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Abstract

For DNA sequences of various species we construct the Google matrix G of Markov transitions between nearby words
composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a
power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web
(WWW). At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger
than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the
distribution of ingoing elements. The spectrum of G is characterized by a large gap leading to a rapid relaxation process on
the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines
their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are
also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions
with the WWW and linguistic networks.
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Introduction

The theory of Markov chains [1] finds impressive modern

applications to information retrieval and ranking of directed

networks including the World Wide Web (WWW) where the

number of nodes is now counted by tens of billions. The PageRank

algorithm (PRA) [2] uses the concept of the Google matrix G and

allows to rank all WWW nodes in an efficient way. This algorithm

is a fundamental element of the Google search engine used by a

majority of Internet users. A detailed description of this method

and basic properties of the Google matrix can be found e.g. in

[3,4].

The Google matrix belongs to the class of Perron-Frobenius

operators naturally appearing in dynamical systems (see e.g. [5]).

Using the Ulam method [6] a discrete approximant of Perron-

Frobenius operator can be constructed for simple dynamical maps

following only one trajectory in a chaotic component [7] or using

many independent trajectories counting their probability transi-

tions between phase space cells [8,9], [10]. The studies of Google

matrix of such directed Ulam networks provides an interesting and

detailed analysis of dynamical properties of maps with a complex

chaotic dynamics [7,8], [9,10].

In this work we use the Google matrix approach to study the

statistical properties of DNA sequences of the species: Homo

sapiens (HS, human), Canis familiaris (CF, dog), Loxodonta

africana (LA, elephant), Bos Taurus (bull, BT), Danio rerio (DR,

zebrafish), taken from the publicly available database [11]. The

analysis of Poincaré recurrences in these DNA sequences [12]

shows their similarities with the statistical properties of recurrences

for dynamical trajectories in the Chirikov standard map and other

symplectic maps [7]. Indeed, a DNA sequence can be viewed as a

long symbolic trajectory and hence, the Google matrix, construct-

ed from it, highlights the statistical features of DNA from a new

viewpoint.

An important step in the statistical analysis of DNA sequences

was done in [13] applying methods of statistical linguistics and

determining the frequency of various words composed of up to 7

letters. A first order Markovian models have been also proposed

and briefly discussed in this work. Here we show that the Google

matrix analysis provides a natural extension of this approach.

Thus the PageRank eigenvector gives the frequency appearance of

words of given length. The spectrum and eigenstates of G

characterize the relaxation processes of different modes in the

Markov process generated by a symbolic DNA sequence. We show

that the comparison of word ranks of different species allows to

identify proximity between species.

At present the investigations of statistical properties of DNA

sequences are actively developed by various bioinformatic groups

(see e.g. [14,15], [16], [17,18]). The development of various

methods of statistical analysis of DNA sequences become now of

great importance due to a rapid growth of collected genomic data.

We hope that the Google matrix approach, which already

demonstrated its efficiency for enormously large networks [2,3],

will find useful applications for analysis of genomic data sets.

Results

Construction of Google matrix from DNA sequence
From [11] we collected DNA sequences of HS represented as a

single string of length L&1:5:1010 base pairs (bp) corresponding to

5 individuals. Similar data are obtained for BT (2:9:109 bp), CF

(2:5:109 bp), LA (3:1:109 bp), DR (1:4:109 bp). For HS, CF, LA,

DR the statistical properties of Poincaré recurrences in these
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sequences are analyzed in [12]. All strings are composed of 4

letters A,G,G,T and undetermined letter Nl . The strings can be

found at the web page [19].

For a given sequence we fix the words Wk of m letters length

corresponding to the number of states N~4m. We consider that

there is a transition from a state i to state j inside this basis N when

we move along the string from left to right going from a word Wk

to a next word Wkz1. This transition adds one unit in the

transition matrix element Tij?Tijz1. The words with letter Nl

are omitted, the transitions are counted only between nearby

words not separated by words with Nl . There are approximately

Nt&L=m such transitions for the whole length L since the fraction

of undetermined letters Nl is small. Thus we have Nt~
PN

i,j~1 Tij .

