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We consider a PageRank model of opinion formation on Ulam networks, generated by the intermittency
map and the typical Chirikov map. The Ulam networks generated by these maps have certain similarities
with such scale-free networks as the World Wide Web (WWW), showing an algebraic decay of the
PageRank probability. We find that the opinion formation process on Ulam networks has certain
similarities but also distinct features comparing to the WWW. We attribute these distinctions to
internal differences in network structure of the Ulam and WWW networks. We also analyze the
process of opinion formation in the frame of generalized Sznajd model which protects opinion of small
communities.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The understanding of mechanisms of opinion formation in the
modern society is at the heart of a newly emerged research field,
known as sociophysics [1]. A number of voter models has been de-
veloped during the last few decades for understanding of nontrivial
features of opinion formation in a society (see Refs. [2–6] for de-
tails). However, these models are generally considered on abstract
regular lattices, which are very different from a scale-free structure
of modern social networks with hundreds of millions of users. In
particular, such social networks as LiveJournal [7], Facebook [8] or
Twitter [9] allow to have a rapid information exchange over a large
fraction of network users and to share social events, making an es-
sential contribution to the mass opinion formation. These social
networks have a growing influence on the social and political life.

A straightforward way of taking into account the main fea-
tures of such networks was recently proposed in Ref. [10]: the
opinion on each given node of a scale-free network is assumed
to be formed by opinions of its linked neighbors, weighted with
their PageRank probability. The latter quantity is interpreted as a
probability of finding a random surfer on a given node [11,12].
Obviously, this approach introduces the notion of importance of
a node, naturally reproducing the real society, where each person
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has its degree of authority. Mathematically the PageRank is defined
as the right eigenvector with unit eigenvalue of Google matrix of
a given network [12]. Although the PageRank algorithm was ini-
tially proposed for an efficient ranking of web pages [11], it turned
out to be useful for the analysis of broad class of real networks
including e.g. scientific journal rating, neuronal and world trade
networks, etc. [13–16]. The rules of Google matrix construction for
a given directed network are described in [11,12,15].

In the present work we study the PageRank Opinion Formation
(PROF) model, proposed in [10], on another family of directed net-
works, known as Ulam networks. The Ulam method, introduced
in Ref. [17], was initially proposed for constructing a matrix ap-
proximant for a Perron–Frobenius operator of dynamical systems
(we note that the Google matrix also falls in the same class of op-
erators). The Ulam conjecture [17] was shown to be true for var-
ious types of generic fully chaotic maps on an interval [18–21].
Recent studies have shown that this method naturally generates
a class of directed networks, which properties have certain simi-
larities with the WWW directed networks [22,23]. Thus the Ulam
networks demonstrate a sensitivity to the damping parameter α
of the corresponding Google matrix and a power law decay of
its PageRank. Here we are interested in two particular examples:
the typical Chirikov map with dissipation and the one-dimensional
intermittency map. The first one, introduced in Ref. [24] for a de-
scription of continuous chaotic flows, has been studied in [22,25].
The second one is generated from intermittency maps, studied in
systems exhibiting intermittency phenomenon, featuring anoma-
lous diffusion and transport [26–30]. We note that a similar ap-
proach, directly related to the Ulam method and based on network
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representation of coarse-grained maps, can be used for the inves-
tigation of predictability and information aspects of a system [31].
In addition, coarse graining and associated symbolic dynamics, lo-
cal and global spectra analysis is also at the heart of prediction,
error estimates and monitoring of nonlinear complex systems [32,
33].

In this work we analyze the properties of PROF model on the
Ulam networks and study the influence of network elite on opin-
ion formation process. We also consider the Sznajd model [34],
generalized for scale-free networks following [10]. This model in-
corporates the effect of groups, consisting of voters of the same
opinion following the trade union slogan united we stand, divided
we fall. We note that the above models share some similarities with
a recently analyzed model of continuous opinion dynamics [35]. In
particular, the diffusion effects introduced there can be associated
with the damping factor of the Google matrix, to be discussed be-
low.

