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Abstract. We study numerically the statistics of Poincaré recurrences for the Chirikov standard map and
the separatrix map at parameters with a critical golden invariant curve. The properties of recurrences are
analyzed with the help of a generalized Ulam method. This method allows us to construct the corresponding
Ulam matrix whose spectrum and eigenstates are analyzed by the powerful Arnoldi method. We also
develop a new survival Monte Carlo method which allows us to study recurrences on times changing by ten
orders of magnitude. We show that the recurrences at long times are determined by trajectory sticking in a
vicinity of the critical golden curve and secondary resonance structures. The values of Poincaré exponents
of recurrences are determined for the two maps studied. We also discuss the localization properties of
eigenstates of the Ulam matrix and their relation with the Poincaré recurrences.

1 Introduction

The interest to understanding of transition from dynam-
ical to statistical description of motion had started from
the dispute between Loschmidt and Boltzmann, which
is now known as the Loschmidt paradox [1,2]. The two-
dimensional (2D) symplectic maps represent an excellent
laboratory for investigation of how statistical laws appear
in dynamical, fully deterministic systems. Their properties
have been studied in great detail during last decades both
on mathematical (see e.g. [3,4] and references therein) and
physical (see e.g. [5–7] and references therein) levels of
rigor. The case of completely chaotic behavior, appearing
e.g. in Anosov systems, is now well understood [3,4] but a
generic case of maps with divided phase space, where is-
lands of stability are surrounded by chaotic components,
still preserves its puzzles. A typical example of such a map
is the Chirikov standard map [5,6] which often gives a local
description of dynamical chaos in other dynamical maps
and describes a variety of physical systems (see e.g. [8]).
This map has the form:

ȳ = y +
K

2π
sin(2πx), x̄ = x+ ȳ (mod 1). (1)

Here x, y are canonical conjugated variables of generalized
phase and action, bars mark the variables after one map
iteration and we consider the dynamics to be periodic on
a torus so that 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The dynamics is
characterized by one dimensionless chaos parameter K.

For small values of K the phase space is covered by in-
variant Kolmogorov-Arnold-Moser (KAM) curves which
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restrict dynamics in the action variable y. For K > Kg

the last invariant golden curve with the rotation number
r = rg = 〈(xt − x0)/t〉 = (

√
5 − 1)/2 is destroyed [9,10]

and it is believed that for K > Kg the dynamics in y
becomes unbounded [11,12]. A renormalization technique
developed by Greene [9] and MacKay [10] allowed to de-
termine Kg = 0.971635406 with enormous precision (due
to symmetry there is also a symmetric critical curve at
r = 1 − rg at Kg). The properties of the critical golden
curve on small scales are universal for all critical curves
with the golden tail of the continuous fraction expansion
of r for all smooth 2D symplectic maps [10]. Here and be-
low the time t is measured in number of map iterations.
For K > Kg the golden KAM curve is replaced by a can-
torus [13] which can significantly affect the diffusive trans-
port through the chaotic part of the phase space [14,15].
There are numerical and analytical indications that at
any K there are some chaotic regions in the phase space
bounded by internal invariant curves; at K < Kg there
are isolating invariant curves.

The dynamics inside a chaotic component of the phase
space (x, y) is characterized by correlation functions whose
decay ensures a transition from dynamical to statistical
description. The decay of correlations is related to the
probability to stay in a given region of phase space since
for a trajectory remaining in a small region the dynam-
ical variables are strongly correlated. This probability in
its own turn is related to the statistics of Poincaré recur-
rences. Indeed, according to the Poincaré recurrence the-
orem [16] a volume preserving dynamical flow with only
bounded orbits has for each open set orbits that intersect
the set infinitely often. Such orbits return, after a cer-
tain time, to a close vicinity of an initial state. However,
the statistics of these recurrences depends on dynamical
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properties of the system. For a fully chaotic phase space
a probability to stay in a certain part of a phase space
decays exponentially with time being similar to a random
coin flipping [3,4]. However, in dynamical maps with di-
vided phase space, like the Chirikov standard map, the
extensive numerical simulations show that the decay of
probability of Poincaré recurrences P (t) is characterized
by a power law decay P (t) ∝ 1/tβ has β ≈ 1.5 whose
properties still remain poorly understood.

One of the first studies of Poincaré recurrences in dy-
namical Hamiltonian systems with two degrees of free-
dom was done in reference [17] where an algebraic de-
cay with an exponent β = 1/2 was found. This exponent
corresponds to an unlimited diffusion on an infinite one-
dimensional line which is in contrast to a bounded phase
space. This strange observation was explained in refer-
ences [18,19] as a diffusion in a chaotic separatrix layer of
a nonlinear resonance which takes place on relatively short
diffusion times. On larger times, which were not accessi-
ble to the computations presented in reference [17], this
diffusion becomes bounded by a finite width of the sepa-
ratrix layer and a universal algebraic decay takes place
with the exponent β ≈ 1.5 corresponding to a finite
chaos measure [18,19]. This algebraic decay of P (t) has
been confirmed by various groups in various Hamiltonian
systems [20–31].

One can argue that such a slow algebraic decay with
β ≈ 1.5 appears due to trajectory sticking near stable is-
lands and critical invariant curves and leads to an even
slower correlation function decay C(t) ∼ tP (t) with a di-
vergence of certain second moments. A sticking in a vicin-
ity of the critical golden curve [10] is expected to give
β ≈ 3 [24,25], being significantly larger than the average
value β ≈ 1.5. A certain numerical evidence is presented
in reference [27] showing that long time sticking orbits can
be trapped not only in a vicinity of a critical golden curve
but also in internal chaotic layers of secondary resonances.

Theoretical attempts to describe trapping in secondary
resonances as renormalization dynamics on some Cayley
type tree was started in references [22,23] with recent ex-
tensions done in references [28,32,33]. However, a detailed
understanding of the intriguing features of Poincaré re-
currences in the Chirikov standard map and other similar
maps is still missing.

In this work we use a generalized Ulam method de-
veloped in references [34,35] and combine it with a new
survival Monte Carlo method trying to reach larger time
scales and to obtain a better understanding of statistics
of Poincaré recurrences in the Chirikov standard map and
the separatrix map.

The paper is composed as follows: in Section 2 we con-
struct the Ulam matrix based on the generalized Ulam
method and study the properties of its spectrum, eigen-
states and corresponding time evolution for the case of
the Chirikov standard map. The survival Monte Carlo
method is introduced in Section 3 and the properties of
the Poincaré recurrences are studied with its help compar-
ing results with the Ulam method. In Section 4 we apply
the above methods to the separatrix map and in Section 5

the localization properties of the eigenstates of the Ulam
matrix are analyzed. The discussion of the results is pre-
sented in Section 6.