The Markov matrix of transitions Sij is obtained by normalizing

matrix elements in such a way that their sum in each column is

equal to unity: Sij~Tij=
P

i Tij . If there are columns with all zero

elements (dangling nodes) then zeros of such columns are replaced

by 1=N. Such a procedure corresponds to one used for the

construction of Google matrix of the WWW [2,3]. Then the

Google matrix of DNA sequence is written as

Gij~aSijz(1{a)=N, ð1Þ

where a is the damping factor for which the Google search uses

usually the value a&0:85 [3]. The matrix G belongs to the class of

Perron-Frobenius operators. It has the largest eigenvalue

l~l1~1 with all other eigenvalues Dli Dƒa. For WWW usually

there are isolated subspaces so that at a~1 there are many

degenerate l~1 eigenvalues [4] so that the damping factor allows

to eliminate this degeneracy creating a gap between l~1 and all

other eigenvalues. For our DNA Google matrices we find that

there is already a significant spectral gap naturally present. In this

case the PageRank vector is not sensitive to the damping factor

being in the range 0:5ƒaƒ1 (other eigenvectors are independent

of a [3,4], [9]). Due to that in the following we present all results at

the value a~1.

The spectrum li and right eigenstates yi(j) are determined by

the equation

X
j’

Gjj’yi(j’)~liyi(j): ð2Þ

The PageRank eigenvector P(j) at l~1 has positive or zero

elements which can be interpreted as a probability to find a

random surfer on a given site j with the total probability

normalized to unity
P

j P(j)~1. Thus, all sites can be ordered

in a decreasing order of probability P(j) that gives us the

PageRank order index K(j) with most frequent sites at low values

of K~1,2,:::.
It is useful to consider the density of matrix elements GKK ’ in the

PagePank indexes K,K ’ similar to the presentation used in [20,21]

for networks of Wikipedia, UK universities, Linux Kernel and

Twitter. The image of the DNA Google matrix of HS is shown in

Fig. 1 for words of 5 and 6 letters. We see that almost all matrix is

full that is drastically different from the WWW and other networks

considered in [20] where the matrix G is very sparse. Thus the

DNA Google matrix is more similar to the case of Twitter which is

characterized by a strong connectivity of top PageRank nodes

[21].

It is interesting to analyze the statistical properties of matrix

elements Gij . Their integrated distribution is shown in Fig. 2. Here

Ng is the number of matrix elements of the matrix G with values

Gijwg. The data show that the number of nonzero matrix

elements Gij is very close to N2. The main fraction of elements has

values Gijƒ1=N (some elements Gijv1=N since for certain j

there are many transitions to some node i’ with Ti’j&N and e.g.

only one transition to other i’’ with Ti’’j~1). At the same time

there are also transition elements Gij with large values whose

fraction decays in an algebraic law Ng&AN=gn{1 with some

constant A and an exponent n. The fit of numerical data in the

range {5:5v log10 gv{0:5 of algebraic decay gives for m~6:

n~2:46+ 0:025 (BT), 2:57+ 0:025 (CF), 2:67+ 0:022 (LA),

2:48+ 0:024 (HS), 2:22+ 0:04 (DR). For HS case we find

n~2:68+ 0:038 at m~5 and n~2:43+ 0:02 at m~7 with the

average A&0:003 for m~5,6,7. There are visible oscillations in

the algebraic decay of Ng with g but in global we see that on

average all species are well described by a universal decay law with

the exponent n&2:5. For comparison we also show the

distribution Ng for the WWW networks of University of Cam-

bridge and Oxford in year 2006 (data from [4,20]). In these

networks we have N&2:105 and on average 10 links per node. We

see that in these cases the distribution Ng has a very short range in

which the decay is at least approximately algebraic

({5:5v log10 (Ng=N2)v{6). In contrast to that for the DNA

sequences we have a large range of algebraic decay.

