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We develop a synchronization theory for the dynamics of two-dimensional electrons under a perpendicular
magnetic field and microwave irradiation showing that dissipative effects can lead to the synchronization of the
cyclotron phase with the driving microwave phase at certain resonant ratios between microwave and cyclotron
frequencies. We demonstrate two important consequences of this effect: the stabilization of skipping orbits along
the sample edges and the trapping of the electrons on localized short-ranged impurities. We then discuss how
these effects influence the transport properties of ultrahigh-mobility two-dimensional electron gas and propose
mechanisms by which they lead to microwave-induced zero-resistance states. Our theoretical analysis shows
that the classical electron dynamics along the edge and around circular disk impurities is well described by the
Chirikov standard map providing a unified formalism for those two rather different cases. We argue that this
work will provide the foundations for a full quantum synchronization theory of zero-resistance states for which
a fully microscopic detailed theory still should be developed.
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I. INTRODUCTION

The experiments on resistivity of high-mobility two-
dimensional electron gas (2DEG) in the presence of a
relatively weak magnetic field and microwave radiation led
to a discovery of striking zero-resistance states (ZRS) induced
by a microwave field by Mani et al.1 and Zudov et al.2 Other
experimental groups also found the microwave-induced ZRS
in various 2DEG samples (see, e.g., Refs. 3–5). A similar
behavior of resistivity is also observed for electrons on a
surface of liquid helium in the presence of magnetic and
microwave fields.6,7 These experimental results obtained with
different systems stress the generic nature of ZRS. Various
theoretical explications for this striking phenomenon have
been proposed during the decade after the first experiments.1,2

An overview of experimental and theoretical results is give in
a recent review.8

In our opinion the most intriguing feature of ZRS is their
almost periodic structure as a function of the ratio j = ω/ωc

between the microwave frequency ω and cyclotron frequency
ωc = eB/mc (in the following we are using units with electron
charge e and mass m equal to unity). Indeed, the Hamiltonian of
electrons in a magnetic field is equivalent to an oscillator; it has
a magnetoplasmon resonance at j = 1 but in a linear oscillator
there are no matrix elements at j = 2,3, . . . and hence a
relatively weak microwave field is not expected to affect
electron dynamics and resistivity properties of transport. Of
course, one can argue that impurities can generate harmonics
being resonant at high j > 1 but ZRS is observed only in
high-mobility samples and thus the density of impurities is
expected to be rather low. It is also important to note that ZRS
appears at high Landau levels ν ∼ 50 so that a semiclassical
analysis of the phenomenon seems to be rather relevant.

In this work we develop the theoretical approach proposed
in Ref. 9. This approach argues that impurities produce only
smooth potential variations inside a bulk of a sample so
that ZRS at high j appear from the orbits moving along
sharp sample boundaries. It is shown9 that collisions with

boundaries naturally generate high harmonics and that a
moderate microwave field gives stabilization of edge channel
transport of electrons in a vicinity of j ≈ jr = 1 + 1/4, 2 +
1/4, 3 + 1/4, . . . producing at these j a resistance going
to zero with increasing microwave power. This theory is
based on classical dynamics of electrons along a sharp
edge. The treatment of relaxation processes is modeled in
a phenomenological way by a dissipative term in the Newton
equations. An additional noise term in the dynamical equations
takes into account thermal fluctuations. The dissipation leads
to synchronization of the cyclotron phase with a phase of
microwave field producing stabilization of edge transport
along the edges in the vicinity of resonant jr values. Thus,
according to the edge stabilization theory9 the ZRS phase is
related to a universal synchronization phenomenon which is a
well-established concept in nonlinear sciences.10

While the description of edge transport stabilization9

captures a number of important features observed in ZRS
experiments it assumes that the contribution of bulk orbits
in transport is negligibly small. This assumption is justified
for smooth potential variations inside the bulk of a sample.
However, the presence of isolated small-scale scatterers inside
the bulk combined with a smooth potential component can
significantly affect the transport properties of electrons (see,
e.g., Ref. 11). Also the majority of theoretical explanations
of the ZRS phenomenon considers only a contribution of
scattering in a bulk.8 Thus it is necessary to analyze how a
scattering on a single impurity is affected by a combined action
of magnetic and microwave fields. In this work we perform
such an analysis modeling impurity by a rigid circular disk
of finite radius. We show that the dynamics in the vicinity of
a disk has significant similarities with the dynamics of orbits
along a sharp edge leading to the appearance of ZRS-type
features in a resistivity dependence on j .

The paper is composed as follows: In Sec. II we discuss the
dynamics in the edge vicinity; in Sec. III we analyze scattering
on a single disk; in Sec. IV we study scattering on many disks

035410-11098-0121/2013/88(3)/035410(14) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.035410


ZHIROV, CHEPELIANSKII, AND SHEPELYANSKY PHYSICAL REVIEW B 88, 035410 (2013)

when their density is low—here we determine the resistivity
dependence on j and other system parameters. Physical scales
of ZRS effects are analyzed in Sec. V; the effects of two
microwave driving fields and other theory predictions are
considered in Sec. VI; and discussion of the results is given in
Sec. VII.

We study various models which we list here for the
reader’s convenience: the wall model described by the Newton
equations (1) and (2) with microwave field polarization
perpendicular to the wall [model (W1) equivalent to model
(1) in Ref. 9]; the Chirikov standard map description (3) of
the wall model dynamics called model (W2) [equivalent to
model (2) in Ref. 9 at parameter ρ = 1]; the single-disk model
with radial microwave field called model (DR1); the Chirikov
standard map description (3) of model (DR1) called model
(DR2) [here vy → vr in (3), ρ > 1]; the model of a single disk
in a linearly polarized microwave field and static electric field
called model (D1); the model of transport in a system with
many disks called model (D2) which extends model (D1); an
extension of model (D2) with disk roughness and dissipation
in space called model (D3); the wall model (W2) extended to
two microwave fields is called model (W3).

II. DYNAMICS IN EDGE VICINITY

We recall first the approach developed in Ref. 9. Here,
the classical electron dynamics is considered in the proximity
of the Fermi surface and in the vicinity of the sample edge
modeled as a specular wall. The motion is described by Newton
equations

dv/dt = ωc × v + ω�ε cos ωt − γ (v)v + Iec + Is, (1)

where a dimensionless vector �ε = eE/(mωvF ) describes
microwave driving field E. Here an electron velocity v is
measured in units of Fermi velocity vF and γ (v) = γ0(|v|2 −
1) describes a relaxation processes to the Fermi surface. We
also use the dimensionless amplitude of velocity oscillations
induced by a microwave field ε = e|E|/(mωvF ). As in Ref. 9,
in the following we use units with vF = 1. The last two terms
Iec and Is in (1) account for elastic collisions with the wall
and small-angle scattering. Disorder scattering is modeled as
random rotations of v by small angles in the interval ±αi

with Poissonian distribution over time interval τi = 1/ω. The
amplitude of noise is assumed to be relatively small so that
the mean-free path 	e is much larger than the cyclotron radius
rc = vF /ωc. We note that the dissipative term is also known as
a Gaussian thermostat12 or as a Landau-Stuart dissipation.10

The dynamical evolution described by Eq. (1) is simulated
numerically using the Runge-Kutta method. Following Ref. 9
we call this system model (W1) [equivalent to model (1) in
Ref. 9].

We note that for typical experimental ZRS parame-
ters we have electron density ne = 3.5 × 1011 cm−2, ef-
fective electron mass m = 0.065me, microwave frequency
f = ω/2π = 50 GHz, and Fermi energy EF = mv2

F /2 =
πneh̄

2/m = 0.01289 V, corresponding to EF /kB = 149.5 K,
with Fermi velocity vF = 2.641 × 107 cm/s. At such a
frequency the cyclotron resonance ω = ωc = eB/mc takes
place at B = 0.1161 T with the cyclotron radius rc = vF /ωc =
0.8873 μm. At such a magnetic field we have the energy

spacing between Landau levels h̄ω = h̄ωc = 0.2067 mV =
2.40 K × kB corresponding to a Landau level ν = EF /h̄ωc ≈
62. For a microwave field strength E = 1 V/cm we have the
parameter ε = eE/(mωvF ) = 0.003261. With these physical
values of system parameters we can always recover the
physical quantities from our dimensionless units with m =
e = vF = 1.