In the rest, the Letter is organized as follows: in the next sec-
tion we give a brief description of the Ulam method and PROF
model and present our numerical results. In Section 3 we combine
the PROF and Sznajd models and analyze their properties on Ulam
networks. The discussion of the results is given in Section 4.

2. The PROF model and Ulam networks

We start with a brief outline of the Ulam method for dynamical
maps following the description given in [22,23]. As the first model
we use the one-dimensional (1d) intermittency map described in
[23]:

x̄ = f (x) =

⎧⎪⎨
⎪⎩

x + (2x)z1/2,

for 0 � x < 1/2,

(2x − 1 − (1 − x)z2 + 1/2z2)/(1 + 1/2z2),

for 1/2 � x < 1,

(1)

where x̄ notes the new value of variable x. The Ulam network gen-
erated by this map is constructed in the following way: the whole
interval 0 < x < 1 is divided to N equal cells and Nc trajectories
(randomly distributed inside a cell) are iterated on one map it-
eration from cell j, to obtain matrix elements for transitions to
cell i: Sij = Ni( j)/Nc , where Ni( j) is the number of trajectories ar-
rived from cell j to cell i. From the matrix Sij , one constructs the
Google matrix G, defined as:

G = αS + (1 − α)E/N, (2)

where Eij = 1 and α is the damping factor. We use a probability
normalization of the eigenstate |ψ1〉 (with a unit eigenvalue) of the
matrix (2), which results in the PageRank P j of the network (see
[23] for a detailed description of its properties). We also arrange
all N nodes in monotonic decreasing order of the PageRank prob-
ability. In what follows we set the damping factor of the Google
matrix of the intermittency map (1) to α = 1. We also fix the pa-
rameters of (1) to z1 = 2 and z2 = 0.2. This choice gives a power
law decay of the PageRank (sorted in descending order): P j ∝ 1/ j
[23].

We construct the PROF model for the Google matrix of the in-
termittency map (1) in the following way. We associate each node
of the network with a spin variable σi , taking values +1 (red color)
or −1 (blue color). Afterwards, we compute the quantity Σi over
all directly linked neighbors j of a node i:

Σi = a
∑

j

P+
j,in + b

∑
j

P+
j,out − a

∑
j

P−
j,in − b

∑
j

P−
j,out, (3)

where P j,in and P j,out denote the PageRank probability P j of a
node j pointing to node i (incoming link) and a node j to which
node i points to (outgoing link). The two parameters a and b are
Fig. 1. Time evolution of the opinion, given by a fraction of red nodes f (t), as a
function of number of time iteration t (a = b = 0.5). Full curves correspond to
different initial fractions f i = f (0) at a random realization: f i = 0.45 (red); 0.5
(green); 0.55 (blue). The dotted curves stand for the initial state with the first Ntop

nodes of the highest PageRank probability being red: Ntop = 100 (red); Ntop = 500
(green); Ntop = 1000 (blue). The total matrix size is N = 104; α = 1. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this Letter.)

used to tune the importance of incoming and outgoing links with
the imposed relation a + b = 1 (0 < a,b < 1). The values P+ and
P− correspond to red and blue nodes respectively. On one iteration
the value of a spin σi is fixed to +1 (red) for Σi > 0 or −1 (blue)
for Σi < 0. We note that the a and b parameters define the type of
a society: for a large value a a person takes mainly the opinion of
those electors who point to him/her (a tenacious society) and the
opposite for large values of b (a conformist society).

In Fig. 1 we present the evolution of the fraction of red nodes
f (t) ( f (t) = Nred/N) versus the iteration time t . We distinguish
two important cases, namely, when initially opinions are randomly
distributed over the network, and when the first Ntop nodes of the
highest PageRank probability are of the same opinion, e.g. of a red
color. For a random distribution the system converges to its final
state after tc ≈ 25 iterations for a = b = 0.5. Iterations are defined
as in [10].