Since in each column we have the sum of all elements equal to

unity we can say that the differential fraction dNg=dg!1=gn gives

the distribution of outgoing matrix elements which is similar to the

distribution of outgoing links extensively studied for the WWW

networks [3,23], [24,25]. Indeed, for the WWW networks all links

in a column are considered to have the same weight so that these

matrix elements are given by an inverse number of outgoing links

[3]. Usually the distribution of outgoing links follows a power law

decay with an exponent ~nn&2:7 even if it is known that this

Figure 1. DNA Google matrix of Homo sapiens (HS) construct-
ed for words of 5-letters (top) and 6-letters (bottom) length.
Matrix elements GKK ’ are shown in the basis of PageRank index K (and
K ’). Here, x and y axes show K and K ’ within the range 1ƒK,K ’ƒ200
(left) and 1ƒK ,K ’ƒ1000 (right). The element G11 at K~K ’~1 is
placed at top left corner. Color marks the amplitude of matrix elements
changing from blue for minimum zero value to red at maximum value.
doi:10.1371/journal.pone.0061519.g001
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exponent is much more fluctuating compared to the case of

ingoing links. Thus we establish that the distribution of DNA

matrix elements is similar to the distribution of outgoing links in

the WWW networks with n&~nn. We note that for the distribution of

outgoing links of Cambridge and Oxford networks the fit of

numerical data gives the exponents ~nn~2:80+ 0:06 (Cambridge)

and 2:51+ 0:04 (Oxford).

It is known that on average the probability of PageRank vector

is proportional to the number of ingoing links [3]. This relation is

established for scale-free networks with an algebraic distribution of

links when the average number of links per node is about 10 to 100
that is usually the case for WWW, Twitter and Wikipedia networks

[4,20], [21,22], [23,24], [25]. Thus in such a case the matrix G is

very sparse. For DNA we find an opposite situation where the

Google matrix is almost full and zero matrix elements are

practically absent. In such a case an analogue of number of

ingoing links is the sum of ingoing matrix elements gs~
PN

j~1 Gij .

The integrated distribution of ingoing matrix elements with the

dependence of Ns on gs is shown in Fig. 3. Here Ns is defined as

the number of nodes with the sum of ingoing matrix elements

being larger than gs. A significant part of this dependence,

corresponding to large values of gs and determining the PageRank

probability decay, is well described by a power law

Ns&BN=gm{1
s . The fit of data at m~6 gives m~5:59+ 0:15

(BT), 4:90+ 0:08 (CF), 5:37+ 0:07 (LA), 5:11+ 0:12 (HS),

4:04+ 0:06 (DR). For HS case at m~5,7 we find respectively

m~5:86+ 0:14 and 4:48+ 0:08. For HS and other species we

have an average B&1.

Usually for ingoing links distribution of WWW and other

networks one finds the exponent ~mm&2:1 [23,24], [25]. This value

of ~mm is expected to be the same as the exponent for ingoing matrix

elements of matrix G. Indeed, for the ingoing matrix elements of

Cambridge and Oxford networks we find respectively the

exponents m~2:12+ 0:03 and 2:06+ 0:02 (see curves in Fig. 3).

For ingoing links distribution of Cambridge and Oxford networks

we obtain respectively ~mm~2:29+ 0:02 and ~mm~2:27+ 0:02 which

are close to the usual WWW value ~mm&2:1. Thus we can say that

for the WWW type networks we have m&~mm. In contrast the

exponent m for DNA Google matrix elements gets significantly

larger value m&5. This feature marks a significant difference

between DNA and WWW networks.

For DNA we see that there is a certain curvature in addition to a

linear decay in log-log scale. From one side, all species are close to

a unique universal decay curve which describes the distribution of

ingoing matrix elements gs (there is a more pronounced deviation

for DR which does not belong to mammalian species). However,

from other side we see visible differences between distributions of

various species (e.g. non mammalian DR case has the largest

deviation from others mammalian species). We will discuss the

links between m and the exponent b of PageRank algebraic decay

P(K)!1=Kb in next sections.

Spectrum of DNA Google matrix
The spectrum of eigenstates of DNA Google matrix G of HS is

shown in Fig. 4 for words of m~5,6,7 letters and matrix sizes

N~4m. The spectra for DNA sequences of bull BT, dog CF,

elephant LA and zebrafish DR are shown in Fig. 5 for words of

m~6 letters. The spectra and eigenstates are obtained by direct

numerical diagonalization of matrix G using LAPACK standard

code.

In all cases the spectrum has a large gap which separates

eigenvalue l~1 and all other eigenvalues with DlDv0:5 (only for

non mammalian DR case we have a small group of eigenvalues

within 0:5vDlDv0:75). This is drastically different from the

spectrum of WWW and other type networks which usually have

no gap in the vicinity of l~1 (see e.g. [4,21], [22]). In a certain

sense the DNA G spectrum is similar to the spectrum of

randomized WWW networks and the spectrum of G of the

Albert-Baraási network model discussed in [26], but the properties

of the PageRank vector are rather different as we will see below.