Examples of orbits running along the edge of specular wall
are given in Ref. 9 (see Fig. 1 there). A microwave field
creates resonances between the microwave frequency ω and a
frequency of nonlinear oscillations of orbits colliding with the
wall. Due to the specular nature of this collision the electron
motion has high harmonics of cyclotron frequency that leads
to the appearance of resonances around j = 1,2,3,4, . . . (there
is an additional shift of approximate value 1/4 to jr values due
to a finite width of nonlinear resonance).

To characterize the dynamical motion it is useful to
construct the Poincaré section following the standard methods
of nonlinear systems.13,14 We consider the Hamiltonian case
at γ0 = 0 in the absence of noise. Also we choose a linear
polarized microwave field being perpendicular to the wall
which is going along the x axis (same geometry as in Ref. 9).
In this case the generalized momentum px = vx + By = yc is
an integral of motion since there are no potential forces acting
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FIG. 1. Poincaré sections of Hamiltonian (2) for j = 7/4 (left
column) and j = 9/4 (right column) and different amplitudes of
microwave field ε = 0.02,0.04,0.2 (from bottom to top). Here, the
integral px/mvF = 1, trajectories start from wall with fixed vx =
px = v0 = 1. Data for model (W1) at γ0 = 0, αi = 0.
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on electrons along the wall (here we use the Landau gauge with
a vector potential Ax = By). The momentum px determines
a distance yc between a cyclotron center and the wall, which
also remains constant in time. The Hamiltonian of the system
has the form

H = p2
y/2 + (px − By)2/2 + εωy cos ωt + Vw(y), (2)

where Vw(y) is the wall potential being zero or infinity for
y < 0 or y � 0. Thus, we have here a so-called case of one and
a half degrees of freedom (due to periodic dependence of the
Hamiltonian on time) and the Poincaré section has continuous
invariant curves in the integrable regions of phase space.13,14

The Poincaré sections for (1) and (2) at j = 7/4,9/4 and
various amplitudes of microwave field ε are shown in Fig. 1.
It shows a velocity vy at moments of collision with the wall
at y = 0 as a function of microwave phase φ = ωt at these
moments of time. All orbits initially start at the wall edge
y = 0 with the initial velocity vx = v0 = px = yc. The value
of px = yc is the integral of motion. However, the kinetic
energy of electron Ek = (v2

x + v2
y)/2 varies with time. We see

that at a small ε = 0.02 the main part of the phase space
is covered by invariant curves corresponding to integrable
dynamics. However, the presence of a chaotic component with
scattered points is also visible in the vicinity of the separatrix of
resonances, especially at large ε = 0.2. The points at vy close
to zero correspond to orbits only slightly touching the wall,
while the orbits at vy/v0 � 1 have a large cyclotron radius and
collide with the wall almost perpendicularly. There are also
sliding orbits which have the center of cyclotron orbit inside
the wall (yc > 0) but we do not discuss them here. Indeed,
the orbits, which only slightly touch the wall (yc ≈ −vF /ωc),
play the most important role for transport since the scattering
angles in the bulk are small for high-mobility samples and
an exchange between bulk and edge goes via such type of
dominant orbits.9

We note that the section of Fig. 1 at j = 9/4, ε = 0.02 is
in a good agreement with those shown in Fig. 1(b) of Ref. 9.
However, here we have single invariant curves while in Ref. 9
the curves have a certain finite width. This happens due to
the fact that in Ref. 9 the Poincaré section was done with
trajectories having different values of the integral px = yc that
gave some broadening of invariant curves. For a fixed integral
value we have no overlap between invariant curves as is well
seen in Fig. 1 here.

The phase space in Fig. 1 has a characteristic resonance
at a certain vy/v0 value which position depends on j .9 An
approximate description of the electron dynamics and phase
space structure can be obtained on a basis of the Chirikov
standard map.13–15 In this description developed in Ref. 9 an
electron velocity has an oscillating component δvy = ε sin ωt

(assuming that ω > ωc) and a collision with the wall gives a
change of modulus of vy by 2δvy (like a collision with a moving
wall). For small collision angles the time between collisions
is 
t = 2(π − vy)/ωc. Indeed, 2π/ωc is the cyclotron period.
However, the time between collisions is slightly smaller by
an amount 2vy/ωc: At vy � vx ≈ vF an electron moves in
an effective triangular well created by the Lorentz force and
like for a stone thrown against a gravitational field this gives
the above reduction of 
t (formally this expression for 
t is
valid for sliding orbits but for orbits slightly touching the wall

we have the same 
t but with minus that gives the correction
−2vy/ωc). The same result can be obtained via semiclassical
quantization of edge states developed in Ref. 16. It also can be
found from a geometric overlap between the wall and cyclotron
circle. This yields an approximate dynamics description in
terms of the Chirikov standard map:13

v̄y = vy + 2ε sin φ + Icc, φ̄ = φ + 2(π − v̄y/ρ)ω/ωc, (3)

with the chaos parameter K = 4εω/(ρωc). Usually we are in
the integrable regime with K < 1 due to small values of ε used
in experiments. A developed chaos appears at K > 1.13,14 Here
bars mark the new values of variables going from one collision
to a next one, vy is the velocity component perpendicular to
the wall, and φ = ωt is the microwave phase at the moment
of collision. Here we introduced a dimensionless parameter ρ

which is equal to ρ = 1 for the case of the wall model (W2)
considered here. However, we will show that for the dynamics
around a disk with a radial field in model (DR1) we have
the same map (3) with ρ = 1 + rc/rd . Thus it is convenient
to write all formulas with ρ. We note that a similar map
(3) describes also a particle dynamics in a one-dimensional
triangular well and a monochromatic field.17

The term Icc = −γcvy + αn in (3) describes dissipation
and noise. The latter gives fluctuations of velocity vy at each
iteration [−α < αn < α; corresponding to random rotation of
velocity vector in (1)]. Damping from electron-phonon and
electron-electron collisions contributes to γc. The Poincaré
sections of this map are in good agreement with those obtained
from the Hamiltonian dynamics as seen in Fig. 1 here and in
Fig. 1 in Ref. 9. Following Ref. 9 we call this system model
(W2) [equivalent to model (2) in Ref. 9].

A phase shift of φ by 2π does not affect the dynamics
and thus the phase space structure changes periodically with
integer values of j . Indeed, the position of the main resonance
corresponds to a change of phase by an integer number
of 2π values φ̄ − φ = 2πm = 2(π − vy/ρ)ω/ωc that gives
the position of resonance at vres = vy = πρ(1 − mωc/ω) =
πρδj/j where m is the nearest integer of ω/ωc and δj is the
fractional part of j . Due to this relation we have the different
resonance position for j = 7/4 and 9/4 being in agreement
with the data of Fig. 1 at small values of ε when nonlinear
corrections are small (we have here ρ = 1). Thus at j = 9/4
we have the resonance position at vy = 0.1111π ≈ 0.35 in
agreement with Fig. 1 (right bottom panel). For j = 2 we
have vy = 0 and at j = 7/4 the resonance position moves to a
negative value vy = −0.45. Thus, at j = 2; 7/4 the resonance
separatrix easily moves particles out from the edge at vy < 0
where they escape to the bulk due to noise. In contrast at
j = 9/4 particles move along the separatrix closer to the
edge being then captured inside the resonance which gives
synchronization of the cyclotron phase with the microwave
phase. This mechanism stabilizes the transmission along the
edge.

In Ref. 9 it is shown that the orbits started in the edge
vicinity are strongly affected by a microwave field that leads
to ZRS-type oscillations of transmission along the edge and
longitudinal resistivity Rxx . The ZRS structure appears both in
the frame of dynamics described by (1) [model (W1)] and in
map description (3) [model (W2)]. The physical mechanism
is based on synchronization of a cyclotron phase with a phase
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FIG. 2. (Color online) Density distribution w of electrons as
a function of their dimensionless cyclotron center position yc/rc

between two walls and the frequency ratio j = ω/ωc. The distance
between specular walls is 6rc. The amplitude of microwave field is
ε = 0.1 with polarization parallel (left panel) and perpendicular (right
panel) to the walls (see text for more details). Here γ0/ω = 0.05,
αi = 0.01, τi = 1/ω. The variation of j = ω/ωc is obtained by
changing magnetic field (ωc = B) keeping ω = const.; 100 electrons
are simulated at each j up to time tr = 105/ω. Density is proportional
to color changing from zero (black) to maximal density (white). Data
for model (W1).

of microwave driving that leads to stabilization of electron
transport along the edge. An extensive amount of numerical
data has been presented in Ref. 9 and we think there is no
need to add more. Here, we simply want to illustrate that
even those orbits which start in the bulk are affected by
this synchronization effect. For that we take a band of two
walls with a bandwidth between them being 
y = L = 6rc.
Initially 100 trajectories are distributed randomly in a bulk
part between walls when a cyclotron radius is not touching the
walls (−2rc < yc < 2rc). Their dynamics is followed during
the run time tr = 105/ω according to Eq. (1) and a density
distribution w(yc) averaged in a time interval 5 × 104 < ωt <