2 Generalized Ulam method with absorption

The Ulam method was proposed in 1960 [36]. In the orig-
inal version of this method a 2D phase space is divided in
Nd = M ×M cells and nc trajectories are propagated on
one map iteration from each cell j. Then the matrix Sij

is defined by the relation Sij = nij/nc where nij is the
number of trajectories arriving from a cell j to a cell i. By
construction we have

∑
i Sij = 1 and hence the matrix

Sij belongs to the class of the Perron-Frobenius opera-
tors (see e.g. [37]). This Ulam matrix can be considered
as a discrete Ulam approximate of the Perron-Frobenius
operator (UPFO) of the continuous dynamics.

According to the Ulam conjecture [36] the UPFO
converges to the continuous limit at large M . Indeed,
this conjecture was proven for 1D homogeneously chaotic
maps [38]. Various properties of the UPFO for 1D and
2D maps are analyzed in references [39–42]. Recent stud-
ies [43,44] demonstrated similarities between the UPFO,
the corresponding Ulam networks and the properties of
the Google matrix of the world wide web networks. It
was shown that in maps with absorption or dissipation
the spectrum of the UPFO is characterized by the fractal
Weyl law [45].

The coarse-grained cell structure of the original Ulam
method corresponds to an effective noise and in case of a
divided phase space the noise induces an artificial diffusion
between chaotic and regular regions. In reference [34] this
problem was solved by replacing the random initial points
by a very long chaotic trajectory and the transitions be-
tween cells are accumulated along the chaotic trajectory
that keeps the invariant curves and stable islands even in
presence of the effective noise. Furthermore, the matrix
size is also reduced since only cells which are visited at
least once by the trajectory are kept. Here we use this ap-
proach for the analysis of the Poincaré recurrences keeping
the same notations as in reference [34]. In particular, as in
reference [34], we exploit the parity symmetry x → 1 − x
and y → 1−y allowing to limit the effective phase space to
0 ≤ x ≤ 1, 0 ≤ y ≤ 0.5 and therefore reducing the number
of cells at a given cell size by a factor of two. In x direc-
tion we use therefore M cells and in y direction M/2 cells
with M ∈ {25, 35, . . . , 1120, 1600} and the intermediate
values are multiples of 25 or 35 by powers of 2.

To study the Poincaré recurrences within the Ulam
method we introduce absorption of all trajectories with
y < ycut = 0.05. The measure of the phase space where
the absorption takes place is relatively small (only a few
percents of the whole phase space). Thus the absorption
does not significantly affect the dynamics of trajectories
sticking for long times. Indeed, we will see that the prob-
ability decay due to absorption reproduces the decay of
Poincaré recurrences in a closed system. At the same time
this absorption leads to a survival probability decay and
allows us to use efficiently the Ulam method for the anal-
ysis of Poincaré recurrences. We generate the matrix S
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Fig. 1. The left panel shows the eigenvalue spectrum λj for the
projected case of the UPFO of map (1) at K = Kg in the com-
plex plane for M = 280 and Nd = 16609 by red/gray dots (pro-
jected matrix dimension Np = 15 457). The green/gray curve
represents the circle |λ| = 1. The right panel shows the num-
ber Nc of eigenvalues, with modulus larger than λc, versus Nd

in a double logarithmic representation for λc = 0.5 (crosses),
λc = 0.66 (stars), λc = 0.8 (open squares) and λc = 0.9
(open circles). The straight lines correspond to the power law
fits Nc ∼ Nν

d with exponents ν = 0.971 ± 0.006 (λc = 0.5),
ν = 0.919 ± 0.005 (λc = 0.66), ν = 0.832 ± 0.010 (λc = 0.8)
and b = 0.821±0.021 (λc = 0.9). The fits are done for the data
with Nc > 50, M > 35 and M ≤ 400 (λc = 0.5), M ≤ 800
(λc = 0.66), M ≤ 1120 (λc = 0.8), M ≤ 1600 (λc = 0.9), since
the Arnoldi method provides only a partial spectrum of the
eigenvalues with largest modulus for large values of M .

using one trajectory iterated by the map up to the iter-
ation time t = 1012 (as in Ref. [34]; this corresponds to
the closed system without absorption and we call this the
symplectic case). After that the matrix size Nd is simply
reduced only to those cells with y ≥ ycut that gives the
projected matrix dimension Np and matrix Sp. The ma-
trix size of this projected case is smaller approximately by
7%. We find, for M ≤ 1600, an approximate dependence
Nd ≈ 0.39M2/2 and Np ≈ 0.36M2/2. This corresponds to
the usual estimate of the chaos measure being around 39%
in agreement with the results of Chirikov [6] (see also [14]).
For the symplectic case we have the maximal eigenvalue
λ = 1 while in the projected case with absorption we are
getting |λ| < 1.

The spectrum λj of the projected case with matrix Sp

is shown in Figure 1. The spectrum is obtained by the
direct diagonalization of the matrix Sp that can be done
numerically up to M = 280. It can be compared with the
corresponding spectrum of the symplectic system shown
in Figure 2 of [34]. The global spectrum structure of S for
the symplectic case is similar to the projected case. Indeed,
the absorption is relatively weak and does not affect the
global properties of motion. However, with absorption the
measure is not conserved and the remaining non-escaping
set forms a fractal set with the fractal dimension d < 2
(see e.g. [45,46]).

In the case of Ulam networks on fractal chaotic re-
pellers the spectrum of UPFO Sp is characterized by the
fractal Weyl law with the number of states Nc in the ring
λc < |λ| ≤ 1 growing with the matrix size Nd as Nc ∝ Nν

d
(here for simplicity we use the size Nd of the symplec-
tic case, for the projected case we have simply to change
Np ≈ 0.93Nd). It can be argued that the fractal dimension
d0 of the invariant repeller set determines the exponent
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Fig. 2. Partial spectrum λj for the projected case of the
UPFO of the map (1) at K = Kg for M = 1600. The left
panel shows all eigenvalues obtained by the Arnoldi method
with nA = 5000. The insert of the right panel shows the
blue/black square of the first zoomed range of the left panel;
the blue/black square here is the second zoomed range shown in
the main figure of the right panel. The eigenvalue with largest
modulus λ0 = 0.99994672216 is indicated by an arrow. The
green/gray curve represents in all cases the circle |λ| = 1.

ν = d0/2 [45]. Examples of dependencies Nc vs. Nd are
given in Figure 1 for various values of λc. Definitely we
have ν < 1 but there is an evident dependence on λc with
a decreasing value of ν at λc → 1. We attribute this to
the fact that at λc → 1 we are dealing with long sticking
trajectories whose measure decreases with time.