Visually the spectrum is mostly similar between HS and CF

having approximately the same radius of circular cloud

DlDvlc&0:2. For DR this radius is the smallest with lc&0:1.

Thus the spectrum of G indicates the difference between

mammalian and non mammalian sequences. For HS the increase

of the word length m~5; 6; 7 leads to an increase of

lc&0:1; 0:2; 0:35. For m~7 the number of nonzero matrix

elements Gij is close to N2 and thus on average we have only about

L=(mN2)&8 transitions per each element. This determines an

Figure 2. Integrated fraction Ng=N2 of Google matrix elements with Gijwg as a function of g. Left panel : Various species with 6-letters
word length: bull BT (magenta), dog CF (red), elephant LA (green), Homo sapiens HS (blue) and zebrafish DR(black). Right panel : Data for HS
sequence with words of length m~5 (brown), 6 (blue), 7 (red). For comparison black dashed and dotted curves show the same distribution for the
WWW networks of Universities of Cambridge and Oxford in 2006 respectively.
doi:10.1371/journal.pone.0061519.g002
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approximate limit of reliable statistical computation of matrix

elements Gij for available HS sequence length L. For HS at m~6

we verified that two halves of the whole sequence L still give

practically the same spectrum with a relative accuracy of

Dl=l&0:01 for eigenvalues in the main part of the cloud at

lc=3vDlDvlc. This means that the spectrum presented in Figs 4,5

is statistically stable at the values of L used in this work.

We also constructed the Google matrix G� by inverting the

direction of transitions Tij?Tji and then normalizing sum of all

elements in each column to unity. This procedure is also

equivalent to moving along the sequence, from word to word,

not from left to right but from right to left. We note that for WWW

and other networks such a matrix with inverted direction of links

was used to obtain the CheiRank vector (which is the PageRank

vector of matrix G�). Due to the inversion of links the CheiRank

vector highlights very communicative nodes [4,20], [21,22]. In our

case the spectrum of G and G� are identical. As a result the

probability distributions of PageRank and CheiRank vectors are

the same. This is due to some kind of detailed balance principle:

we count only transitions between nearby words in a DNA

sequence and the direction of displacement along the sequence

does not affect the average transition probabilities so that Tij~Tji

(up to statistical fluctuations). In a certain sense this situation is

similar to the case of Ulam networks in symplectic maps where the

conservation of phase space area leads to the same properties of G
and G� [7,10].

We tried to test if a random matrix model can reproduce the

distribution of eigenvalues in l plane. With this aim we generated

random matrix elements Gij with exactly the same distribution Ng

as for HS case at m~6 (see Fig. 2). However, in this random

model we found all eigenvalues homogeneously distributed in the

radius lc&0:07 being significantly smaller compared to the real

data. Also in this case the PageRank probability P(K) changes

only by 30% in the whole range 1ƒKƒN being absolutely

different from the real data (see next section). Thus the

construction of random matrix models which are able to produce

results similar to the real data remains as a task for future

investigations.

PageRank properties of various species
By numerical diagonalization of the Google matrix we

determine the PageRank vector P(K) at l~1 and several other

eigenvectors with maximal values of DlD. The dependence of

probability P on index K is shown in Fig. 6 for various species and

different word length m. The probability P(K) describes the steady

Figure 3. Integrated fraction Ns=N of sum of ingoing matrix elements with
PN

j~1 Gi,j§gs. Left and right panels show the same cases as in
Fig. 2 in same colors. The dashed and dotted curves are shifted in x-axis by one unit left to fit the figure scale.
doi:10.1371/journal.pone.0061519.g003

Figure 4. Spectrum of eigenvalues in the complex plane l for
DNA Google matrix of Homo sapiens (HS) shown for words of
5,6,7 letters (from top to bottom).
doi:10.1371/journal.pone.0061519.g004
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state of random walks on the Markov chain and thus it gives the

frequency of appearance of various words of length m in the whole

sequence L. The frequencies or probabilities of words appearance

in the sequences have been obtained in [13] by a direct counting of

words along the sequence (the available sequences L were shorted

at that times). Both methods are mathematically equivalent and

indeed our distributions P(K) are in a good agreements with those

found in [13] even if now we have a significantly better statistics.

