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Symmetry breaking for ratchet transport in the presence of interactions and a magnetic field
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We study the microwave induced ratchet transport of two-dimensional electrons on an oriented semidisk
Galton board. The magnetic field symmetries of ratchet transport are analyzed in the presence of electron-electron
interactions. Our results show that a magnetic field asymmetric ratchet current can appear due to two contributions,
a Hall drift of the rectified current that depends only weakly on electron-electron interactions and a breaking of
the time reversal symmetry due to the combined effects of interactions and magnetic field. In the latter case, the
asymmetry between positive and negative magnetic fields vanishes in the weak interaction limit. We also discuss
the recent experimental results on ratchet transport in asymmetric nanostructures.

DOI: 10.1103/PhysRevE.87.022912 PACS number(s): 05.45.Ac, 72.40.+w, 73.63.−b

I. INTRODUCTION

The appearance of a directed flow induced by a zero-
mean monochromatic force is a generic nonequilibrium
phenomenon known as the ratchet effect (see, e.g., [1–3]).
The ratchet transport at the nanoscale has attracted significant
interest in recent years (see [4] and references therein). The
electron ratchet currents induced by a monochromatic ac

driving have been experimentally observed in asymmetric
mesoscopic structures at high [5], very low [6], and gigahertz
[7] frequencies. In the later experiments the ratchet effect
was visible even at room temperatures, but these experiments
lacked a detailed analysis of magnetic field resonance effects,
typical of a two-dimensional electron gas (2DEG) in a
magnetic field [8,9], and a dependence study of the ratchet
current on microwave polarization. We note that the presence
of resonances in a resistivity dependent on magnetic field
and polarization dependence of ratchet transport ensure that
a voltage induced by a microwave radiation appears to be
due to an asymmetry of lattice structure and not due to other
asymmetries potentially present in experimental devices.

The theoretical studies of 2DEG deterministic ratchet
transport on a semidisk Galton board started in Ref. [10]
and were further extended in Refs. [11–14]. The theoretical
studies show that the ratchet effect exists not only for 2DEG
but also for electrons in graphene plane with an oriented
semidisk lattice [15]. The numerical simulations and analytical
theory developed in Refs. [10–15] have been done for nonin-
teracting electrons. They established that a directed chaotic
deterministic ratchet transport emerges in such asymmetric
nanostructures due to microwave radiation. The direction of the
ratchet current can be controlled by the radiation polarization.
The theoretical studies show that the ratchet effect also exists
in the presence of moderate and strong interactions between
electrons [16].

The theoretical works inspired the detailed experimental
studies of the chaotic deterministic ratchet 2DEG transport

on the semidisk Galton board of antidots performed by the
Grenoble group [17]. These experiments clearly demonstrated
the existence of ratchet transport in a high mobility 2DEG
based on AlGaAs/GaAs heterojunctions with a semidisk array.
The polarization dependence of ratchet current is found to be in
qualitative agreement with the theory dependence for noninter-
acting electrons. It is also experimentally shown [17] that the
ratchet is absent in arrays with circular antidots, ensuring that
the effect is produced by semidisks and not by always present
device asymmetries. More recently, the Grenoble group per-
formed ratchet experiments with 2DEG in Si/SiGe heterostruc-
tures [18,19] where the interaction effects between electrons
are expected to play a more important role [14]. The character-
istic feature of these experiments is the dependence of ratchet
transport on a magnetic field in the presence of interactions.
Thus it is important to understand the properties of the ratchet
of interacting particles in a magnetic field which creates a
symmetry breaking in space and time. We note that previously
the theoretical investigations were done only for noninteracting
electrons in a magnetic field [12,14] or for interacting electrons
without magnetic field [16]. Thus in this work we perform a
more general study analyzing the properties of ratchet transport
in the presence of interactions and magnetic field.