Here we should point out that the data for M ≥ 400
corresponding to Nd > 30 000 are obtained from the
Arnoldi method [47] which allows us to find the eigenval-
ues for matrix sizes up to Nd ∼ 106. However, only a finite
number of eigenvalues with largest |λ| can be determined
numerically using nA = 12 000, 8000, 8000, 6000, 5000
(for M = 400, 560, 800, 1120, 1600, respectively and with
nA being the used Arnoldi dimension). A more detailed
description of the Arnoldi method for the UPFO is given
in reference [34]. An example of the spectrum λ ob-
tained with the Arnoldi method at the largest value of
M = 1600 is shown in Figure 2. Here Nd = 49 4964 and
Np = 45 8891. We find that the maximal eigenvalue for the
projected case is λ0 = 0.99994672216 corresponding to a
slow escape rate at large times. As in reference [34] for the
symplectic case without absorption, we obtain also for the
case with absorption two type of eigenmodes: “diffusion
modes” with real eigenvalues close to 1 and whose eigen-
vectors are rather extended in phase space (with some
decay for cells close to the absorption border) and “res-
onant modes” with complex or real negative eigenvalues
and which are quite well localized around a chain of stable
islands close to an invariant curve. It turns out that many
of the resonant modes (those “far” away from the absorp-
tion border), coincide numerically very well with corre-
sponding resonant modes for the case without absorption
already found in reference [34].

The dependence of the density of eigenvalues ρ(|λ|) on
|λ| is shown in Figure 3. We see the proximity between the
symplectic and projected cases not only in density ρ but
also in a slow relaxation of the diffusion modes with relax-
ation rates γj ≈ γ1j

2 (γj = −2 ln |λj |) provided we iden-
tify γj+1 of the symplectic case with γj of the projected
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Fig. 3. The left panel shows the density ρ(λ) of eigenvalues, be-
ing normalized by

∫
ρ(λ) d2λ = 1, of the UPFO for the map (1)

at K = Kg in the complex plane as a function of the modulus
|λ| for M = 280 for the symplectic case (upper curve, crosses)
and the projected case (lower green curve, stars). The other
curves are partial (non-normalized) densities for the projected
case and the values M = 400, 560, 800, 1120, 1600 and the
number of used eigenvalues (obtained by the Arnoldi method)
is nA = 12 000, 8000, 8000, 6000, 5000, respectively. The right
panel shows the decay rates γj = −2 ln(|λj |) versus level num-
ber j for the UPFO eigenvalues λj , with M = 1600 and
Nd = 494 964. The red/gray crosses correspond to the UPFO of
symplectic case and the blue/black squares correspond to the
projected case (data points for this case are shifted to one posi-
tion to the right). The green curve corresponds to the quadratic
dispersion law γj ≈ γ1 j

2 which is approximately valid for the
diffusion modes with 0 ≤ j ≤ 5 and where γ1 is taken from the
UPFO of the symplectic case.

case because γ0 of the symplectic case is simply zero and
the relaxation rate γ1 to the ergodic state of the symplec-
tic case corresponds roughly to the exponential long time
escape rate γ0 of the projected case. The proximity of the
two cases is also well seen in the dependence of integrated
density of states ρΣ(γ) = j/Nd on γj shown in Figure 4
(here j is a number of eigenvalues with γ ≤ γj). In both
cases we have the algebraic dependence ρΣ(γ) ∝ γβ with
β ≈ 1.5. In reference [34] it was argued that this expo-
nent is the same as for the exponent of decay of Poincaré
recurrences P (t). These data show that an introduction
of small absorption at y < ycut does not produce signif-
icant modification for trajectories trapped for long times
in a vicinity of the critical golden curve or other secondary
islands located far away from the absorption band.

The slowest decay rates, such like γ0 and γ5, decrease
algebraically with the increase of M as it is shown in right
panel of Figure 4. In the fit range 400 ≤ M ≤ 1600 we
have a power law γ0(M) ≈ 0.72 M−1.20 but taking into
account the curvature for the interval 25 ≤M ≤ 1600 the
modified fit γ0(M) = D

M
1+C/M
1+B/M with D = 0.162, C = 165

and B = 17.0 seems to indicate a behavior γ0(M) ∝M−1

in the limit M → ∞. This behavior is similar to the one
found in reference [34] for γ1 in the symplectic case (where
γ0 is simply 0). On the other hand the resonant mode γ5

obeys the power law γ5(M) ≈ 389M−1.55 which is valid
for the interval 100 ≤M ≤ 1600 if we use for the smaller
values of M not γ5 but the resonant mode localized to the
same chain of resonant islands which may have a differ-
ent eigenvalue index (see Fig. 4 for details). The compar-
ison of these decays indicate that eventually at very large
values of M , far outside the range numerically accessi-
ble by the Arnoldi method, the resonant modes become
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Fig. 4. The left panel shows the rescaled level number j/Nd

versus the decay rate γj , in a double logarithmic scale, for
the map (1) at Kg with M = 1600 and Nd = 494 964.
Red/lower data points correspond to the UPFO projected
case and green/upper data points correspond to the UPFO
symplectic case. The two straight lines correspond to the
power law fits j/Nd ≈ 0.052745 γ1.5203 (symplectic case) and
j/Nd ≈ 0.041570 γ1.5157 (projected case) for the data in the
range 0.04 ≤ γ ≤ 0.3. The statistical error bound of the expo-
nents obtained from the fits is close to 0.1% in both cases. The
right panel shows the decay rates γj(M) for j = 0 (red crosses),
j = 5 (green open squares) of the UPFO projected case in a
double logarithmic scale. The lower/pink straight line corre-
sponds to the power law fit γ0(M) ≈ 0.72M−1.20 and the up-
per/light blue straight line to the fit γ5(M) ≈ 389M−1.55 (both
fits obtained for the range 400 ≤M ≤ 1600). The black/curved

line corresponds to the other fit γ0(M) = f(M) = D
M

1+C/M
1+B/M

with D = 0.162, C = 165 and B = 17.0 (fit obtained for the
range 25 ≤ M ≤ 1600). We mention that γ5 corresponds for
M ≥ 400 to a resonant mode whose eigenvector is strongly
localized close to the three stable islands of the resonance 1/3.
However, for M ≤ 280 γ5 corresponds to a different mode and
the resonant mode at 1/3 is associated to γ7 (M = 280), γ13

(M = 200), γ17 (M = 140) and γ23 (M = 100) which are
shown as four additional data points (blue stars).

dominant over the diffusion modes. The limit γ → 0 for
M → ∞ is related to long sticking trajectories near crit-
ical invariant curves which restrict the chaos component
and whose phase space structure can be better resolved
with decreasing cell size 1/M . As in reference [34] we ar-
gue that these lowest modes are affected by the effective
noise present in the Ulam method. Due to that we do not
have a clear explanation for this algebraic decay. How-
ever, the fact that γj (at fixed value of j) vanishes with
increasing M indicates that the limit texp in time, when
the statistics of Poincaré recurrences P (t) obtained from
the UPFO becomes exponential, increases as well accord-
ing to texp ∝ γ−1

0 and therefore we expect to recover the
power law decay of P (t) for M → ∞ (see below in Sect. 3).