The decay of P with K can be approximately described by a

power law P*1=Kb. Thus for example for HS sequence at m~7
we find b~0:357+ 0:003 for the fit range 1:5ƒ log10 Kƒ3:7
that is rather close to the exponent found in [13]. Since on average

the PageRank probability is proportional to the number of ingoing

links, or the sum of ingoing matrix elements of G, one has the

relation between the exponent of PageRank b and exponent of

ingoing links (or matrix elements): b~1=(m{1) [3,4], [23,24],

[25]. Indeed, for the HS DNA case at m~7 we have m~4:48 that

gives b~0:29 being close to the above value of b~0:357 obtained

from the direct fit of P(K) dependence. We think that the

agreement is not so perfect since there is a visible curvature in the

log-log plot of Ns vs gs in Fig. 3. Also due to a small value of b the

variation range of P is not so large that reduces the accuracy of the

numerical fit even if a formal statistical error is relatively small

compared to a visible systematic nonlinear variations. In spite of

this only approximate agreement we should say that in global the

relation between b and m works correctly. In average we find for

DNA network the value of m&5 being significantly larger than for

the WWW networks with ~mm&2:1 [3]. This gives a significantly

smaller value b&0:25 for DNA case comparing to the usual

WWW value b&0:9 (we note that the randomized WWW

networks and the Albert-Barabási model have b&1 [26]). The

relation between b and m also works for the DR DNA case at

m~6 with m~4:04 that gives b~0:33 being in a satisfactory

agreement with the fit value b~0:426 found from P(K)
dependence of Fig. 6.

At m~6 we find for our species the following values of exponent

b~0:273+ 0:005 (BT), 0:340+ 0:005 (CF), 0:281+ 0:005 (LA),

0:308+ 0:005 (HS), 0:426+ 0:008 (DR) in the range

1ƒ log10 Kƒ3:3. There is a relatively small variation of b
between various mammalian species. The data of Fig. 6 for HS

show that the value of b remains stable with the increase of word

length. These observations are similar to those made in [13].

PageRank proximity between species
The top ten 6-letters words, with largest probabilities P(K), are

given for all studied species in Table 1. Two top words are

identical for BT, CF, HS. To see a similarity between species on a

global scale it is convenient to plot the PageRank index Ks(i) of a

given species s versus the index Khs(i) of HS for the same word i.
For identical sequences one should have all points on diagonal,

while the deviations from diagonal characterize the differences

between species. The examples of such PageRank proximity

K{K diagrams are shown in Figs. 7,8 for words at m~6. A zoom

of data on a small scale at the range 1ƒKƒ200 is shown in Fig. 9.

A visual impression is that CF case has less deviations from HS

rank compared to BT and LA. The non-mammalian DR case has

most strong deviations from HS rank. For BT, CF and LA cases

we have a significant reduction of deviations from diagonal around

K&3N=4. This effect is also visible for DR case even if being less

pronounced. We do not have explanation for this observation.

The fraction of purine letters A or G in a word of m~6 letters is

shown by color in Fig. 7 for all words ranked by PageRank index

K . We see that these letters are approximately homogeneously

distributed over the whole range of K values. In contrast to that

the distribution of letters A or T is inhomogeneous in K :

their fraction is dominant for 1ƒKvN=4, approximately

homogeneous for N=4ƒKƒ3N=4 and is close to zero for

3N=4vKƒN (see Fig. 8). We find that in the whole HS

sequence the fractions Fa,c,g,t of A,C,G,T are respectively

0:276596,0:192576,0:192624,0:276892 (and Fn~0:061312 for

undetermined Nl ). Thus we have the fraction of A,G being close

to 1=2&(FazFg)=(1{Fn)~0:499867 and the fraction of A,T

being (FazFt)=(1{Fn)~0:589640w0:5. Thus it is more prob-

able to have A or T in the whole sequence that can be a possible

origin of the inhomogeneous distribution of A or T along K and

large fraction of A, T at top PageRank positions.