Indeed, an applied magnetic field induces a chiral move-
ment of charge in a conducting sample. This chirality may
be revealed in optical measurements such as the Faraday
effect [20,21]. An emergence of a static magnetization due
to an ac electric field is known as the inverse Faraday
effect (see, e.g., [22]). Hence one can expect that transport
properties of a chiral structure will strongly depend on the
sign of the magnetic field. However, this argument, based
on spatial symmetries, should also take into account that
the equilibrium transport measurements are also constrained
by the time reversal symmetry that implies Onsager-Casimir
reciprocity relations [23,24]. Due to these relations a two-
terminal conductance is always symmetric with the magnetic
field masking the chirality. However, since the time reversal
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symmetry is valid only for equilibrium samples, it can be
destroyed for measurements in a nonlinear transport regime.
The appearance of magnetic field asymmetry in a nonlinear
two-terminal transport has attracted significant theoretical and
experimental attention in the mesoscopic physics community.
Indeed, a microscopic disorder potential has no symmetry, and
the absence of self-averaging in coherent samples makes such
investigations possible. Surprisingly, even if all symmetries
are broken in the out of equilibrium regime, theoretical
calculations predict that interactions are required to observe
a magnetic field antisymmetric component in nonlinear con-
ductance. While measurements on coherent samples seem
to support these predictions, measurements on samples with
artificial asymmetric structures may produce asymmetric (or
even antisymmetric) nonlinear transport even in regimes where
interactions do not seem to play a role (for, e.g., high density)
[17,25]. Thus, the investigations of ratchet transport in the
presence of interactions and magnetic field will allow us to
analyze the Onsager-Casimir reciprocity relations in a new
frame.

In order to gain a deeper insight on the symmetry properties
of nonlinear transport, we investigate numerically an interact-
ing 2DEG with a periodic array of asymmetric (semidisk) anti-
dots oriented in a preferential direction using the square lattice
of oriented semidisks discussed in Refs. [15,16]. In this model
a semidisk of radius rd is placed in a square of size R, and
then this square covers periodically the whole (x,y) plane (see
inset of Fig. 1). We consider a homogeneous monochromatic
linearly polarized electric field E = Eo cos ωt(cos θ, sin θ ).
This field creates a rectified current flow due to the asymmetric
structure of the antidot superlattice. The direction of the flow
can be controlled by the polarization of the microwave field
and by a magnetic field perpendicular to the 2DEG plane.
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FIG. 1. (Color online) Dimensionless average ratchet velocity
vy/vT in the y direction as a function of magnetic field B given by
dimensionless parameter rd/RL ∝ B. The electric field is linearly
polarized in the y axis (θ = π/2) with amplitude and frequency
E0 = 0.1 and ω = 0.1, and the temperature of the Hoover thermostat
is T = 1 with τH = 10. The interactions between electrons go from
a strong interaction regime (τK/τH = 0.02) to weak interactions
(τK/τH = 0.5), as shown in the legend. The inset shows the directions
of the electric and magnetic fields in a general case and the distribution
of a semidisk periodic array with an orientation direction in the x axis.
The geometric ratio is fixed at R/rd = 4, as shown in the inset.

The quantitative description of the ratchet current can be
obtained on the basis of kinetic theory [14]. However, this
theory rapidly breaks down in the presence of a magnetic
field since it does not capture the particle dynamics when the
cyclotron radius becomes of the order of the antidot radius.
Moreover it was shown recently [16] that interactions could
strongly modify the rectified current; hence this system allows
us to investigate in detail the role of interactions on the
magnetic field symmetry properties of the nonlinear response.
In fact, we show that the antisymmetric component of the
rectified current can be split into two terms. One term is weakly
dependent on interactions and can be interpreted as a Hall
drift of the rectified current in the preferential direction fixed
by the semidisk superlattice. The second term vanishes in the
absence of interactions, as predicted by theory [26–28]. Hence,
depending on the measurement geometry, the antisymmetric
component of the rectified current may vanish or not in absence
of interactions.