In Fig. 1 we show the time evolution of opinion for the ini-
tial state where the society elite, corresponding to the top nodes
Ntop of highest PageRank probability, has the same opinion (dotted
curves). In this case the elite can impose its opinion to a faction of
society which is by a factor 2–3 larger than the initial fraction.
However, in comparison with the social or university networks
considered in [10] this increase is less significant that is due to
a smaller number of linked nodes for the Ulam network of inter-
mittency map.

For a comprehensive analyzes of the dependence of the final
fraction of red nodes f f on the initial state f i , we consider be-
low the evolution of f (t) for a large number of Nr initial (random)
distributions of red nodes (Fig. 2). We find that there is a certain
critical value fc such, that initial fractions f i of red nodes com-
pletely die out if f i < fc , or become dominant for f i > 1 − fc . For
a = 0.2 the value of fc is fc ≈ 0.45, while for a = 0.65 we have
fc ≈ 0.35. In contrast to results obtained in [10] we find that the
system has no bistability for a < 0.7: the final state is fixed for
a concrete homogeneous initial distribution of opinions. However,
for a dominating tenacious society at a > 0.7 there is a small prob-
ability that a small initial fraction of red nodes leads to a complete
domination of red color for values of f i > fc (see Fig. 2 left bot-
tom panel). For the case of a = 0.8, we have fc ≈ 0.3. Obviously,
the results are symmetric with respect to a change of red and blue
colors.

We also analyze how the final state depends on the number
of the elite members Ntop with the highest PageRank of the same
opinion (Fig. 3). We see that for any type of a society (any a) there
exists a value of Nc

top such that the elite can convince the whole
society, if Ntop > Nc

top . Note that the value of Nc
top depends on the
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Fig. 2. Density plot of probability W f to find a final red fraction f f , shown in
y-axis, in dependence on an initial red fraction f i , shown in x-axis; data are shown
inside the unit square 0 < f i , f f < 1. The values of W f are defined as a relative
number of realizations found inside each of 20 × 20 cells, which cover the whole
unit square. Here Nr = 103 realizations of randomly distributed red and blue colors
are used to obtain W f values (with convergence time up to t = 150). Here a = 0.2
(left top panel), 0.5 (left bottom panel), 0.65 (right top panel), 0.8 (right bottom
panel); N = 104. The probability W f is proportional to color changing from zero
(blue) to unity (brown). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

Fig. 3. Left panel: final fraction of red nodes f f versus Ntop/N , for a = 0.4 (red), 0.6
(green), 0.8 (blue). Right panel: dependence of the final fraction of red nodes f f on
the parameter a, for initial state with different number of the first Ntop nodes of
the highest PageRank being red: Ntop = 100 (red); 1000 (green). Here N = 104. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this Letter.)

tenacious parameter a. The larger the tenacious parameter is, the
smaller number of the elite members of a same opinion can bring
the system to unanimity.

3. The generalized PROF–Sznajd model

In this section we consider the properties of the combination of
PROF and Sznajd models [34]. The Sznajd model features the idea
of groups of a society and thus incorporates a well-known princi-
ple “United we stand, divided we fall”. A thorough analyzes of the
problem on regular lattice networks can be found in Ref. [36]. The
present generalization (which results in the PROF–Sznajd model) is
applicable to scale-free and Ulam networks. We define the notion
of group of nodes at each discrete time step τ following Ref. [10]:

1. we pick randomly a node i in the network and consider the
state of the Ng − 1 highest PageRank nodes pointing to it;

2. if the node i and all other Ng − 1 nodes have the same color
(same spin orientation), these Ng nodes form a group, whose
effective PageRank value is the sum of all the member values

P g = ∑Ng

j P j . If it is not the case, we leave the nodes un-
changed and perform the next time step;