The whole HS sequence used here is composed from 5 humans

with individual length Li&3:109&L=5. We consider the first and

last fifth parts of the whole sequence L separately thus forming two

independent sequences HS1 and HS2 of two individuals. We

Figure 5. Spectrum of eigenvalues in the complex plane l for
DNA Google matrix of of bull BT, dog CF, elephant LA,
zebrafish DR shown for words of 6 letters (from top to bottom).
doi:10.1371/journal.pone.0061519.g005
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determine for the the corresponding PageRank indexes Khs1 and

Khs2 and show their PageRank proximity diagram in Fig. 10. In

this case the points are much closer to diagonal compared to the

case of comparison of HS with other species.

To characterize the proximity between different species or

different HS individuals we compute the average dispersion

s(s1,s2)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1 (Ks1

(i){Ks2
(i))2)=N

q
between two species (in-

dividuals) s1 and s2. Comparing the words with length m~5,6,7

Figure 6. Dependence of PageRank probability P(K) on PageRank index K. Left panel : Data for different species for word length of 6-
letters: bull BT (magenta), dog CF (red), elephant LA (green), Homo sapiens HS (blue) and zebrafish DR (black). Right panel : Data for HS (full curve) and
LA (dashed curve) for word length m~5 (brown), 6 (blue/green), 7 (red).
doi:10.1371/journal.pone.0061519.g006

Figure 7. PageRank proximity K{K plane diagrams for different species in comparison with Homo sapiens: x-axis shows PageRank
index Khs(i) of a word i and y-axis shows PageRank index of the same word i with Kbt(i) of bull, Kcf (i) of dog, Kla(i) of elephant and
Kdr(i) of zebrafish; here the word length is m~6. The colors of symbols marks the purine content in a word i (fractions of letters A or G in any
order); the color varies from red at maximal content, via brown, yellow, green, light blue, to blue at minimal zero content.
doi:10.1371/journal.pone.0061519.g007

Google Matrix Analysis of DNA Sequences

PLOS ONE | www.plosone.org 6 May 2013 | Volume 8 | Issue 5 | e61519



we find that the scaling s!N works with a good accuracy (about

10% when N is increased by a factor 16). To represent the result

in a form independent of m we compare the values of s with the

corresponding random model value srnd . This value is computed

assuming a random distribution of N points in a square N|N

when only one point appears in each column and each line (e.g. at

m~6 we have srnd&1673 and srnd!N). The dimensionless

dispersion is then given by f(s1,s2)~s(s1,s2)=srnd . From the

ranking of different species we obtain the following values at m~6:

f(CF ,BT)~0:308; f(LA,BT)~0:324, f(LA,CF )~0:303;

f(HS,BT)~0:246, f(HS,CF )~0:206, f(HS,LA)~0:238;

f(DR,BT)~0:425, f(DR,CF )~0:414, f(DR,LA)~0:422,

f(DR,HS)~0:375 (other m have similar values). According to

this statistical analysis of PageRank proximity between species we

find that f value is minimal between CF and HS showing that

these are two most similar species among those considered here.

For two HS individuals we find f(HS1,HS2)~0:031 being

significantly smaller then the proximity correlator between

different species. We think that this PageRank proximity correlator

f can be useful as a quantitative measure of statistical proximity

between various species.

Finally, in Table 2 we give for all species the words of 6 letters

with the 10 minimal PageRank probabilities. Thus for HS the less

probable is the word TACGCG corresponding to two amino acids

Tyr and Ala. In general the ten last words are mainly composed of

C and G even if the letters A and T still have small but nonzero

weight. The last two words are the same for mammalian species

but they are different for DR sequence.

Other eigenvectors of G
The properties of 10 eigenstates yi(j) of DNA Google matrix

with largest modulus of eigenvalues Dli D are analyzed in Table 3

and Fig. 11. The words Wi at the maximal amplitude Dyi(j)D are

presented for all species in Table 3. We see that in general these

words Wi are rather different from the top PageRank word W1

(some words appear in pairs since there are pairs of complex

conjugated values li~l�i ).

The probability of the above top 10 eigenstates as a function of

PageRank index K are shown in Fig. 11. We see that the majority

of the vectors, different from the PageRank vector, have well

localized peaks at relatively large values Kw50. This shows that in

the DNA network there are some modes located on certain specific

patterns of words.

