskii and D.L. Shepelyansky
Eur. Phys. J. B 79 115 (2011)

15. L. Ermann and D.L. Shepelyansky, Acta
Phys. Polonica A 120(6A), A158 (2011);
http://www.quantware.ups-tlse.fr/QWLIB/tradecheirank/

16. L.Ermann, A.D.Chepelianskii and D.L.Shepelyansky,
J. Phys. A: Math. Theor. 45, 275101 (2012);
http://www.quantware.ups-tlse.fr/QWLIB/dvvadi/

17. N. Litvak, W.R.W. Scheinhardt and Y. Volkovich, Lect.
Notes Comp. Sci. 4936, 72 (2008)

18. http://www.quantware.ups-tlse.fr/QWLIB/twittermatrix/

19. K. Zyczkowski, M. Kus, W. Slomczynski and H.-J. Som-
mers, J. Phys. A: Math. Gen. 36, 3425 (2003)

20. F.L. Metz, I. Neri and D. Bolle, Phys. Rev. E 84,
055101(R) (2011)

21. L. Ermann and D.L. Shepelyansky, Phys. Rev. E 81,
036221 (2010)

22. V.Kandiah and D.L. Shepelyansky, arXiv:1204.3806
(2012) (to appear in Physica A)

23. K.M. Frahm, A.D. Chepelianksii and D.L. Shepelyan-
sky, PageRank of integers, arXiv:1205.6343[cs.IR] (2012);
http://www.quantware.ups-tlse.fr/QWLIB/pagerankofintegers/

24. S. Vitali, J.B. Glattfelder and S. Battiston, PLoS ONE
6(10), e25995 (2011)

25. L. Ermann and D.L. Shepelyansky, Acta
Phys. Polonica A 120 (6A), A158 (2011);
http://www.quantware.ups-tlse.fr/QWLIB/tradecheirank/

26. L. Backstrom, P. Boldi, M. Rosa, J. Ugander and S. Vi-
gna, Four degrees of separation, arXiv:1111.4570v3 [cs.SI]
(2012)

27. D.L. Shepelyansky and O.V. Zhirov, Phys. Rev. E 81,
036213 (2010)

http://arxiv.org/abs/1204.3806
http://arxiv.org/abs/1205.6343
http://arxiv.org/abs/1111.4570

	1 Introduction
	2 Google matrix construction
	3 Spectrum and eigenstates of Twitter
	4 CheiRank versus PageRank of Twitter
	5 Discussion