II. MODEL DESCRIPTION AND RESULTS

In this work we consider a 2DEG with elastic semidisk
scatterers of radius rd , oriented in direction ex = x, and placed
in a periodic square lattice of size R × R (see inset of Fig. 1).
The electron motion is affected by an electric microwave
field E cos ωt = E0 (cos θ, sin θ,0) cos ωt linearly polarized at
angle θ to ex and a transverse, uniform, and constant magnetic
field B ∝ ez/RL (inversely proportional to the Larmor radius
RL). The system also interacts with a Nosé-Hoover thermostat
which equilibrates the ensemble of particles to the Boltzmann
distribution with temperature T = mv2

T /2 in a characteristic
time τH (see, e.g., [29]). The electron interactions are treated
in the frame of the mesoscopic multiparticle collision model
proposed by Kapral (see, e.g., [30]). The method consists of
dividing the coordinate space of each square of size R × R

with N particles in Ncel collision cells. Inside each cell the
collisions are modeled by a rotation of all particle velocities
on a random angle in the moving center-of-mass frame,
preserving the total momentum and energy of the system.
These rotations occur with a repetition period given by a
characteristic time τK . In this way large and small values of
τK correspond to weak and strong interactions, respectively. In
this work we follow our previous studies of interaction effects
on ratchet transport [16], where the interactions were treated
in the frame of the Kapral approach.

We fix the geometric ratio R/rd = 4 in order to work at
low antidot density and to avoid geometrical particularities,
which may exist for R/rd � 1. The number of particles
is fixed at N = 104, and for numerical simulations we
choose dimensionless parameters T = 1, rd = 1, τH = 10,
and electron charge and mass e = me = 1. The Kapral grid
for interactions is fixed to have Ncel = 100 × 100 cells in
the whole space region R2. Therefore the only parameter
controlling the interaction strength is the inverse Kapral time
1/τK . This choice of parameters is similar to those used in
Ref. [16]. We recall that τH determines the relaxation time to
the equilibrium.

The steady-state net current of the system is proportional to
the average particle velocities. This current can be described
as a vector j split into two components of different magnetic
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field symmetries: j = js + ja , where js are symmetric and
ja are antisymmetric components. These two vectors depend
quadratically on the alternating electric field amplitude E and
can also depend on ex and B; therefore their most general
expression reads

js = f1(B)(ex · E)E + f2(B)E2ex,
(1)

ja = g1(B)(ex · E)(B ∧ E) + g2(B)E2(B ∧ ex).

Here fi(B), gi(B) (i = 1,2) are functions of the modulus of the
magnetic field B = |B| depending implicitly on the rest of the
model parameters. Specifically, we focus on the dependence
of the antisymmetric component of the current on the strength
of interactions between electrons.

We note that both terms in the second line of Eq. (1) can
be decoupled for different values of θ . For the electric and
magnetic fields used in this model, the dimensionless velocity
can be written as

vx(θ )

vT

= E2
0√

2T

[
f̃1 cos2 θ + f̃2 − g̃1 sin 2θ

2

]
,

(2)
vy(θ )

vT

= E2
0√

2T

[
f̃1 sin 2θ

2
+ g̃1 cos2 θ + g̃2

]
,

where f̃i and g̃i (i = 1,2) are symmetric and antisymmetric
functions of the magnetic field in the z direction (or the related
Larmor radius RL = vT /B). These functions are proportional
to the functions in Eqs. (1), f̃i ∝ fi(B) and g̃i ∝ gi(B)/RL

(where we take RL > 0 and RL < 0 for the magnetic field
in the z and −z directions, respectively). Following Eqs. (2),
we can note that for θ = 0 and θ = π/2, velocities in the
x direction are symmetric, while the y components are
antisymmetric.

In the case of a polarized electric field in the y direction
(θ = π/2), vy can be asymmetric in the magnetic field only
due to the second term in the second equation in (2), denoted
g̃2. This case is illustrated in Fig. 1 for the dimensionless
quantities vy/vT plotted versus rd/RL at different values of
Kapral time τK and for the rest of the parameters specified
in the caption. The data in Fig. 1 show that the dependence
of the ratchet velocity vy/vT is an asymmetric function of
rd/RL ∝ B with a maximum of |vy | at rd/RL ≈ ±0.15. The
amplitude of this maximum increases by a factor 2 with the
increase of interactions (decrease of τK ).