To illustrated the localized structure of eigenmodes yi(j) for HS

case at m~6 we compute the inverse participation ratio

ji~(
P

j Dyi(j)D
2)2=

P
j Dyi(j)D

4 which gives an approximate num-

ber of nodes on which the main probability of an eigenstate yi(j) is

located (see e.g. [4,21,26]). The obtained values are ji~385:26,

16:37, 2:07, 1:72, 2:23, 3:19, 77:43, 77:43, 2:33, 2:06 for

i~1,:::10 respectively. We see that for iw1 we have significantly

smaller j values compared to the case of PageRank vector with a

large j1. This supports the conclusion about localized structure of

a large fraction of eigenvectors of G.

In [22] on an example of Wikipedia network it is shown that the

eigenstates with relatively large DlD select specific communities of

the network. The detection of communities in complex networks is

now an active research direction [27]. We expect that the

eigenmodes of G matrix can select specific words of bioniformatic

Figure 8. Same as in Fig. 7 but now the color marks the fraction of of letters A or T in any order in a word i with red at maximal
content and blue at zero content.
doi:10.1371/journal.pone.0061519.g008
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interest. However, a detailed analysis of words from eigenmodes

remains for further more detailed investigations.

Discussion

In this work we used long DNA sequences of various species to

construct from them the Markov process describing the probabi-

listic transitions between words of up to 7 letters length. We

construct the Google matrix of such transitions with the size up to

47 and analyze the statistical properties of its matrix elements. We

show that for all 5 species, studied in this work, the matrix

elements of significant amplitude have a power law distribution

with the exponent n&2:5 being close to the exponent of outgoing

links distribution typical for WWW and other complex directed

networks with ~nn&2:7. The distribution of significant values of the

sum of ingoing matrix elements of G is also described by a power

Figure 9. Zoom of the PageRank proximity K{K diagram of Fig. 8 for the range 1ƒKƒ200 with the same color for A or T content.
doi:10.1371/journal.pone.0061519.g009

Table 1. Top ten PageRank entries at DNA word length m~6
for species: bull BT, dog CF, elephant LA, Homo sapiens HS
and zebrafish DR.

BT CF LA HS DR

TTTTTT TTTTTT AAAAAA TTTTTT ATATAT

AAAAAA AAAAAA TTTTTT AAAAAA TATATA

ATTTTT AATAAA ATTTTT ATTTTT AAAAAA

AAAAAT TTTATT AAAAAT AAAAAT TTTTTT

TTCTTT AAATAA AGAAAA TATTTT AATAAA

TTTTAA TTATTT TTTTCT AAAATA TTTATT

AAAGAA AAAAAT AAGAAA TTTTTA AAATAA

TTAAAA ATTTTT TTTCTT TAAAAA TTATTT

TTTTCT TTTTTA TTTTTA TTATTT CACACA

AGAAAA TAAAAA TAAAAA AAATAA TGTGTG

doi:10.1371/journal.pone.0061519.t001

Table 2. Ten words with minimal PageRank probability given
at m~6 for species: bull BT, dog CF, elephant LA, Homo
sapiens HS and zebrafish DR.

BT CF LA HS DR

CGCGTA TACGCG CGCGTA TACGCG CCGACG

TACGCG CGCGTA TACGCG CGCGTA CGTCGG

CGTACG TCGCGA ATCGCG CGTACG CGTCGA

CGATCG CGTACG TCGCGA TCGACG TCGACG

ATCGCG CGATCG CGCGAT CGTCGA TCGTCG

CGCGAT CGAACG GTCGCG CGATCG CCGTCG

TCGACG CGTTCG CGATCG CGTTCG CGACGG

CGTCGA TCGACG CGCGAC CGAACG CGACCG

CGTTCG CGTCGA TCGCGC CGACGA CGGTCG

TCGTCG ACGCGA ACGCGA CGCGAA CGACGA

Here the top row is the last PageRank entry, bottom is the tenth one from the
end of PageRank.
doi:10.1371/journal.pone.0061519.t002
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Figure 10. PageRank proximity K{K diagram of Homo sapiens HS2 versus Homo sapiens HS1 at m~6 (see text for details). Top
panels show the content of A,T (left) and A,G (right) in the same way as in Fig. 8 and Fig. 7 respectively. Bottom panels show zoom of top panels.
doi:10.1371/journal.pone.0061519.g010