105 is obtained for a range of 0.5 � j � 7 (261 values of
j are taken homogeneously in this interval). The value of tr
approximately corresponds to a distance propagation along
the wall of rw ∼ vytr ∼ 0.1vF tr ∼ 5 × 103vF /ω ∼ 0.2 cm at
typical values vF ∼ 2 × 107 cm/s, ω/2π = 100 GHz. This is
comparable with a usual sample size used in experiments.1,2

Similar values of rw were used in Ref. 9.
The dependence of density w on yc and j is shown in Fig. 2

for two polarizations of the microwave field. The data show
that orbits from a bulk can be captured in the edge vicinity
for a long time giving an increase of density in the vicinity
of the edge. This capture is significant around resonance
values j ≈ jr . This is confirmed by a direct comparison of
density profiles in Fig. 3 at j = 1.7 ≈ 2 − 1/4 and j = 2.4 ≈
2 + 1/4. In the latter case we have a large density peak due to
trajectories trapped in a resonance (see Fig. 1) where they are
synchronized with the microwave field. An increase of noise
amplitude αi gives a significant reduction of the amplitude of
these resonant peaks (Fig. 3, bottom panels). The increase
of density is more pronounced for polarization perpendic-
ular to the wall in agreement with data shown in Fig. 2
of Ref. 9.

The results of Figs. 2 and 3 clearly show that the electrons
from the bulk can be trapped by a microwave field in an edge
vicinity that enhances the propagation along the edge. At the
same time the skipping orbits, the cyclotron circle center of
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FIG. 3. Profile of density distribution w(yc) as a function of yc/rc

for microwave polarization parallel (left panels) and perpendicular
(right panels) to the walls. Here we have no microwave at top panels,
ε = 0.1, j = 1.7 at middle panels, ε = 0.1, j = 2.4 at bottom panels.
In all panels we have noise amplitude αi = 0.01 as in Fig. 2; dashed
curves in bottom panels are obtained with αi = 0.05. Simulations are
done with 500 trajectories, other parameters are the same as in Fig. 2.
Data for model (W1).

which is outside the sample, are practically unaffected by a
microwave field (indeed, from Fig. 3 we see a significant
density drop at the edge vicinity that results from a separation
of skipping orbits from those linked with the bulk). Such orbits
remain disconnected from the bulk and hence they do not give
significant contribution to Rxx as is the case in absence of
microwave field.

We also performed numerical simulations using Eq. (1)
with a smooth wall modeled by a potential Vw(y) = κy2/2.
For large values κ/ωc (e.g., κ/ωc = 10) we find the Poincaré
sections to be rather similar to those shown in Fig. 1 that gives
a similar structure of electron density as in Figs. 2 and 3. A
finite wall rigidity can produce a certain shift of optimal capture
conditions appearing as a result of additional correction to a
cyclotron period due to a part of orbit inside the wall.

The data presented in this section show that electrons from
the bulk part of the sample can be captured for a long time
in the edge vicinity thereby increasing the electron density
near the edge. This effect is very similar to the accumulation
of electrons on the edges of the electron cloud under ZRS
conditions that was reported for surface electrons on helium
in Ref. 7. However we have to emphasize that the confinement
potential for surface electrons is very different from the hard
wall potential assumed in our simulations; as a consequence
our results cannot be applied directly to this case. It is possible
that the formation of ballistic channels on the edge of the
sample combined with the redistribution of the electron density
can effectively short the bulk contribution and induce directly a
vanishing Rxx . However, it is also very important to understand
how a scattering on impurities inside the bulk is affected
by a microwave radiation. Indeed, the volume of the bulk
is significantly larger than the volume of strips of cyclotron
radius width along the edges. Thus a presence of low-density
sharp impurity scatterers inside the bulk can give the dominant
contribution to the global resistivity of a large-size sample.
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Hence, the analysis of scattering inside the bulk is very
important. We study this question in the next sections.

III. SCATTERING ON A SINGLE DISK

It should be noted that resistivity properties of a reg-
ular lattice of disk antidots in 2DEG have been studied
experimentally18,19 and theoretically.20,21 But the effects of
the microwave field were not considered till present.

In our studies we model an impurity as a rigid disk of fixed
radius rd ; we measure rd in units of distance vF /ω, keeping
ω = constant and changing ωc = B. We usually have a fixed
ratio rdω/vF = 1. In a magnetic field a cyclotron radius moves
in free space only due to a static dc electric field Edc. We fix
the direction of Edc along the x axis and measure its strength
by a dimensionless parameter εs = Edc/(ωvF ). Even in the
absence of a microwave field a motion in the vicinity of the
disk in crossed static electric and magnetic fields of moderate
strength is not so simple. The studies presented in Refs. 22
and 23 show that dynamics in the disk vicinity is described by a
symplectic disk map which is rather similar to the map (3). It is
characterized by a chaos parameter εd = 2πvd/(rdωc) where
vd = Edc/B is the drift velocity; εd gives an amplitude of
change of radial velocity at collision. Orbits from the vicinity
of the disk can escape for εd > 0.45.22

We start our analysis from the construction of the Poincaré
section in the presence of the microwave field at zero static
field. To have a case with one and half degrees of freedom we
start from a model case when the microwave field is directed
only along the radius from the disk center. The dynamics
is described by Eq. (1) with a dimensionless microwave
amplitude ε. The dynamical evolution is obtained numerically
by the Runge-Kutta method. At first we consider a case without
dissipation and noise. Due to radial force direction the orbital
momentum is an additional integral of motion (as px = yc for
the wall case) and thus we have again 3/2 degrees of freedom.
We call this disk model with radial microwave field as model
(DR1).

The Poincaré sections at the moments of collisions with the
disk are shown in Figs. 4 and 5 for model (DR1). Here, vr is the
radial component of electron velocity and φ is a microwave
phase both taken at the moment of collision with the disk.
We see that the phase space structure remains approximately
the same when j is increased by unity (compare j = 9/4,13/4
panels in Fig. 4). This happens for orbits only slightly touching
the disk (small vr ) since the microwave phase change during
a cyclotron period is shifted by an integer amount of 2π (in
a first approximation at rd � rc). The similarity between the
wall and disk cases is directly seen from Fig. 5 as well as
periodicity with j → j + 1.

In fact in the case of a disk with a radial field the dynamics
can be also described by the Chirikov standard map (3) where
vy should be understood as a radial velocity vr at the moment
of collision. The second equation has the same form since the
change of the phase between two collisions is given by the same
equation but with the parameter ρ = 1 + rc/rd . This expres-
sion for ρ is obtained from the geometry of slightly intersecting
circles of radius rd for disk and radius rc for cyclotron orbit
(the angle segment of the cyclotron circle is 
ϕ = 2vr/ρ).
For rd � rc this expression naturally reproduces the wall case

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0

v r
/v

0
v r

/v
0

v r
/v

0

φ/π φ/π
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while at rd � rc we have the correction term proportional to v̄y

going to zero that also well corresponds to the geometry of two
disks. After such modification of ρ we find that the resonance
positions vres = πρδj/j are proportional to ρ. Thus the model
(DR1) reduced to the map description (3) at ρ > 1 is called
model (DR2).

The expression for vres works rather well. Indeed, for j =
2.1 in Fig. 5 we obtain vres = 0.149 for model (W2) and 0.463
for model (DR2). These values are in a good agreement with
numerical values vres ≈ 0.15 for model (W2) and vres ≈ 0.6 for
model (DR1). In the latter case the agreement is less accurate
due to a larger size of nonlinear resonance. The comparison
of Poincaré sections given by the Chirikov standard map (3)
and the dynamics from Newton equations, shown in Fig. 5,
confirm the validity of the map description.

According to the well-established results for the Chirikov
standard map13 we find for models (W1), (W2) and (DR1),
(DR2) the width of separatrix δv and the corresponding
resonance energy width Er = (δv)2/2:

Er = 16εωcρEF /ω, ρ = 1 + rc/rd,

vres = πρδj/j, δv = 4
√

ερ/j, (4)

δjε = δvj/(2πρ), j = ω/ωc,

where δjε is the resonance shift produced by a resonance half
width δv/2 = vres. This relation shows that for the disk case
this energy is increased by a factor ρ compared to the wall
case. In the majority of our numerical simulations we have
ρ = 1 + j .