Following the first line of Eq. (2), the asymmetry given by
g̃1 can be analyzed via the parameter dependence of vx/vT

at small angles of linear polarization of electric field directed
along both x and y. The emergence of g̃1 from a symmetric
behavior in the magnetic field is shown in the top panel of
Fig. 2 for vx/vT with small values of θ in the strong interaction
regime (τK/τH = 0.02). In the case of θ = π/20, the bottom
panel of Fig. 2 shows the behavior of asymmetry in vx/vT

for different interaction times, going from τK/τH = 0.02 to
τK/τH = 0.5. The striking feature of the bottom panel of Fig. 2
is that the asymmetry in the magnetic field is rather strong for
strong interactions, while in the limit of weak interactions
the asymmetry completely disappears and we recover the
symmetric curve as a function of the magnetic field.

A deeper analysis of the symmetry properties can be done
by considering the flux of velocities in coordinate space. It
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FIG. 2. (Color online) Dimensionless average ratchet velocity in
the x direction (vx/vT ) as a function of magnetic field. The top panel
shows the strong interaction regime (with τK/τH = 0.02) for the rest
of the parameters specified in the caption of Fig 1. The electrical field
is polarized near the x axis, where the dashed red curve represents
the symmetrical case of θ = 0. The small deviation angles are shown
at θ = π/40 by a dotted green curve, θ = π/20 by a solid blue
curve, and θ = π/10 by a dot-dashed black curve. The bottom panel
shows the case of fixed polarization angle θ = π/20 and different
strengths of interactions between particles. The interaction times are
τK/τH = 0.02 (solid blue curve), τK/τH = 0.03 (dashed red curve),
τK/τH = 0.1 (dotted green curve), and τK/τH = 0.5 (dot-dashed
black curve). The inserts in both panels show the dimensionless
asymmetry [vx(rd/RL) − vx(−rd/RL)]/vT as a function of rd/RL

for the same parameters as in the main panel, using the same color
scheme. Orange arrows show the values of the magnetic field analyzed
in Fig. 3.

is known that for interacting particles the average velocity
behavior can be rather complex with the emergence of some
vortices [16]. In Fig. 3 we present the velocity flux for weak and
strong interaction regimes with positive and negative magnetic
fields. The analyzed values of the Larmor radius correspond to
the relative minima of vx/vT marked with arrows in Fig. 2 at
negative and positive values of rd/RL. Figure 3 shows the flow
structure at rd/RL � 0.16 (top panels) and at rd/RL � −0.1
(bottom panels). The polarization angle in the four panels is
fixed at θ = π/20, and therefore the reflection symmetry y →
−y is not preserved. The data show that the vortex asymmetric
structure is more pronounced in the case of strong interactions,
shown in the right panels.

The polarization dependence of the ratchet current in
the x direction is analyzed in Fig. 4. We see that even
for various magnetic fields the dependence on polarization
angle θ is essentially symmetric at weak interactions (top
panel), while for strong interactions (bottom panel) we have
a strongly asymmetric behavior at moderate magnetic fields
(rd/RL = 0.053,0.133). At a relatively large magnetic field
(rd/RL = 0.53) the amplitude of the ratchet current becomes
rather small since the Larmor radius becomes smaller than the
distance between semidisks. Thus the data in Fig. 4 also show
that the asymmetry of the ratchet transport appears only in the
presence of interactions.
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FIG. 3. (Color online) Map of local averaged velocities in (x,y)
with x,y ∈ [−2,2) and linear polarized electrical field θ = π/20
[shown by the green (light gray) line inside the semidisk scatterer];
other parameters are the same as in Fig. 1 (here x,y are expressed
in units of disk radius rd , the bounding square marks the size of
the periodic lattice cell). The left panels show the cases of weak
interactions between particles at τK/τH = 0.5, while the right panels
show the strong interaction regime at τK/τH = 0.02. The values of
the magnetic field are given by rd/RL = 0.1591 in the top panels and
rd/RL = −0.0955 in the bottom panels [indicated with orange (gray)
arrows in Fig. 2]. The velocities are shown by arrows whose size is
proportional to the velocity amplitudes, which is also indicated by
color [from yellow (light gray) for large to blue (dark gray) for small
amplitudes].