With the help of the Arnoldi method we find certain
eigenstates corresponding to eigenvalues of the matrix Sp

and satisfying the equation

Np−1∑

i=0

(Sp)miψj(i) = λjψj(m). (2)

Examples of two eigenmodes |ψ0| and |ψ29| are shown in
Figure 5. The state |ψ0| corresponds to the first diffusive
mode mainly located in a vicinity of the critical golden
curve while |ψ29| corresponds to the mode located near a
resonant chain with rotation number r = 2/7.
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Fig. 5. Density plot of the modulus of the eigenvector com-
ponents |ψ| of the UPFO projected case of map (1) at
Kg with M = 1600 for the two modes with eigenvalues
λ0 = 0.99994672 (left panel) and λ29 = −0.22008951 +
i 0.96448508 ≈ |λ29| ei2π(2/7) (right panel). The density is
shown by color with red/gray for maximum and blue/black
for zero.

Fig. 6. Time dependent probability density calculated by
ψ(t) = (Sp)

t ψ(0)/ ‖ (Sp)
t ψ(0) ‖1 where Sp is the UPFO

for the projected case for M = 1600, ψ(0) an initial vec-
tor with ψl(0) = δl,�0 and �0 being the index of the cell at
x0 = y0 = 0.0625 and ‖ . . . ‖1 is the 1-norm defined by
‖ ψ ‖1=

∑
l |ψl|. The densities are shown for t = 40 (left panel)

and t = 400 (right panel). In the limit t → ∞ the vector ψ(t)
converges to the eigenvector of maximal eigenvalue λ0 shown
in the left panel of Figure 5. The full convergence is achieved
for t ≥ 40 000 so that for these times the density plot of ψ(t)
remains unchanged at the given color-resolution.

It is also interesting to follow how the probability ini-
tially placed in one cell 	0 evolves with time. Of course,
the total probability starts to decay due to absorption but
by renormalizing the total probability back to unity after
each map iteration we obtain its evolution in phase space.
At large times we have convergence to the state ψ0 with
maximal λ0 but at intermediate times we see the regions
of phase space which contribute to long time sticking and
long Poincaré recurrences. Two snapshots are shown in
Figure 6. The videos of such an evolution for the maps (1)
and (3) are available at [35].

3 Poincaré recurrences
by survival Monte Carlo method

The numerical computation of the Poincaré recurrences
counting the number of crossing of a given line (e.g. y = 0)
in the phase space is known to be a very stable numeri-
cal method since the integrated probability of recurrences
on a line at times larger than t is positively defined (see
e.g. [18,19,24,28]). However, at large times the direct nu-
merical computation becomes time consuming.

With the aim to reach larger times we present here
a new method to calculate the statistics of Poincaré re-
currences of map such as the Chirikov standard map (1).
We will call this method the Survival Monte Carlo method

(SMCM). The idea of this method is to chose a certain,
quite large number Ni  1, of initial conditions randomly
chosen in some small cell close to an unstable fix point and
to calculate in parallel the time evolution of these trajecto-
ries. At the initial time t = 0 we put the Poincaré return
probability to P (0) = 1 and the number of trajectories
to N(0) = Ni. At each time tk, when a given trajectory
escapes in the absorption region y < ycut = 0.05 of the
phase space, we put P (tk + 1) = P (tk) (N(tk) − 1)/N(tk)
and N(tk + 1) = N(tk) − 1, otherwise we simply keep
P (tk + 1) = P (tk) and N(tk + 1) = N(tk). When the
number of remaining trajectories N(tk) drops below a
certain threshold value Nf (typically chosen such that
Ni  Nf  1) we reinject a new trajectory close to
one of the other remaining trajectories with a small ran-
dom deviation: xnew(t) ∈ [xi(t) − ε/2, xi(t) + ε/2] and
ynew(t) ∈ [yi(t) − ε/2, yi(t) + ε/2]. The main idea is to
keep a typical statistics of trajectories at a given time t
and to concentrate the computational effort on the very
long and rare trajectories without wasting resources on the
more probable trajectories with short times of Poincaré
recurrences.

In this method the proper choice of ε is important.
On one hand ε should not be too small in order to avoid
too strong correlations between the trajectories and on
the other hand it should be very small in order to avoid
an uncontrolled too strong diffusion into regions too close
to stable islands where the trajectories may be trapped
stronger and longer as they should be without the random
deviations. Fortunately in the chaotic region even a mod-
est Lyapunov exponent ensures exponential separation of
trajectories and choosing a very small value of ε one may
hope to reduce the correlation between the injected trajec-
tory and its reference trajectory after a modest number of
iterations. Furthermore at longer times the average time
between the escape of two trajectories becomes very large
that helps to reduce these correlations.

We have chosen the parameters ε = 10−14, Ni = 106

and the two cases Nf = 100 and Nf = 1000. For Nf = 100
we have been able to iterate up to times 1011 and for
Nf = 1000 up to times 1010. We mention that at the val-
ues ε = 10−10, 10−14, we observe sticking of certain trajec-
tories for very long times while other trajectories escape
more rapidly (see Fig. 7). For Nf = 10 these fluctua-
tions become enormously large. Examples of the survival
probability P (t) obtained for 10 different realizations with
Nf = 100 (left panel) and Nf = 1000 (right panel) are
shown in Figure 7. Of course the fluctuations appear for
Nf = 100 at shorter times (t ∼ 105−106) as compared to
Nf = 1000 (t ∼ 106−107). For Nf = 10 the fluctuations
appear even at shorter times.