3. consider all the nodes pointing to any member of the group
and check all these nodes n directly linked to the group: if
Fig. 4. Left panel: time evolution of the fraction of red nodes f (τ ) of the PROF–
Sznajd model, with different initial fractions of red nodes and the group size Ng (at
one random realization each): f i = 0.55, Ng = 3 (red); f i = 0.55, Ng = 4 (green);
f i = 0.7, Ng = 3 (blue); f i = 0.7, Ng = 4 (black). Right panel: the same as in Fig. 2,
but for the PROF-Sznajd model with group size Ng = 3, with convergence time up
to τ = 5 · 105; colors are as in Fig. 2. Here N = 104. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
Letter.)

an individual node PageRank value Pn is less than the defined
above P g , the node joins the group by taking the same color
(polarization) as the group nodes and increase P g by the value
of Pn; if it is not the case, a node is left unchanged.

In Fig. 4 we present a typical behavior of the PROF–Sznajd
model on Ulam network generated by the intermittency map.
Firstly, we find that the convergence time is longer than that of
the PROF model, which is the generic feature of the Sznajd model.
The system converges to its final state after a time τc of the or-
der of τc ∼ 10N . Note that there are still some fluctuations in the
steady state regime, which were absent in the conventional PROF
model. Another observation concerns the group size Ng : we find
that the size of the group does not affect much the properties of
the model: there is a small decrease in the resistivity of minorities
with the group size increase (of around 2% with a change from
Ng = 3 to Ng = 4). Furthermore, the network practically does not
have nodes with more than four incoming links, hence, we find
that considering a group size with Ng > 5 loses its sense.

The right panel of Fig. 4 shows a density plot of probability
W f , constructed in a similar to Fig. 2 way. We see, that the rate
of surviving of small fractions of (red) nodes is drastically small
(we address this result to the poor incoming link structure of the
Ulam network). The initial states are suppressed if f i � 0.45. But
for 0.45 < f i < 0.5 (0.5 < f i < 0.55) there is a small probability
of approximately 8% that the fraction will become dominant (be
suppressed). Outside of this small range of f i we don’t find any
regions of bistability: the final state of the system is fixed.

For the PROF–Sznajd model we are additionally interested in
the Ulam network, generated by another dynamical map, the typi-
cal Chirikov map with dissipation:

{
yt+1 = ηyt + k sin(xt + θt),

xt+1 = xt + yt+1.
(4)

Here the dynamical variables x and y are taken at integer mo-
ments of time t . Also x has a meaning of phase variable and y is a
conjugated momentum or action. For a detailed description of this
dynamical system, see Ref. [22]. The map region is 0 � x < 2π and
−π � y < π , with 2π -periodic boundary conditions. The phases
θt = θt+T are T random phases periodically repeated along time t .
Here we consider the T10 case with T = 10, analyzed in Ref. [22].
The values of parameters are set to η = 0.99, k = 0.22. The list of
10 values of θt phases can be found in the Appendix of Ref. [22].
For the construction of the Ulam network we divide the phase
space to nx × ny cells (nx = ny = 100). Afterwards, Nc trajectories
are propagated from each given cell j during T map iterations to
obtain elements of the adjacency matrix Sij for transitions to cell i
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Fig. 5. Left panel: The average of the final fraction of red nodes 〈 f f 〉 versus the
initial fraction f i for the PROF–Sznajd model of T10 model of the typical Chirikov
map (α = 0.95, nx = ny = 100, N = 104). Here, Nr = 103 realizations with a conver-
gence time up to τ = 3 · 105 are used to obtain the average 〈 f f 〉 (the group size is
Ng = 3). Right panel: time evolution of the fraction of red nodes f (τ ) for the same
model, for the initial state with the first Ntop nodes of the highest PageRank being
red: Ntop = 1500 (red); Ntop = 4000 (green); Ntop = 8000 (blue). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this Letter.)

(in the same manner as for the mapping (1)). The total matrix size
is N = 104.