Thus the radial field models (DR1), (DR2) represent a
useful approximation to understand the properties of dynamics
in the disk vicinity, but a real situation corresponds to a linear
microwave polarization and the Poincaré section analysis
should be modified to understand the dynamics in this case.

Therefore we start to analyze the scattering problem on a
disk in the presence of weak static field εs and microwave field
ε using Eq. (1). For the scattering problem we find it more
simple to have dissipation work only at the time moments
of electron collisions with disk: At such time moments the
modulus of electron velocity is reduced by a factor |v| →
|v|/(1 + γd ); the reduction is done only if the kinetic energy of
the electrons is larger than the Fermi energy. Such a dissipation
can be induced by phonon excitations inside the antidot disk.
We fix the geometry directing the dc field along the x axis and
microwaves along the y axis. The noise is modeled in the same
way as above in Eq. (1). We call this system disk model (D1).
Below we present data for a fixed value of γd = 0.01 but we
checked that the variation of this parameter by a factor 2–3 does
not modify the typical dependence Rxx(j ) presented below.

We note that the presence of dissipation only in the vicinity
of the disk corresponds to the experimental reality: The ZRS
effect exists only in high-mobility samples; in a free space
without disks we have only a small smooth angle scattering
which cannot generate j > 1 resonances due to the absence
of such matrix elements in an oscillator potential effectively
created by a magnetic field. Therefore the dissipative processes
give significant contribution to transport only in the vicinity of
sharp impurities (disks) or sample edges.

Examples of electron cyclotron trajectories scattering on a
disk are shown in Fig. 6. In the absence of the microwave field
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FIG. 6. (Color online) Scattering of electron cyclotron trajectory
on a disk scatterer (blue/black circle) in model (D1). Top left panel
shows the case in absence of microwave, ε = 0, j = 9/4. Top
right panel: Temporary captured path at ε = 0.04, j = 9/4. Bottom
left panel: Path captured forever at ε = 0.04, j = 9/4. Bottom
right panel: No capture at ε = 0.04, j = 2. The trajectory part
colliding with disk is shown by black curve; its part before and
after collisions is shown in gray. The red (light gray) points and
curves show the trajectory of cyclotron center. Here the dissipation
parameter is γd = 0.01; the static electric field is directed along the x

axis and εs = 0.001; the microwave field is directed along the y axis.
There is no noise here. Coordinates x,y are expressed in units of rd .
Data for model (D1).

a trajectory escapes from the disk rather rapidly. A similar
situation appears at j = 2 and a microwave field with ε =
0.04. In contrast, for j = 9/4 and ε = 0.04 a trajectory can
be captured for a long time or even forever depending on the
initial impact parameter.

For some impact parameters a trajectory can be captured for
a very long time tc; in certain cases in the absence of noise we
have tc = ∞. At such long capture times the collisions with the
disk become synchronized with the phase φ of the microwave
field at the moment of collisions. This is directly illustrated in
Fig. 7 where we show the angle θ of a collision point on the
disk, counted from the x axis, in dependence on φ. Indeed,
the dependence θ on φ forms a smooth curve corresponding
to synchronization of two phases. At the same time the radial
velocity at collisions vr moves along some smooth invariant
curve vr (φ) in the phase space (vr,φ). However, to make a
correct comparison with the radial field models (DR1), (DR2)
we should take into account that the cyclotron circle rotates
around the disk so that we should draw the Poincaré section in
the rotational phase φ′ = φ − θ . In this representation we see
the appearance of the resonance (see right column of Fig. 7)
that is similar to that seen in Figs. 4 and 5 for the radial field
models.

035410-6



TOWARDS A SYNCHRONIZATION THEORY OF . . . PHYSICAL REVIEW B 88, 035410 (2013)

-1.0

-0.5

0.0

0.5

1.0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-1

0

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

.
.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .
.

.

.

. .

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

. .

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

..

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

..

.

.

.
..

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

. .
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

. .

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

. .

.

.

.

.
.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

. .

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

..

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

. .

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

. .

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

. .

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.
. .

.

.

. .

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

..

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

. .

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

. .

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

. .

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

. .

.

.

.

..

.

.

.
.

.

.

.
.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

..

.

.

. .

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

. .

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

. .

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

.
.

.

.

..

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .
.

.

.

. .

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

. .

.

.

..

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

. .

.

.

.
. .

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

..
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

..

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.
.

.

.

.
. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

..

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

. .

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

..

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

..

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.
..

.

.

. .

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

. .

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

. .

.

.

..

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

. .

.

.

.

.
.

.

.

..

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

..

.

.

.
.

.

.

.

. .

.

.

.
.

.

.

.

..

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

. .

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

..

θ/
π

v r
/v

0

φ/π φ /π

FIG. 7. Synchronization between disk collision angle θ and
microwave phase φ. Left column: Dependence of angle θ of collision
point on disk, counted from x axis, and radial velocity vr , taken
at collision, on microwave phase φ. Right column: Same as in
left column with φ′ = φ − θ . Here j = 2.25, ε = 0.04, εs = 0.001,
γd = 0.01, v0 = vF , there is no noise; points are shown for times
104/ω < t < 105/ω, the capture time of this orbit is tc > 105/ω.
Data for model (D1).

A more direct correspondence between radial field models
(DR1), (DR2) and model (D1) with a linearly polarized
microwave field is well seen from the Poincaré sections shown
in the rotation frame of phase φ′ = φ − θ in Fig. 8. In this
frame we see directly the resonance at j = 2.1,2.25 being very
similar to the wall case and the radial field model. However, the
positions of resonance at vr = vres are different from those in
Fig. 5. Of course in the rotation frame the orbital momentum
is only approximately conserved that gives a broadening of
invariant curves in Fig. 8.

We explain this as follows. For the linear polarized field
of model (D1) the radial component of the microwave field is
proportional to εr ∼ ε sin θ cos ωt ∼ 0.5ε sin(ωt − θ ) where
we kept only the slow frequency component of the radial field
[the neglected term with sin(ωt + θ ) gives resonant values
vres > vF ]. The radial field εr gives kicks to the radial velocity
component at collisions with the disk similar to the case
of model (DR2) described by Eq. (3): v̄r = vr + 0.5ε sin φ′,
φ̄′ = φ′ + (2πj − 2v̄r j/ρ) − 2v̄r (ρ − 1)/ρ. Here we use the
radial field component phase φ′ = ωt − θ at a moment of
collision with the disk (the tangent component does not change
vr and can be neglected). The phase variation φ̄′ − φ′ has
the first term 2πj − 2v̄r j/ρ being the same as for the radial
field model (DR2), and an additional term related to rotation
around the disk with −
θ = −2v̄r (ρ − 1)/ρ which comes
from geometry. Indeed, the segment angles of intersections
of circles rd and rc are as follows: For disk radius rd it is

θ = 2v̄r (ρ − 1)/ρ and for cyclotron radius rc it is 
ϕ =
2v̄r/ρ. Thus, their ratio is 
θ/
ϕ = rc/rd in agreement with
the geometrical scaling. This result can be obtained from the

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

-1 0 1 -1 0 1

v r
v r

v r

φ /π φ /π

FIG. 8. Poincaré sections in phase plane (vr ,φ
′) with φ′ = φ −

θ for j = 2.1, ε = 0.01 (left top); j = 2.25, ε = 0.01 (right top);
j = 2.75, ε = 0.02 (left middle); j = 2.25, ε = 0.02 (right middle);
j = 2.75, ε = 0.04 (left bottom); j = 2.25, ε = 0.04 (right bottom);
vr is expressed in units of vF . Data for model (D1), no noise no
dissipation.

expression for 
ϕ by interchange of two disks that gives the
above expression for 
θ [at rd = rc both shifts 
ϕ = 2v̄r/ρ

and 
θ = 2v̄r (ρ − 1)/ρ are equal].
Thus again the dynamical description is reduced down to

the Chirikov standard map with slightly modified parameters
giving us for the model (D1) the chaos parameter K = 2ε(j +
ρ − 1)/ρ being usually smaller than unity, resonance position
vres, resonance width δv, and the resonance energy width Er =
(δv)2/2:

Er = 8ερEF /(ρ + j − 1), ρ = 1 + rc/rd,

vres = πρδj/(j + ρ − 1), δv = 4
√

ερ/(2(j + ρ − 1)),

δjε = δv(ρ + j − 1)/(2πρ), j = ω/ωc, (5)

where δjε is a shift of resonance produced by a finite separatrix
half width δv/2. For our numerical simulations we have ρ =
1 + j with vres = π (j + 1)δj/(2j ), δv = 2