III. DISCUSSION

In this work we study the symmetry properties of the ratchet
transport on an oriented semidisk antidot superlattice. We
show that while the ratchet flow on the oriented semidisk
superlattice (along the x axis) does not depend on the sign
of the magnetic field for a noninteracting 2DEG, interactions
can give rise to an antisymmetric component of the flow in
the semidisk direction as a function of the magnetic field.
This result is consistent with the case of mesoscopic samples
where deviations from Onsager-Casimir reciprocity relations
were shown to occur only in the presence of electron-electron
interactions [26–28]. On the contrary, the flow perpendicular
to the semidisk direction (y axis) is asymmetric even when
interactions are absent. We argue that the origin of this
component of the flow is a Hall drift of the rectified current.
This contribution is absent in disordered mesoscopic samples
because the translational symmetry is broken by a disorder
potential where no preferential direction is present for the
flow.

The comparison with Refs. [17–19] highlights various
aspects of these skillful experiments. At weak electron-
electron interactions typical of AlGaAs/GaAs heterojunctions
[17] there is a qualitative agreement between the theory and
experiment on polarization dependence and approximately
symmetric current response to sign change of the magnetic
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FIG. 4. (Color online) Polarization dependence of x-component
of the averaged ratchet velocity vx/vT , for weak interactions between
particles in top panel (τK/τH = 0.5), and for strong interactions in
bottom panel (τK/τH = 0.02). Four different values of magnetic
fields are shown in both panels: zero magnetic field (rd/RL = ∞,
solid blue curve), rd/RL = 0.053 by dotted red curve, rd/RL = 0.133
by dashed green curve and rd/RL = 0.53 by dot-dashed black curve.
Here the angle θ is measured in radians.

field, even if the absolute quantitative values differ from theo-
retical predictions (see [16] for a more detailed discussion). For
experiments with Si/SiGe heterostructures [18,19] the effects
of the interactions are stronger, and an asymmetric response
in the magnetic field is clearly observed in experiments
(see, e.g., Fig. 3 in Ref. [18]). In this case the change of
polarization from θ = 0 to θ = π/2 does not change the
sign of photovoltage that also appears in theoretical models
at strong interactions, as discussed in Ref. [16]. Also the
ratchet effect is clearly suppressed in experiment and theory
at large magnetic fields. However, at the same time there
are significant differences between experiments [18,19] and
the theoretical results presented here. Indeed, for θ = π/2
the theory predicts a change of the photovoltage sign upon
inversion of the magnetic field (see Fig. 1), while there is no
such sign change in experiments (see, e.g., Fig. 3 in Refs. [18]
and [19]). It is possible that a finite sample size leads to a certain
charge accumulation in the experimental setup (see indications
for that in Fig. 4 in Ref. [19]), which may explain the difference
with the theory where the analysis is done for an infinite lattice
size. We should also note that the present studies were done for
a square lattice of semidisks, while the experiments [17–19]
were performed on a hexagonal lattice of semidisks. However,
in both cases the density of the semidisks is relatively low
(since R/rd = 4 here and R/rd ≈ 5 in Refs. [18,19]). Thus,
the ratchet transport is created mainly by scattering on a one
semidisk (see discussion in Ref. [14]), and the difference
between square and hexagonal lattices is not expected to be
important.

Finally, we note that the electron-electron interactions are
treated here in the frame of the Kapral approach, which
corresponds to the Boltzmann distribution typical for relatively
large temperatures. At low temperatures, with kBT being small
compared to the Fermi energy EF , one should model both the
Fermi-Dirac distribution and interactions. The Fermi-Dirac
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distribution can be modeled by the Metropolis approach used
in Refs. [12,14], but the treatment of interactions in this Fermi-
Dirac regime remains an important challenge for numerical
simulations. It is possible that modeling real experiments with
interactions and the Fermi-Dirac statistical distribution will
produce a better agreement between numerical simulations and
experimental results. The discussed comparison between the
present theoretical studies and the most advanced experiments
reported in Refs. [17–19] shows that the further experimental
and theoretical research on the electron ratchet transport in

asymmetric nanostructures with dynamical chaos represents
significant fundamental scientific interest.
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