For this network we find a higher strength of resistivity of mi-
norities, since it has a richer link structure. In Fig. 5 we plot the
average of the final fraction of red nodes f f versus the initial frac-
tion f i . We see here that minor opinions die out if f i � 0.3. The
damping factor of the Google matrix here is set to α = 0.95, which
gives a power law decay of the PageRank with a slope of 0.48 (see
Ref. [22]). We also looked at the f f versus f i behavior for other
values of the damping factor. As mentioned above, the Google ma-
trix properties of Ulam networks are sensitive to the values of α.
Nevertheless, our calculations showed, that for 0.95 < α < 1, qual-
itative behavior of the PROF-Sznajd model remains similar to that
of Fig. 5. On the other hand, as pointed out in Ref. [10], the in-
crease of the slope of the power law decay of the PageRank should
result in a bistable behavior of the PROF and PROF-Sznajd mod-
els on social and university networks. However, this argument
does not hold true for Ulam networks: although the slope of the
PageRank increases with growth of α (e.g. for α = 0.98 we have
P j ∝ 1/ j0.7, while for α = 0.99 we have P j ∝ 1/ j0.9), bistability
does not emerge. Thus we conclude that a presence of bistability
behavior is associated not only with the slope of the PageRank de-
cay, but also with the intrinsic structure of the network itself.

For the PROF–Sznajd T10 model we find that the elite of the so-
ciety cannot convince any elector, if its fraction is initially relatively
small. In particularly, the first Ntop nodes of the highest PageR-
ank with the same opinion are suppressed for Ntop/N � 0.2. For
Ntop/N � 0.2, the elite becomes capable to influence the opinion
of other electors, but the convergence process as well as the final
state starts exhibiting fluctuations of a significant amplitude. These
fluctuations become smaller for higher values of Ntop and almost
disappear for Ntop/N � 0.7 where the society comes to unanimity.

Finally, we shortly describe the initial and final distributions of
red nodes in the coordinate space. It is of interest to consider the
case of initial state with Ntop red nodes with the highest PageR-
ank, since for random distributions the final and initial states are
homogeneously distributed over phase plane. Fig. 6 shows the ini-
tial and final distributions for Ntop = 2200. We find that the top
elite nodes first tend to convince other members of the elite cor-
responding to the denser regions in the right panel of Fig. 6 with
high values of the PageRank probability.

4. Discussion

In this work we analyzed the features of a recently proposed
PageRank opinion formation model on two examples of Ulam net-
works. The Ulam networks generated by the discussed above one-
Fig. 6. Coordinate distribution of red nodes in (y, x) phase space of the PROF–Sznajd
T10 model (α = 0.95, nx = ny = 100, N = 104); the phase plane is shown in 2π ×
2π square. Left panel shows the initial state with Ntop = 2200 nodes of the highest
PageRank being red and f i = 0.22; right panel corresponds to the final state with
f f = 0.5758. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this Letter.)

dimensional intermittency and typical Chrikov maps exhibit some
intrinsic properties similar to the WWW. This fact makes the an-
alyzes relevant to the opinion formation process in real societies.
We pointed out that the elite of a society does not have a consid-
erable influence on the decision making process of the electors for
an equal mixture of conformist and tenacious society. However, the
influence of the elite becomes tangible for a dominating tenacious
society. In contrast to the university networks analyzed in [10] we
find practically no regions of bistability behavior for a random dis-
tribution of initial opinions. Only a dominating tenacious society
shows some signs of bistability.

We also considered a generalization of the Sznajd model for
Ulam networks (PROF–Sznajd model). We found here that the sys-
tem still practically does not feature bistable regimes. On the basis
of our studies we conclude that the PageRank decay exponent does
not influence the bistability for the Ulam networks considered in
this work. We argue that the chaotic maps considered generate
strong stretching of small regions of phase space but do not gener-
ate significant number of loop returns. We think that this feature
is different from university networks which are characterized by a
significant number of loops. We presume that this internal feature
of the Ulam networks is at the origin of significant difference in
opinion formation on these two types of scale-free networks. The
presented results can be useful for analysis of opinion formation
on other types of scale-free directed networks.
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