√
ε(j + 1)/j , and

δjε = (2/π )
√

εj/(j + 1).
At ρ = j + 1 Eq. (5) gives the values vres = 0.232 at

j = 2.1 while the numerical data of Fig. 8 give vres ≈ 0.2,
and we have at j = 2.25 the theory value vres = 0.567 being
in good agreement with the numerical value vres ≈ 0.5 of
Fig. 8. For j = 2.75 we have the resonance position at vr < 0
corresponding to the bulk and thus the resonance is absent.
The resonance width in Fig. 8 at j = 2.25, ε = 0.01 can be
estimated as δv ≈ 0.3 that is in satisfactory agreement with
the theoretical value δv = 0.24 from (5). We recall that in
model (D1) we have only approximate conservation of orbital
momentum that gives a broadening of invariant curves and
makes determination of the resonance width less accurate. In
spite of this broadening we see that the resonance description
by the Chirikov standard map works rather well.
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FIG. 9. Dependence of rescaled capture time tc/tc(0) on j at ε =
0.04 shown at various static fields: εs = 2.5 × 10−4 (top left), 10−3

(top right), 8 × 10−3 (bottom left), 0.016 (bottom right). Here γd =
0.01, there is no noise. Data for model (D1).

In Fig. 9 we show the dependence of average capture time
tc on j in model (D1). The averaging is done over Ns = 500
trajectories scattered on the disk at all such impact parameters
at which the cyclotron orbit can touch the disk. Here, we
show the ratio tc/tc(0) where tc(0) is an average capture time
in the absence of microwaves. According to our numerical
data we have an approximate dependence ωtc(0) ≈ 3/

√
εs

corresponding to a period of nonlinear oscillations in disk
map description discussed in Refs. 22 and 23.

The data of Fig. 9 show a clear periodic dependence of
capture time tc on j corresponding to the periodicity variation
of the Poincaré section with j (see Figs. 4, 5, and 8). This
structure is especially visible at weak static fields. With an
increase of εs this structure is suppressed. Indeed, at large εs

even without microwave field the trajectories can escape from
the disk as discussed in Refs. 22 and 22 and the microwave
field does not affect the scattering in this regime.

The distributions of capture times are shown in Fig. 10.
We clearly see that at resonant values of j a microwave field
leads to the appearance of long capture times. For example,
we have the probability to be captured for tc > 180/ω being
W = 0.46 at j = 2.25 while at j = 2 we have W = 0 (left
panel in Fig. 10); and we have W = 0.38 at j = 2.37 while at
j = 1.9 we have W < 3 × 10−4 (right panel in Fig. 10). These
data confirm much stronger capture at certain resonant values
of j .

The data of Figs. 9, 10 show that the scattering process on
the disk is strongly modified by the microwave field. However,
to determine the conductivity properties of a sample we need
to know what is an average displacement 
x along the static
field after a scattering on a single disk. Indeed, in our model
a dissipation is present only during collisions with disk while
in free space between disks the dynamics is integrable and

10-4

10-3

10-2

10-1

1

10 102 103 104 105 106 10 102 103 104 105 106

t c
d
W d
t c

tc tc

FIG. 10. Differential probability distribution tcdW/dtc of capture
times tc for parameters of Fig. 9. Left panel: j = 2 (dashed curve
for minimum of capturing probability) and j = 2.25 (full curve
at maximum of capturing probability) at εs = 0.001. Right panel:
Similar cases at j = 1.9 (dashed curve) and j = 2.37 (full curve) at
εs = 0.002. Data are obtained with Ns = 5 × 104 trajectories started
at different impact parameters and running up to time t = 3 × 105/ω.
Here tc is expressed in units of 1/ω. Data for model (D1).

Hamiltonian. Hence during such a free space motion there is
no displacement along the static field (the dissipative part of
conductivity or resistivity appears only due to dissipation on
the disk). The dependence of 
x on j is shown in Fig. 11. In
the absence of microwave field at ε = 0 we find 
x ∝ 1/j ∝
B that corresponds to a simple estimate 
x ∝ ωcγd . Indeed,
without dissipation the system is Hamiltonian and hence there
is no dissipative average displacement so that 
x = 0. The
dissipation acts only at the collisions with the disk so that the
displacement is proportional both to γd and the frequency of
collisions with disk, which is proportional to ωc ∝ B, thus
leading to the above estimate.

The numerical data show that 
x is practically independent
of εs and that 
x = 0 in absence of dissipation at γd = 0. In the
presence of the microwave field we see that the displacement
along the static field has strong periodic oscillations with
j . The striking feature of Fig. 11 is the appearance of

0.0

0.25

0.5

1 2 3 4 5 6

Δ
x
/r

d

j

FIG. 11. Average shift 
x along static field after scattering on a
single disk shown as a function of j at various amplitudes of static
and microwave fields: εs = 0.0005, ε = 0 (gray dashed curve); εs =
0.001, ε = 0 (black dashed curve); εs = 0.0005, ε = 0.04 (gray full
curve); εs = 0.001, ε = 0.04 (black full curve). The data are obtained
by averaging over Ns = 5 × 103 scattered trajectories with random
impact parameters; here γd = 0.01, noise amplitude αi = 0.005. Data
for model (D1).
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windows of zero displacement 
x ≈ 0 at resonance values
jr = 9/4,13/4,17/4, . . . . We discuss how this scattering on
a single disk modifies the resistance of a sample with a large
number of disks in the next section.

IV. RESISTANCE OF SAMPLES WITH MANY DISKS

To determine a resistance of a sample with many disks
we use the following scattering disk model. The scattering
on a single disk in a static electric field εs is computed
as described in the previous section with a random impact
parameter inside the collision cross section σd = 2(rc + rd ).
After that a trajectory evolves along the y axis according to
the exact solution of Hamiltonian Eq. (1) (no dissipation and
no noise) up to a collision with the next disk which is taken
randomly on a distance between 2(rc + rd ) and 2	e where
	e = 1/(σdnd ) is a mean-free path along the y axis and nd is a
two-dimensional density of disks [of course 	e � 2(rc + rd )].
In the vicinity of the disk the dynamical evolution is obtained
with the Runge-Kutta solution of dynamical equations as
was the case in the previous section. We use a low disk
density with ndr

2
d ∼ 1/100. The collision with the disk is

done with a random impact parameter on the x axis of the
disk vicinity: The impact parameter is taken randomly in the
interval [−(rc + rd ),(rc + rd )] around disk center. Noise acts
only when a center of cyclotron radius of trajectory is on
a distance r < rd + rc from disk center so that a collision
with the disk is possible. After scattering on a disk a free
propagation follows up to the next collision with a disk.

Along such a trajectory we compute the average displace-
ment δx and δy after a time interval δt . In this way the
number of collisions with disks is Ncol ≈ δy/	e and a total
displacement on the x axis is δx ≈ Nc
x where 
x is the
average displacement on one disk discussed in the previous
section. We compute the global displacements δx,δy on a time
interval δt = 106/ω averaging data over 200 trajectories. We
call this system model (D2).

We stress that in the model D2 we take into account
exactly scattering on all disks in the sample, small-angle
scattering in the vicinity of the disks. However, for efficiency
of numerical simulations we neglect small-angle scattering
in the free space between disks. We argue that small-angle
scattering in free space cannot generate dips at high j > 1
since the corresponding dipole matrix elements are absent
in the Hamiltonian of the linear oscillator. Also the ZRS
effect exists only in high-mobility samples and hence a
contribution to conductivity from a free space with small-angle
scattering is small and it cannot add a significant constant
background to conductivity (or resistivity) in the ZRS phase.
However, small-angle scattering plays an important role in
the vicinity of the edge or disk where it is exactly taken into
account in our numerical modeling. If the free space contains
smooth potential variations on a length which is significantly
larger than a cyclotron radius then the high j > 1 harmonics
are exponentially small due to the adiabatic theorem and
analyticity of motion. Small delta-function-type defects in a
space between disks can generate high j harmonics but their
amplitude is small in the case of small-amplitude scattering on
defects with a small potential amplitude. In the case of strong
defects we come to a situation being similar to the case of disk
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FIG. 12. (Color online) Dependence of resistivity Rxx and Rxy on
magnetic field B = 1/j (resistivity is expressed in arbitrary numerical
units). Blue and gray curves show respectively Rxx and Rxy in absence
of microwave field. Black curve with points shows Rxx dependence
of B at microwave field ε = 0.04 (here B is expressed in units of
1/ω = const.). Here εs = 0.001, γd = 0.01, noise amplitude αi =
0.005, τi = 1/ω. Resonant values jr are shown by arrows; bars show
statistical errors for Rxx . Data are obtained by averaging over 200
trajectories propagating up to time t = 106/ω. Data for model (D2).

scattering which we analyze here in detail. The defects with
size being smaller than a magnetic length should be treated in
the frame of quantum scattering which we discuss in Sec. VII.