Figure 11. Dependence of eigenstates amplitude Dyi(K)D on
PageRank index K in x-axis and eigenvalue index i in y-axis for
largest ten eigenvalues Dli D counted by i from i~1 at Dl1D~1 to
i~10 at Dl10D&0:2. The range 1ƒKƒ250 is shown with PageRank
vector for a given species at the bottom line of each panel. For each

species in each panel the color is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffi
Dyi(j)D

p
changing

from blue at zero to red at maximal amplitude value which is close to
unity in each panel. The panels show the species: bull BT (top left), dog
CF (top right), elephant LA (bottom left), Homo sapiens HS (bottom
right).
doi:10.1371/journal.pone.0061519.g011

Table 3. Words Wi corresponding to the maximum value of
eigenvector modulus wi~maxj(Dyi(j)D) for species bull BT,
dog CF, elephant LA, Homo sapiens HS and zebrafish DR,
which are shown in dark red in Fig. 11.

i BT CF LA HS DR

1 TTTTTT TTTTTT AAAAAA TTTTTT ATATAT

2 TTTTTT AAAAAA AAAAAA TTTTTT TATATA

3 ACACAC CTCTCT AAAAAA ACACAC ATATAT

4 ACACAC AGAGAG AAAAAA ACACAC TAGATA

5 CACACA CTCTCT AAAAAA TTTTTT ATAGAT

6 CACACA TCTCTC AAAAAA CACACA TATCTA

7 CCAGGC AGAGAG TATGAG TGGGAG ATCTAT

8 CCAGGC AGAGAG TATGAG TGGGAG TAGATA

9 CCCATG TGTGTG TTTTTT CACACA ATAGAT

10 CCCATG TGTGTG AGAGTA TTTTTT TATCTA

The eigenvectors at i~1,:::,10 correspond to the ten largest eigenvalues
Dl1 D,:::,Dl10 D of the DNA Google matrix for DNA word length m~6. The first row
i~1 corresponds to top PageRank entries.
doi:10.1371/journal.pone.0061519.t003
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law with the exponent m&5 which is significantly larger than the

corresponding exponent for WWW networks with ~mm&2:1. We

show that similar to the WWW networks the exponent m
determines the exponent b~1=(m{1)&0:25 of the algebraic

PageRank decay which is significantly smaller then its value for

WWW networks with b&0:9. The PageRank decay is similar to

the frequency decay of various words studied previously in [13]. It

is interesting to note that the value m{1 is close to the exponent of

Poincaré recurrences decay which has a value close to 4 [12] (even

if we cannot derive a direct mathematical relation between them).

Using PageRank vectors of various species we introduce the

PageRank proximity correlator f which allows to measure in a

quantitative way the proximity between different species. This

parameter remains stable in respect to variation of the word

length.

The spectrum of the Google matrix is determined and it is

shown that it is characterized by a significant gap between l~1
and other eigenvalues. Thus, this spectrum is qualitatively different

from the WWW case where the gap is absent at the damping

factor a~1. We show that the eigenmodes with largest values of

DlDv1 are well localized on specific words and we argue that the

words corresponding to such localized modes can play an

interesting role in bioinformatic properties of DNA sequences.

Finally we would like to trace parallels between the Google

matrix analysis of words in DNA sequences and the small world

properties of human language. Indeed, it is known that the

frequency of words in natural languages follows a power law Zipf

distribution with the exponent b&1 [28]. The parallels between

words distributions in DNA sequences and statistical linguistics

were already pointed in [13]. The analysis of degree distributions

of undirected networks of words in natural languages was found to

follow a power law with an exponent nl&1:5{2:7 [29] being not

so far from the one found here for the matrix elements

distribution. It is argued that the language evolution plays an

important role in the formation of such a distribution in languages

[30]. The parallels between linguistics and DNA sequence

complexity are actively discussed in bioinformatics [31,32]. We

think that the Google matrix analysis can provide new insights in

the construction and characterization of information flows on

DNA sequence networks extending recent steps done in [33].

In summary, our results show that the distributions of significant

matrix elements are similar to those of the scale-free type networks

like WWW, Wikipedia and linguistic networks. In analogy with

lingusitic networks it can be useful to go from words network

analysis to a more advanced functional level of links inside

sentences that may be viewed as a network of links between amino

acids or more complex biological constructions.

Supporting Information

Supporting Information S1. Supplementary methods, refer-

ences, tables, sequences data and figures are available at: http://

www.quantware.ups-tlse.fr/QWLIB/dnagooglematrix/.
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