We calculate in parallel different realizations of P (t)
with respect of the random variables (for the initial con-
ditions, for the random deviations of the reinjected tra-
jectories and for the random choice at which remaining
trajectory the reinjection happens). The comparison of
obtained data shows that the distribution P (t) is stable
at small and large times. But at very large times it turns
out that the fluctuations become quite strong.
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Fig. 7. Statistics of Poincaré recurrences P (t) of the map (1)
calculated by the SMCM as survival probability after times
larger than t (data are shown in double logarithmic scale).
Top panels: the number of initial trajectories is Ni = 106 and
the number of final trajectories is Nf = 100 (left panel) or
Nf = 1000 (right panel). The initial positions are randomly
chosen in a cell of size (1600)−1×(1600)−1 at the position x0 =
y0 = 0.0625, here the small random deviation for reinjected
trajectories is ∼ ε = 10−14. In both panels the results for P (t)
are shown for 10 realizations with different random seeds. The
horizontal dotted line indicates the limit probability Nf/Ni =
10−4 (left panel) or Nf/Ni = 10−3 (right panel) below which
the reinjection of trajectories is applied. The two realizations
in the left panel which drop below the shown range (of P (t) ≥
10−21) “saturate” eventually at the values P (1011) ≈ 2×10−36

or P (1011) ≈ 10−35. Bottom panels: same as in top panels but
with Nf = 10 at ε = 10−10 (left panel) and ε = 10−14 (right
panel).

We note that the SMCM allows us to determine
the survival probability P (t). Its comparison with the
statistics of Poincaré recurrences computed by the usual
method [18,24–26] is shown in Figure 8. We see that both
methods give the same behavior P (t) with a small shift
in time related to different initial conditions. The equiv-
alence of both methods is rather clear: in both methods
the probability is determined by long sticking trajectories;
both methods consider the recurrences to the lines y = 0
or y = 0.05 which are close to each other.

The decay of P (t) averaged over 10 random realiza-
tions is shown in Figure 8. In general we see that the
SMCM allows to reach extremely long times with t = 1011

for Nf = 100 and t = 1010 for Nf = 1000. For Nf = 100
we see that the fluctuations start to be important for
t > 109 while the case with Nf = 1000 remains stable
up to t = 1010. This allows us to obtain the behavior of
P (t) for times being about one order of magnitude larger
compared to previous numerical simulations.

We argue that these fluctuations appear not due to
different values of ε = 10−10, 10−14 but due to enormous
“spin glass” like fluctuations due to sticking in different
regions of chaotic phase space. Indeed, according to the ar-
guments presented in reference [24] at a recurrence time t a
trajectory reaches a chaotic layer measure at a resonance
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Fig. 8. The left panel shows the average over 10 random
realizations of the statistics of Poincaré recurrences P (t) of
the map (1), obtained by the SMCM for survival probabil-
ity and shown in Figure 7 at Nf = 1000, ε = 10−14 (red
curve); for comparison we also show data obtained by the same
type of averaging but at ε = 10−10 (magenta curve having
a strong overlap with the red curve). The next lower/green
curve, for t ≤ 1011, corresponds to Nf = 100, ε = 10−14.
The lowest blue curve, for t ≤ 1.7 × 109, corresponds to the
data of references [25,26] obtained by a direct computation of
the statistics of Poincaré recurrences. The dashed straight line
indicates a power law behavior P ∝ t−1.5. The right panel
compares the statistics of Poincaré recurrences P (t), obtained
by the SMCM for Nf = 1000, ε = 10−14, to P (t) obtained
by the Ulam method for M = 400, 800, 1600. At large times
t > texp ∼ 104−105 the curves obtained by the Ulam method
show an exponential behavior P (t) ∼ λt

0 determined by the
largest eigenvalue of the UPFO for the projected case.

q being μq ∼ tP (t) ∼ 1/q2. According to the data of
Figure 8 at Nf = 103 and t = 1010 with P (t) ∼ 10−13

we have μq ∼ 10−3 and q ∼ 30. Thus this chaos mea-
sure is very large compared to the displacement ampli-
tude μq ∼ 10−3  ε ≥ 10−10. Thus, these displacements
generally should not move trajectories from chaotic to in-
tegrable components. In fact the strong fluctuations of
various groups of orbits at Nf = 10 originate from stick-
ing of orbits for very different time scales in various parts
of phase space. At large values of Nf = 1000 the statisti-
cal averaging reduces these fluctuations but at larger times
at fixed Nf the fluctuations become more and more pro-
nounced. Our direct comparison of P (t) for Nf = 1000
at ε = 10−14 and ε = 10−10 (see Fig. 8) show that the
fluctuations remain small up to t = 1010. For Nf = 10
this time is reduced down to t ∼ 108. This comparison of
data at two values of ε confirms that the chosen values of
ε do not affect the averaged values of P (t) on time scales
considered in Figures 7, 8. We also note that the curve of
Poincaré recurrences decay P (t), computed in a standard
way as in references [24,28], as well as P (t) computation
described here, is not affected by a change of the com-
putational precision from a single to a double one (up to
statistical fluctuations at the tail of P (t)). This is related
to the above argument that μq measure is rather large at
the times reached in numerical simulations.

According to the empirical data in Figure 8 at right
panel for the Ulam method we see that the time tcel, dur-
ing which the computations of P (t) with a finite size cell
of size εcel = 1/M are correct, scales approximately as
tcel ∼ 10/εcel. In a similar way we find that for ε = 10−6

and single precision computations the curve P (t) obtained
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at Nf = 1000, ε = 10−14 is reproduced up to a time
tcel ∼ 10/ε. It may be interesting to analyze the depen-
dence of tcel on ε in more detail but we leave this for
further studies.

For the case Nf = 1000, ε = 10−14 in Figure 8 the
algebraic fit of data in the range 106 ≤ t ≤ 1010 gives the
Poincaré exponent β = 1.587 ± 0.009. For Nf = 100 case
we find β = 1.710 ± 0.017 for the range 106 ≤ t ≤ 1011.
The formal statistical error is rather small in both cases
but it is clear that for Nf = 100 we start to have an effect
of strong fluctuations due to long sticking around islands
and thus the reliable value of β is given by the case with
Nf = 1000.

The survival probability P (t) can be also computed
using the Ulam method at various sizes of discrete cells
determined by M . The results obtained by the generalized
Ulam method and by the SMCM are shown in the right
panel of Figure 8. The comparison shows that both meth-
ods give the same results but the SMCM is much more ef-
ficient allowing to follow the decay P (t) up to significantly
larger times since for the Ulam method we expect the de-
cay P (t) only to be accurate for t < texp ∼ γ−1

0 because for
t > texp it becomes exponential P (t) ∝ λt

0 = exp(−γ0 t/2).
The data of Figure 8 clearly shows that texp increases
with M in accordance with the decay of γ0 obtained from
Figure 4.