Thus the current components are equal to jx = δx/δt ,
jy = δy/δt and conductivity components are σxx = jx/Edc,
σxy = jy/Edc (the current is computed per one electron).
We work in the regime of the weak dc field where jx,jy

scales linearly with Edc. The current jy is determined by the
drift velocity vd = Edc/B � vF . Since the mean-free path
is large compared to disk size 	e � rc � rd we have an ap-
proximate relation σxy ≈ 1/B, σxx ≈ 
x/B	e ≈ σxy
x/	e.
As in 2DEG experiments1,2 we have in our simulations
σxy/σxx = Rxy/Rxx ∼ 100 (see Fig. 12). The resistivity is
obtained by the usual inversion of conductivity tensor with
Rxx = σxx/(σ 2

xx + σ 2
xy) ≈ σxx/σ

2
xy , Rxy = σxy/(σ 2

xx + σ 2
xy) ≈

1/σxy . The dependence of Rxx , Rxy , expressed in arbitrary
numerical units, on magnetic field B = ω/j = 1/j is shown
in Fig. 12.

In the absence of microwave field we find Rxy ∝ B and
Rxy/Rxx ≈ 200 similar to experiments.1,2 For small noise
amplitude (e.g., αi = 0.005) we have Rxx growing linearly
with B (see Fig. 12) but at larger amplitudes (e.g., αi = 0.02)
its increase with B becomes practically flat showing only 30%
increase in a given range of B variation.

In the presence of a microwave field the dependence of Rxx

on B is characterized by periodic oscillations with minimal
Rxx values being close to zero at resonant values of j = jr

well visible in Fig. 12. The dependence of Rxx , Rxy rescaled
to their values Rxx(0), Rxy(0) in the absence of microwave field
is shown in Fig. 13 at various amplitudes of noise and fixed
ε, and in Fig. 14 at various ε and fixed noise amplitude αi .
We see that increase of noise leads to an increase of minimal
values of Rxx at resonant values jr . In a similar way a decrease
of microwave power leads to increase of minimal values of
Rxx at jr . At the same time the Hall resistance Rxy is only
weakly affected by microwave radiation as also happens in
ZRS experiments.
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FIG. 13. (Color online) Rescaled values of resistivity Rxx (left
panel) and Rxy (right panel) as function of j = ω/ωc at various noise
amplitudes αi = 0.005 (black curve), 0.01 (blue/dark curve), 0.02
(red/gray curve). Here ε = 0.04, εs = 0.001, other parameters are as
in Fig. 12. Curves are drawn though numerical points obtained with
a step 
j = 0.1. Data for model (D2).

These results are in qualitative agreement with the ZRS
experiments. On the basis of our numerical studies we attribute
the appearance of approximately zero resistance at jr values
in our bulk model of disk scatterers to long capture times of
orbits in disk vicinity at these jr values (see Fig. 9). During this
time tc noise gives fluctuations of collisional phase θ and due
to that a cyclotron circle escapes from the disk practically at
random displacement 
x that after averaging gives average

x = 0. Since resistivity is determined by the average value
of 
x this leads to appearance of ZRS. We note that
this mechanism is different from the one of edge transport
stabilization discussed here and in Ref. 9. However, both
mechanisms are related to a long capture times near the edge
or near the disk that happens due to synchronization of the
cyclotron phase with microwave field phase and capture inside
the nonlinear resonance.

To illustrate the capture inside the resonance we present
the distributions of trajectories from Fig. 14 shown in the
phase space plane (vr,φ

′) at the moments of collisions with
disks in Fig. 15. This is similar to the Poincaré sections of
Fig. 8. However, now we consider the real case of diffusion
and scattering on many disks in the model (D2) with noise
and dissipation. We see that for j = 2.25 orbits are captured
in the vicinity of the center of nonlinear resonance at φ′ ≈ 0
well seen in Fig. 8. For j = 2.1 we have a density maximum
located at smaller values of vres and φ′ ≈ 0 even if there is a
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FIG. 14. (Color online) Same as in Fig. 13 at various microwave
amplitudes ε = 0.01 (red/gray curve), 0.02 (blue/dark curve), 0.04
(black curve); amplitude of noise is fixed at αi = 0.005. Data for
model (D2).
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FIG. 15. (Color online) Phase space (vr ,φ
′) of trajectories at the

moment of collisions with disks for parameters of Fig. 14 at ε = 0.04:
j = 2.1 (top left), j = 2.25 (top right), j = 2.75 (bottom left), j =
3.25 (bottom right). Here φ′ = φ − θ where φ = ωt is a microwave
phase at the moments of collisions with disk and θ is the angle on
disk at collision moment, counted from x axis (same as in Figs. 7, 8).
Data are obtained from 500 trajectories iterated up to time t = 106/ω.
Density of points is shown by color with black at zero and white at
maximum density. The average number of collisions per disk per
trajectory is Ncol = 12.4, 25.9, 9.5, 15.5 respectively for j = 2.1,
2.25, 2.75, 3.75. Data are obtained for model (D2).

certain shift of vres produced by a significant resonance width
at ε = 0.04. At j = 2.75 we have a density maximum at φ′ ≈
±π corresponding to an unstable fixed point of separatrix.
The total number of collision points Ncol in this case is by
a factor 2.5 smaller than in the case of stable fixed point at
j = 2.25. A similar situation is seen in the case of wall model
(W1) [see Figs. 1(d) and 1(f) in Ref. 9] even if there the
ratio between the number of captured points was significantly
larger. The results of Fig. 15 show that in the ZRS phase the
collisions with disk indeed create synchronization of cyclotron
and microwave phases and capture of trajectories inside the
nonlinear resonance.

However, there are also some distinctions between bulk
disk model (D2) and experimental observations. The first one
is that there are minima for Rxx/Rxx(0) but there are no
peaks which are very visible around integer j values in ZRS
experiments,1,2,8 and numerical simulations of transport along
the edge.9 The second one is the appearance of small negative
values of Rxx at jr values.

We attribute the absence of peaks to a specific dissipation
mechanism which takes place only at disk collisions. It is rather
convenient to run long trajectories using the exact solution for
free propagation between disks. Indeed, in this scheme there
is no dissipation during this free space propagation and thus
these parts of trajectories have no displacement along the static
field. We also tested a dissipation model with additional γ (v) =
γ0(|v/vF |2 − 1) for |v| > vF and γ (v) = 0 for |v| � vF . This
dissipation works only in the disk vicinity when the distance
between disk center and cyclotron center is smaller than
rd + rc. The dissipation γd on the disk remains unchanged.
We also added a certain roughness of disk surface modeled
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FIG. 16. Dependence of Rxx/Rxx(0) on j in the disk model with
dissipation at disk collisions at rate γd = 0.01 and dissipation in disk
vicinity with rate γ0/ω = 0.02; a disk roughness gives additional
angle rotations with amplitude αd = 0.1 (see text); the amplitude of
noise in disk vicinity is αi = 0.001. Here we have ε = 0.04, εs =
0.001; 51 numerical points in j are connected by lines to guide the
eye. Data are obtained by averaging over 100 trajectories propagating
up to time t = 106/ω. Data for model (D3).

as an additional random angle rotation of velocity vector in
the range ±αd , done at the moment of collision with the
disk. We call this system disk model (D3). The results for the
resistivity ratio Rxx/Rxx(0) are shown in Fig. 16. They show
an appearance of clear peaks of Rxx/Rxx(0) in the presence of
such additional dissipation in the vicinity of integer j . There
is also a small shift of minima from integer plus 1/4 to integer
plus 0.4–0.5.

The second point of distinction from ZRS experiments
is a small negative value of Rxx at resonant j values. It is
relatively small for disk model (D2) (see Figs. 13, 14) and it
becomes more pronounced for disk model (D3) (see Fig. 16).
It is possible that a scattering on the disk in the presence of
dissipation, noise, static, and microwave field gives a negative
displacement 
x which generates such negative Rxx values.
We expect that in the limit of static field going to zero this
effect disappears. Indeed, the negative values become smaller
at smaller εs according to the data of Fig. 11 but unfortu-
nately the small εs limit is also very difficult to investigate
numerically.