Using the SMCM we can follow the evolution of the
survival probability as a function of time showing the den-
sity plot of long sticking trajectories. Examples of such dis-
tributions are shown in Figure 9. These figures show that
at short times t < 100 the trajectories are not yet able to
cross the cantori barriers and remain relatively far from
the golden curve, at larger times t = 104, 106, 108 the prob-
ability becomes concentrated close to the golden curve.
But at very larger times t = 1010 we find trajectories stick-
ing in a vicinity of the golden curve or other secondary
resonances. Thus we see that at long time P (t) has con-
tributions not only from the vicinity of the critical golden
curve but also from other secondary resonances. In this re-
spect, our conclusion confirms a similar one expressed in
reference [27] obtained from simulations on shorter time
scales.

4 Separatrix map with critical golden curve

To show that the previous case of the Chirikov stan-
dard map represents a generic situation we also study the
UPFO of the projected case for the separatrix map [6],
defined by:

ȳ = y + sin(2πx), x̄ = x+
Λ

2π
ln(|ȳ|) (mod 1) . (3)

This map can be locally approximated by the Chirikov
standard map by linearizing the logarithm near a cer-
tain y0 that leads after rescaling to the map (1) with
an effective parameter Keff = Λ/|y0| [6]. As in refer-
ence [34] we study the map (3) at Λc = 3.1819316 with
the critical golden curve at the rotation number r = rg =
(
√

5−1)/2 = 0.618 . . . The construction of the matrix S is

Fig. 9. Density plots of the trajectories of the SMCM (with
Nf = 1000) for the map (1) for various times t and random
realizations. All density plots are obtained from a histogram of
107 data points and using a resolution of 800×400 cells for the
phase space 0 ≤ x < 1 and 0 ≤ y < 0.5. The data points are
obtained by iterating N(t) trajectories (with N(t) = P (t)Ni

for P (t) ≥ 10−3 and N(t) = Nf for P (t) < 10−3) from t to
t+Δt with Δt = 107/N(t). The left four panels and the upper
right panel correspond to one particular random realization at
t = 102, 104, 106, 108, 1010 and the three lower right panels
correspond to three other random realizations at t = 1010. For
short times t < 105 there is no significant difference between
the density plots for different random realizations at a given
time. More detailed density plots for intermediate times and
higher resolution figures are available at reference [35].

described in reference [34], its size is given by an approx-
imate relation Nd ≈ 0.78M2/2 for the phase space region
0 < x ≤ 1, 0 ≤ y ≤ 4 (symplectic case and using the sym-
metry: x → x + 1/2 (mod 1), y → −y). The absorption
is done for y < ycut = 0.4 corresponding to 10% of the
maximal possible value of y. Thus for the UPFO for the
projected case we have Np ≈ 0.68M2/2. In fact we have
2(Nd −Np)/M2 = 0.1 since all part of the phase space is
chaotic at 0 < y < ycut and all cells in this region were
occupied by the Ulam method. Thus for M = 1600 we
have Nd = 997 045, Np = 869 045.

In Figure 10, in analogy to Figure 4, we show the de-
pendence of integrated number of eigenvalues j/Nd on
γj = −2 ln |λj | for the symplectic and projected cases
of the UPFO of the map (3). In both cases we have ap-
proximately the same dependence with the algebraic ex-
ponent β ≈ 1.5 which works for the range 0.04 ≤ γ ≤ 0.3.
The minimal values of γ (e.g. γ0 and γ2) drop approxi-
mately inversely proportionally to M . As for symplectic
case [34] we attribute this decrease with M to a finite size
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Fig. 10. The left panel shows the rescaled level number j/Nd

versus the decay rate γj , in a double logarithmic scale, for the
separatrix map (3) at Λc with M = 1600 and Nd = 997 045.
Red/lower data points correspond to the UPFO for the pro-
jected case and green/upper data points correspond to the
symplectic case. For the symplectic case the data points are
shifted up by a factor 2 to separate the two data sets. The two
straight lines show the power law fits j/Nd ≈ 0.014173 γ1.4995

(symplectic case) and j/Nd ≈ 0.014207 γ1.5016 (projected case)
for the range 0.04 ≤ γ ≤ 0.3. The statistical error of the expo-
nents is close to 0.2% in both cases. The right panel shows the
decay of γj(M) with M for j = 0 (red crosses), j = 2 (green
open squares) for the UPFO for the projected case of map (3).
The lower/blue straight line corresponds to the power law fit
γ0(M) ≈ 2.26M−1.13 and the upper/pink straight line to the
fit γ2(M) ≈ 1, 95M−0.86 (for the range 400 ≤M ≤ 1600). The
eigenvector corresponding to γ2 is localized near the two stable
islands of the resonance 1/2.

Fig. 11. Density plot of the modulus of the eigenvector com-
ponents of the UPFO for the projected case of the map (3) at
M = 1600 for the two modes with λ0 = 0.99972660 (left panel)
and λ77 = −0.49158775 + i 0.85153885 ≈ |λ77| ei 2π(1/3) (right
panel).

coarse-graining effect of the Ulam method. As in refer-
ence [34], we argue that the exponent β for a more physical
intermediate range of γ is directly related to the Poincaré
exponent.

Examples of two eigenmodes at λ0 and λ77 are shown
in Figure 11. In the first case we have an eigenmode of
diffusive type similar to Figure 5 while in the latter case
we have an eigenmode concentrated around unstable fix
points of resonance 1/3 (see corresponding state of sym-
plectic case in bottom left panel of Fig. 11 in Ref. [34]).

The comparison of the statistics of Poincaré recur-
rences obtained from the map (3) by the SMCM and the
usual method are shown in Figure 12. The data of the
usual method obtained in reference [25] allows us to fol-
low the decay of P (t) up to t = 2 × 108, while with the
SMCM we reach times t = 1010 with Nf = 1000 and
t = 1011 with Nf = 100. We have a good agreement be-
tween three curves for the range 100 ≤ t ≤ 108 with a
certain constant displacement in log10 t of data from the
usual method compared to the SMCM data. This shift
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Fig. 12. The left panel shows the average over 10 random
realizations of the statistics of Poincaré recurrences P (t) of the
map (3), obtained by the SMCM. The red curve, for t ≤ 1010,
corresponds to Nf = 1000. The green curve, for t ≤ 1011,
corresponds to Nf = 100. The upper/blue curve, for t ≤ 2.8×
108, corresponds to the data shown in reference [25] using a
direct computation of the statistics of Poincaré recurrences.
The right panel compares P (t) SMCM data for Nf = 1000 (red
curve in left and right panels) with P (t) obtained by the Ulam
method for M = 400, 800, 1600. At large times t > texp ∼
2 × 103−2 × 104 the Ulam method leads to an exponential
decay P (t) ∼ λt

0 determined by the largest eigenvalue of the
UPFO for the projected case.

appears due to different initial conditions but apart of this
shift all oscillations of P (t) curve are well reproduced. This
shows that both methods works correctly. However, with
the SMCM we are able to reach times being by one to two
orders of magnitude larger than previously.

The algebraic fit of SMCM data in Figure 12 gives
β = 1.855±0.004 for Nf = 100 (range 104 ≤ t ≤ 1011) and
β = 1.706 ± 0.004 for Nf = 1000 (range 104 ≤ t ≤ 1010).
In both cases the statistical error is rather small but there
are visible fluctuations which become to be significant at
t > 109 for Nf = 100 even if they are smaller compared
to the similar case of map (1) shown in Figure 8. Due to
that one should take as the reliable value β = 1.706 that
shows a noticeable difference from the value β = 1.587
found above for the Chirikov standard map at K = Kg.

The comparison of the SMCM data for P (t) with the
results of the Ulam method are shown in the right panel
of Figure 12. As it was the case for the similar comparison
shown in Figure 8 we find that both methods give the
same results but the Ulam method works only for time
scales being significantly smaller than those reached with
the SMCM.

Finally, as in Figure 9, we show in Figure 13 the density
distribution obtained for various realizations and various
times of the map (3). The situation is similar to Figure 9:
at short times the density is bounded by cantori barriers,
at large times it reaches the critical golden curve and at
even larger times we see that the density is located near
the critical golden curve or other secondary resonances
depending on the realization.

5 Properties of eigenstates of Ulam matrix

Let us now try to analyze how the decay of Poincaré
recurrences is related to the properties of the (right)
eigenvectors ψ(x, y) of the UPFO for the projected
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Fig. 13. Density plots of the trajectories of the SMCM with
Nf = 1000 for the map (3) for various times t and various
realizations. All density plots are obtained by a histogram of
107 data points with a resolution of 800×400 cells for the phase
space 0 ≤ x < 1 and 0 ≤ y < 4. The data points are obtained
by iterating the N(t) trajectories (with N(t) = P (t)Ni for
P (t) ≥ 10−3 and N(t) = Nf for P (t) < 10−3) from t to t +
Δt with Δt = 107/N(t). The left four panels and the upper
right panel correspond to one particular random realization at
t = 102, 104, 106, 108, 1010 and the three lower right panels
correspond to three other random realizations at t = 1010. For
short times t < 105 there is no significant difference between
the density plots for different random realizations at a given
time.

case. For this we determine the x-average of the eigen-
vector amplitude around a given position x0 over a
band of 1% width of the whole x-range: 〈|ψ(y)|〉 =
100 M−1

∑
|Δx|<0.005 |ψ(x0 + Δx, y)|. The y-dependence

of this average allows to visualize the localization proper-
ties of the eigenstate in y-direction. In Figure 14 we show
this quantity for two examples for each of the maps (1)
and (3) and for different values of M between 400 and
1600.

For the case of the map (1), shown in the left column
of Figure 14, we see a clear evidence of exponential local-
ization of eigenstates. In fact the average amplitude in a
vicinity of y ≈ 0, where the initial state is taken and where
the absorption happens, has enormously small values be-
ing of the order of 10−15. These amplitudes on the tail
drop significantly with an increase of M . For the map (3)
the decay of eigenstates is more irregular since the band
at x ≈ x0 crosses some secondary islands thus leading
to appearance of a plateau in the decay with y. But in
global we can still say that there is an exponential decay
of eigenstates. This exponential localization of eigenstates

10-15

10-10

10-5

100

 0.3  0.35  0.4  0.45

M
 2  <

|ψ
(y

)|
>

y

M=1600

M=400

10-10

10-5

100

 0  1  2  3  4

M
 2  <

|ψ
(y

)|
>

y

10-15

10-10

10-5

100

 0.35  0.4  0.45

M
 2  <

|ψ
(y

)|
>

y

M=1600

M=400

10-15

10-10

10-5

100

 0  1  2  3  4

M
 2  <

|ψ
(y

)|
>

y

M=1600

M=400

Fig. 14. The localization properties in y-direction for certain
eigenvectors of the UPFO for the projected case for the maps
(1) (left column) and (3) (right column). The panels in the
second and fourth row show the averaged modulus 〈|ψ(y)|〉 of
the eigenvector components within a band of 1% width of the
whole x-range at a certain x = x0. The global structure of the
corresponding eigenstates is shown in the corresponding first
and third panels (counting from the top; the red vertical thick
line indicates the range of x-values where the average has been
performed for each y-value, M = 1600). Data are shown for
M = 400 (cyan/highest curve), M = 560 (pink/second curve),
M = 800 (blue/third curve), M = 1120 (green/fourth curve)
and M = 1600 (red/lowest curve). In the right panel of the
second row the data for different values of M approximately
coincide and only the data for M = 1600 are shown by a full
(red) curve; other M values are shown as isolated data points
for M = 1120 (green crosses), M = 800 (blue stars), M = 560
(pink squares) and M = 400 (cyan circles). For M = 1600
the eigenvectors, shown in the density plots of the first and
third row, correspond to the modes λ4 and λ31 of the map
(1) (left column) and to the modes λ2 and λ17 of the map (3)
(right column); for other M we show corresponding eigenvector
located at the same resonances.

reminds the Anderson localization in disordered solid state
systems (see e.g. [48]).

We can also consider the projection of our initial state
taken in a cell 	0 on the eigenstates. Indeed, this initial
state can be expressed as ψinit =

∑
j μj ψ

R
j where μj are

expansion amplitudes and ψR
j the right eigenvectors de-

fined by equation (2). To determine the values of μj we
need first to compute the left eigenvectors ψL

j of the Ulam
matrix Sp which are biorthogonal to the right eigenvectors
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Fig. 15. Modulus of the projection coefficients μj of the initial
density vector ψinit, localized in one cell at x0 = y0 = 0.0625,
with respect to the right eigenvectors ψR

j (of the UPFO pro-
jected case for M = 1600) versus level number j. These coeffi-
cients appear in the expansion ψinit =

∑
j μj ψ

R
j (see text). The

left and right panels represent data for the maps (1) and (3)
respectively. The cases with |μj | = |μj+1| correspond to pairs
of complex conjugated modes with μj+1 = μ∗

j .

ψR
j and provide the expansion amplitudes by the identity:
μj = 〈ψL

j |ψinit〉/〈ψL
j |ψR

j 〉. Note that this expression does
not depend on the chosen normalization of the eigenvec-
tors and it requires only that 〈ψL

j |ψR
j 〉 �= 0. However, for

convenience, we have normalized both type of eigenvectors
by the L1-norm such that

∑
x,y |ψR,L

j (x, y)| = 1. We have
numerically determined the first 51 left eigenvectors with
the help of the Arnoldi method applied to the transpose
of Sp and therefore obtained the corresponding expansion
amplitudes.