We consider that at this stage of the theory the presence
of negatives values for Rxx does not constitute a critical
disagreement. The escape parameters for electrons that have
been captured on an impurity for a time long enough to make
many rotations around it are likely to strongly depend on
the model for the electron impurity interaction and further
theoretical work on a more microscopic model is needed. In
general a zero average displacement along the field direction
seems natural for a smooth distribution of trapping times
with a characteristic time scale much larger than the rotation
time around the impurity (this assumption does not seem
to hold for our model; see for example the sharp features
on Fig. 10). Finally in Sec. VII we propose a slightly
different mechanism by which the combination of trapping on
impurities investigated here and electron-electron interactions
can lead to ZRS.

V. PHYSICAL SCALES OF ZRS EFFECT

The ZRS experiments1,2 show that the resistance Rxx

in the ZRS minima scales according to the Arrhenius law
Rxx ∝ exp(−T0/T ) with a certain energy scale dependent
on the strength of microwave field. In typical experimental
conditions one finds very large T0 ≈ 20 K at jr = 5/4 (see,
e.g., Fig. 3 in Ref. 2). These data also indicate the dependence
T0 ∝ 1/jr ∝ B. This energy scale kBT0 is very large being only
by a factor 7 smaller than the Fermi energy EF /kB ≈ 150 K.
At the same time the amplitude of the microwave field is rather
weak corresponding to ε ≈ 0.003 at a field of 1 V/cm or ten
times larger at 10 V/cm (unfortunately it is not known what is
the amplitude of the microwave field acting on an electron).

As in Ref. 9 we argue that the Arrhenius scale is determined
by the energy resonance width (4) with T0 = Er/kB . Indeed,
the resonance forms an energy barrier for a particle trapped
inside the resonance by dissipative effects being analogous
to a washboard potential. An escape from this potential well
requires overcoming the energy Er leading to the Arrhenius
law for Rxx dependence on temperature. Assuming the case
of the wall with ρ = 1 we obtain at E = 3 V/cm the
activation temperature T0 ≈ 23 K, in satisfactory agreement
with the experimental observations. The theoretical relation
(4) also reproduces the experimental dependence T0 ∝ 1/jr

at ρ = 1. In this relation T0 ∝ ε ∝ E is confirmed by the
numerical simulations presented in Ref. 9. This dependence is
in satisfactory agreement with the power dependence found in
experiments.1 In other samples one finds that the dependence
T0 ∝ ε2 works in a better way. We think that higher terms in
a nonlinear resonance can be responsible for scaling T0 ∝ ε2

being different from the relation (4). Also a finite rigidity of the
wall or disk scatterers can be responsible for the appearance
of the higher power of ε.

The energy scale Er on disks is enhanced by a factor
ρ = 1 + rc/rd for the case of radial field (4). However, we
showed that for a linear polarization the scale Er is given by
Eq. (5) and thus there is no enhancement at large ρ. Indeed,
we performed direct simulations at parameters of Fig. 14 with
the reduced value of disk radius by a factor 2. The numerical
data give approximately the same traces Rxx/Rxx(0) vs j at
ε = 0.01,0.02,0.04 without visible signs of deeper minima
at small ε. This confirms the theoretical expressions (5).
In any case, for small values rd � rc one should analyze
the quantum scattering problem which is significantly more
complex compared to the classical case. We may assume
that in a quantum case one should replace rd by a magnetic
length aB ≈ rc/

√
ν ∝ √

B. In such a case we are getting ρ =
1 + √

ν ≈ 9 that gives T0 ≈ 8 K at j ≈ 2.25 and microwave
amplitude E ≈ 3 V/cm. However, in this case we obtain the
scale T0 being practically independent of j which differs from
experimental data. In any case in experiments the size of
impurities is small compared to rc and a quantum treatment is
required to reproduce the correct picture for Rxx dependence
on parameters in the ZRS phase.

Another point is related to the positions of ZRS minima
on j axis. We recall that for the wall model the resonance
is located at vres = πδj/j (4) and that the separatrix width is
δv = 4

√
ε/j . The capture of trajectories from the bulk is most

efficient when a half width of separatrix touches the border
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of bulk at vr = 0 with vres = δv/2 that gives the expression
δjε = 2

√
εj/π for the wall case. At ε = 0.06, j = 2.25 this

gives δjε = 0.22 being in a good agreement with the numerical
data δj ≈ 1/4 for Rxx dependence on j (see Figs. 2, 3 in Ref. 9
with a visible tendency of δj growth with j ). For the data
presented here in Fig. 14 for the disk case at ε = 0.04, ρ = 1 +
j , j = 2.25 we obtain from (5) δjε = 0.11 that is slightly less
than the numerical value δj ≈ 0.25 for minima location. We
attribute this difference to an approximate nature of expression
for the resonance width at relatively strong microwave fields.
We also note that in experiments an additional contribution to
the value of δj can appear due to a finite rigidity of disk and
wall potentials.

VI. THEORETICAL PREDICTIONS FOR
ZRS EXPERIMENTS

The theoretical models presented here and in Ref. 9 repro-
duce the main experimental features of ZRS experiments.1,2,8

However, it would be useful to have some additional theoretical
predictions which can be tested experimentally. A certain
characteristic feature of both wall and disk models is the
appearance of nonlinear resonance. For example, according
to the wall model (W2) described by Eq. (3) the dynamics
inside the resonance is very similar to dynamics of a pendulum.
The frequency of phase oscillations inside the resonance is
�ph = √

K = 2
√

εω/ωc = 2
√

εj � 1.13 Here the frequency
is expressed in the number of map iterations and since the
time between collisions is approximately 2π/ωc we obtain
the physical frequency �r of these resonant oscillations
being �r/ω = �phωc/(2πω) = √

εωc/ω/π . At ε ∼ 0.02 this
frequency is significantly smaller than the driving microwave
frequency. The dynamics inside the resonance should be very
sensitive to perturbations at frequency ω1 ≈ �r that gives

ω1/ω =
√

εωc/ω /π. (6)

To check this theoretical expectation we study numerically
the effect of additional microwave driving with dimensional
amplitude ε1 (ε1 � ε) and frequency ω1. We use the wall
model (W2) based on the Chirikov standard map described
here and in Ref. 9. As for the additional driving frequency
we have ε1 = |E1|/(ω1vF ) where E1 is the field strength
of microwave frequency ω1; we assume that both main and
additional fields are collinear and perpendicular to the wall.
In the presence of the second frequency the map (3) takes the
form

v̄y = vy + 2ε sin φ + 2ε1 sin(ω1φ/ω) + Icc,
(7)

φ̄ = φ + 2(π − v̄y)ω/ωc.

The only modification appears in the first equation since now
the change of velocity at collision depends on both fields; the
second equation remains the same as in (3). As in model (W2)
the term Icc describes the effects of dissipation with rate γc and
noise with amplitude α of random velocity angle rotations. We
call this system model (W3).

In model (W3) the resistance Rxx is computed numerically
in the same way as in model (W2) described in Ref. 9:
The displacement along the edge between collisions is δx =
2vy/ωc; it determines the total displacement 
x along the

edge during the total computation time 
t ∼ 104/ω; then
Rxx ∝ 1/Dx = 
t/(
x)2 where Dx is an effective diffusion
rate along the edge. To see the effect of additional weak
test driving ε1 at frequency ω1 we place the system in the
ZRS phase at j = ω/ωc = 2.25 and measure the variation of
rescaled resistance Rxx/R

ε
xx(0). Here Rxx is the resistance

in the presence of both microwave fields ε and ε1 while
Rε

xx(0) is the resistance at ε1 = 0 and a certain fixed ε. The
dependence of Rxx/R

ε
xx(0) on the frequency ratio is shown in

Fig. 17 in the left panel. The main feature of this data is the
appearance of a peak at low frequency ratio ω1/ω < 0.1. In
the range 0.1 < ω1/ω < 0.4 the testing field ε1 is nonresonant
and does not affect Rxx ; however at ω1/ω < 0.1 it becomes
resonant to the pendulum oscillations in the wall vicinity and
hence strongly modifies the Rxx value. The dependence of this
resonance ratio ω1/ω on the amplitude of the main driving
field ε is shown in the right panel of Fig. 17. The numerical
data are in a good agreement with the above theoretical
expression (6).