The dependence of μj on j is shown in Figure 15.
We see that there are enormously large fluctuations of
μj which are in a range of 10 orders of magnitude. In par-
ticular the amplitudes corresponding to resonant modes
are very small which is easy to understand if the resonant
mode is localized far away from the initial state and does
therefore not contribute to the expansion. We think that
these fluctuations are at the origin of the slow algebraic
decay of Poincaré recurrences P (t) (see below).

In Figure 16 we show the contribution of the largest
Nm eigenmodes to the statistics of Poincaré recur-
rences (for M = 1600) given by the formula: p(t) =
∑Nm−1

j=0 pj λ
t
j with pj = μj

∑
x,y ψ

R
j (x, y) and the eigen-

values ordered as |λ0| > |λ1| > |λ2| > . . .

For Nm = Np, we have the statistics of Poincaré re-
currences obtained from the iteration of the UPFO and
already shown in Figures 8 and 12. For Nm = 51 we
have evaluated the sum using the expansion coefficients
shown in Figure 15. Both curves coincide at t > 102 for
the map (1) or at t > 3 × 102 for the map (3) showing
that the largest eigenmodes determine the long time be-
havior. For large times (t > 104−105) only the first eigen-
mode contributes and the decay is purely exponential. It
turns out that in the sum for Nm = 51 the terms arising
from the resonant modes can be omitted without chang-
ing the curve up to graphical precision since these modes
contribute only very weakly in the expansion. In general,
the partial sum p(t) converges to the actual statistics of
Poincaré recurrences P (t) with increasingNm and at given
value of Nm one expects that p(t) and P (t) coincide for
t 2 γ−1

Nm
.
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Fig. 16. Contributions of the largest eigenmodes of the UPFO
projected case at M = 1600 to the statistics of Poincaré recur-
rences for the maps (1) (left panel) and (3) (right panel). Here,
we show the probability p(t) obtained from the expansion over
eigenvectors given by the formula p(t) =

∑Nm−1
j=0 pj λ

t
j with

pj = μj

∑
x,y ψ

R
j (x, y), Nm being the number of used modes

and the eigenvalues being ordered as |λ0| > |λ1| > |λ2| > . . .
(see text). The upper red curve is obtained from the direct
iteration of the UPFO (see green curve in the right panels of
Figs. 8 and 12) and corresponds to the contribution of the
full spectrum of all eigenvalues with Nm = Np. The middle
blue curve corresponds to Nm = 51 with the same μj values as
those shown in Figure 15. The main contributions to this curve
arise from the diffusion modes (with real positive eigenvalues
λj > 0), the other resonant modes with complex or real nega-
tive eigenvalues give only a small contribution which does not
modify the curve up to graphical precision. The bottom green
curve corresponds to Nm = 1, i.e. the contribution μ0 λ

t
0 of the

largest λ eigenmode. In both panels the dashed line indicates
for comparison a power law decay P (t) ∝ t−1.5.

The data of Figures 14−16 illustrate the nontrivial link
between the localized eigenstates of the Ulam matrix and
the decay of Poincaré recurrences. The eigenmodes are
exponentially localized and for many of them their pro-
jection on the initial state is very small but at some large
times their contribution can become very important since
the modes with large projections decay more rapidly.

6 Discussion

Our studies show that the generalized Ulam method re-
produces well the decay of Poincaré recurrences P (t) in 2D
symplectic maps with divided phase space. At the same
time the computation of P (t) is obtained in a more effi-
cient way by the proposed SMCM allowing to reach time
scales of the order of t = 1010. We find that at these
large times the Poincaré exponent has values β = 1.58 for
the Chirikov standard map at Kg and β = 1.70 for the
separatrix map at Λc. The recurrences at large times are
dominated by sticking of trajectories not only in a vicin-
ity of the critical golden curve but also in a vicinity of
secondary resonance structures. This confirms earlier nu-
merical observations obtained on shorter time scales [27].

The sticking around various different resonant struc-
tures on smaller and smaller scales of phase space leads
to nontrivial oscillations of the Poincaré exponent. The
values of β found here are not so far from the average val-
ues found previously by averaging over maps at different
parameters with β ≈ 1.5 [18,19], β ≈ 1.57 [28]. In agree-
ment with the data presented here and in reference [34],
we find that the above value of β is close to the exponent
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of integrated density of states of the Ulam matrix which
has β ≈ 1.5. At the same time we see that at t = 1010 the
fluctuations in the Chirikov standard map at various Nf

and various random realizations are significantly stronger
as compared to the separatrix map.

We attribute these fluctuations to a localization of
eigenstates of the Ulam matrix which gives very non-
trivial properties of eigenstates projection on an ini-
tial state. The properties of these eigenstates are still
poorly understood. We think that the further develop-
ments of analytical models of renormalization on Cayley
type tree [22,23,28,32,33] and their applications to the
puzzle of statistics of Poincaré recurrences should develop
a more detailed analysis of localization of eigenstates of
the Ulam matrix.
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tion figures and video of dynamics are available at the web
page [35]. We dedicate this work to the memory of Boris
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(Sitzungsberichte der Akademie der Wissenschaften, Wien,
1877), Vol. II 75, p. 67

3. V.I. Arnold, A. Avez, Ergodic Problems of Classical
Mechanics (Benjamin, Paris, 1968)

4. I.P. Cornfeld, S.V. Fomin, Y.G. Sinai, Ergodic Theory
(Springer, New York, 1982)

5. B.V. Chirikov, Research Concerning the Theory of
Nonlinear Resonance and stochasticity, Preprint No. 267
(Institute of Nuclear Physics, Novosibirsk, 1969) (in
Russian) [Engl. Transl., CERN Trans. 71–40, Geneva,
October (1971)]

6. B.V. Chirikov, Phys. Rep. 52, 263 (1979)
7. A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic

Dynamics (Springer, Berlin, 1992)
8. B. Chirikov, D. Shepelyansky, Scholarpedia 3, 3550 (2008)
9. J.M. Greene, J. Math. Phys. 20, 1183 (1979)

10. R.S. MacKay, Physica D 7, 283 (1983)
11. R.S. MacKay, I.C. Percival, Comm. Math. Phys. 94, 469

(1985)
12. B.V. Chirikov, Critical Perturbation in Standard map:

a better approximation arXiv:nlin/0006021[nlin.CD]

(2000)
13. S. Aubry, Physica D 7, 240 (1983)

14. R.S. MacKay, J.D. Meiss, I.C. Percival, Physica D 13, 55
(1984)

15. J.M. Greene, R.S. MacKay, J. Stark, Physica D 21, 267
(1986)
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