The theoretical dependence (6) allows us to check the
synchronization theory of edge state stabilization. It also
allows us to measure the strength of the main microwave
driving force acting on an electron that still remains an
experimental challenge. The experimental testing of relation
(6) requires working with good ZRS samples which have
very low resistance in ZRS minima since this makes the
effect of testing field ω1 more visible. We note that the
recent experiments in a low-frequency regime ω/ωc � 124

demonstrate that Rxx is sensitive to low-frequency driving.
The expression (6) is written for the case when Rxx is
mainly determined by transport along edges. If the dominant
contribution is given by bulk disk scatterers then a certain
numerical coefficient A should be introduced in the right part
of the expression. According to the data of Fig. 8 and Eqs. (5)
we estimate A ≈ 0.5 (the separatrix width is smaller for the
disk case compared to the wall case at the same ε).

Another interesting experimental possibility of our theory
verification is to take a Hall bar of a high-mobility 2DEG
sample and put on it antidots with regular or disordered
distribution (it is important to have no direct collisionless path
for a cyclotron radius in crossed dc electric and magnetic
fields) with a low density of antidot disks ndr

2
d � 1 (as in

our numerical studies) so that an average distance between
antidots is larger than the cyclotron radius rc. The regular
antidot lattices have been already realized experimentally.18,19

The effect of microwave field on electron transport in a regular
lattice has been studied in the frame of ratchet transport
in asymmetric lattices.25 Even a case of symmetric circular
antidots has been studied in Ref. 25 but the lattice was regular
and no special attention was paid to analysis of resistivity
at the ZRS resonant regime with j ≈ jr . The earlier studies
of the combined effect of microwave and magnetic fields on
2DEG transport on a circular antidot lattice have been also
reported in Ref. 26. However, in Ref. 26 the experiments were
done in the regime when the number of antidots Na inside the
cyclotron circle area is larger than unity, while the conditions
of ZRS experiments correspond to Na � 1. We think that the
experimental conditions of Refs. 25,26 can be relatively easy
modified to observe the ZRS effect on disk scatterers discussed
here.

035410-12



TOWARDS A SYNCHRONIZATION THEORY OF . . . PHYSICAL REVIEW B 88, 035410 (2013)

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0
-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

log )ω ω

log

/1

ε

(
10

10

0.0 0.2 0.4
0

2

4
R  /Rxx

ω ω

xx (0)

/1

ε

FIG. 17. (Color online) Left panel: Dependence of rescaled resistance Rxx/R
ε
xx(0) on frequency ratio ω1/ω in model (W3) described by

the map (7). Here, the test driving at frequency ω1 has fixed amplitude ε1 = 0.007; the main microwave driving is located in the ZRS phase
at j = ω/ωc = 2.25, and its amplitude takes values ε = 0.02 (blue curve), 0.03 (green curve), 0.04 (magenta curve), 0.06 (red curve) (these
curves follow from top to bottom at ω1/ω = 0.2). The values of Rxx are computed at fixed ε1 = 0.007 and corresponding ε; the values of
Rε

xx(0) are computed at ε1 = 0 and ε = 0.02. The data are obtained at noise amplitude α = 0.02 and dissipation γc = 0.01; averaging is done
over 2000 trajectories for 5000 iterations of map (7). Right panel: Dependence of peak position ω1/ω on main microwave driving amplitude ε

obtained from data of left panel at ε1 = 0.007 and additional data at ε1 = 0.003 (blue points), the theory dependence (6) at ω/ωc = 2.25 is
shown by the straight red line. Data for model (W3).

VII. DISCUSSION

Above we presented theoretical and numerical results
which in our opinion explain the appearance of microwave-
induced ZRS in high-mobility samples. The synchronization
theory of ZRS proposed in Ref. 9 and extended here is based
on a clear physical picture: High harmonics ω/ωc = j > 1
are generated by collisions with a sharp edge boundary or
isolated impurities which are modeled here by specular disks.
The ZRS phases appear in the vicinity of resonant values
jr ≈ 1 + 1/4, 2 + 1/4, . . . . At these jr values the cyclotron
phase of electron motion becomes synchronized with the
microwave phase due to dissipative processes present in the
system.

For trajectories at the edge vicinity this synchronization
gives stabilization of propagation along edge channels that
creates an exponential drop of resistivity contribution of these
channels with decreasing amplitude of thermal noise and
increasing amplitude of microwave field. The contribution
to resistivity from trajectories in the bulk is analyzed in the
frame of scattering on many well-separated disk impurities.
Here again the synchronization of cyclotron phase with the
microwave phase takes place approximately at the same
resonant jr values. At these jr values the synchronization leads
to long-time capture of trajectories in the disk vicinity. During
this long time an initial cyclotron phase is washed out by noisy
fluctuations and many rotations around the disk and thus an
electron escapes from a disk with an average zero displacement
along the applied dc field even if dynamics in the disk vicinity is
dissipative. This provides the main mechanism of suppression
of dissipative resistivity contribution from isolated impurities
in the bulk. As a result the contribution of bulk to dissipative
conductivity σxx is suppressed, as was assumed in Ref. 9,
and the main contribution to current is given by electron
propagation along edge states stabilized by a microwave field.

As we showed above the resonance width or resonance
energy scale Er are approximately the same for the disk and
wall cases [see Eqs. (4), (5)]. We note that for the disk case
the energy Er is not sensitive to the disk radius as soon as it is
significantly smaller than the cyclotron radius. Thus we expect
that at jr values the conductivity σxx in the bulk is suppressed
by a microwave field and at these fields the current is flowing
essentially along stabilized edge states. In the case of Corbino
geometry we have radial conductivity σrr which is determined
by the bulk scattering and now the minima of σrr are located
at jr values (see, e.g., Figs. 12, 13, and 14 where Rxx ∝ σxx ∼
σrr ). The ZRS experiments performed in the Corbino geometry
give minima of σrr at these jr values (see, e.g., Refs. 27 and 28)
being in agreement with the synchronization theory.

It is interesting to note that the nonlinear dynamics in the
vicinity of the edge and disk impurity is well described by
the Chirikov standard map.13 The map description explains
the location of resonances at integer values of j with an
additional shift δj ≈ 1/4 produced by a finite separatrix width
of nonlinear resonance. A finite rigidity of wall or disk
potential can give a modification of this shift δj .

Our results show that the ZRS phases at jr appear only at
weak noise corresponding to high-mobility samples. Strong
noise destroys synchronization and trajectories are no longer
captured at edge or disk vicinity. We also note that internal
sample potentials with significant gradients act like a strong
local dc field which destroys stability regions around disk
impurities or near the edge. Thus the ZRS effect exists only in
high-mobility samples. The resistance at ZRS minima drops
significantly with the growth of microwave field strength
since it increases the amplitude of nonlinear resonance which
captures the synchronized trajectories.

The synchronization theory of ZRS is based on classical
dynamics of noninteracting electrons. It is possible that
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electron-electron interaction effects can also suppress the
contribution to resistivity from neutral short-range scatterers
(interface roughness, adatoms, etc.). Indeed, long capture
times can increase the electron density around these short-
ranged impurities transforming them into long-range charged
scatterers that the other electrons can circumvent by adia-
batically following the long-range component of the disorder
potential thereby avoiding a scattering event. However, the
theoretical description of this short-ranged impurity cloaking
mechanism for the ZRS effect remains a serious challenge.

Another important step remains the development of a quan-
tum synchronization theory for ZRS. Even if in experiments
the Landau level is relatively high ν ∼ 60, there are only about
ten Landau levels inside a nonlinear resonance9 and quantum
effects should play a significant role. The general theoretical
studies show that the phenomenon of quantum synchronization
persists at small effective values of Planck constant h̄eff but it
becomes destroyed by quantum fluctuations at certain large
values of h̄eff .29

The importance of quantum ZRS theory is also related
to the short-range nature of the impurities considered here,
typically on a scale of a few nanometers or even less. We
have modeled these impurities by disks with a radius that was

only several times (in fact j times) smaller than the cyclotron
radius which is not so close to microscopic reality. We could
argue that in the quantum case a nanometer-sized impurity
would act effectively as an impurity of a size of quantum
magnetic length aB ∼ rc/

√
ν ≈ rc/8 ∼ 100 nm. This gives a

ratio rc/aB ∼ 8 which is comparable with the one used in
our simulations with rc/rd = j ∼ 7 but of course a quantum
treatment of scattering on nanometer-size impurities in crossed
electric and magnetic and also microwave fields remains a
theoretical challenge. We note that such type of scattering can
be efficiently analyzed by tools of quantum chaotic scattering
(see, e.g., Refs. 30,31) and we expect that these tools will allow
us to make progress in the quantum theory development of
striking ZRS phenomenon. We hope that the synchronization
theory of microwave-induced ZRS phenomenon described
here can be tested in further ZRS experiments.
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