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Abstract

We consider a PageRank model of opinion formation on Ulam networks, generated by the intermit-
tency map and the typical Chirikov map. The Ulam networks generated by these maps have certain
similarities with such scale-free networks as the World Wide Web (WWW), showing an algebraic de-
cay of the PageRank probability. We find that the opinion formation process on Ulam networks have
certain similarities but also distinct features comparing to the WWW. We attribute these distinctions
to internal differences in network structure of the Ulam and WWW networks. We also analyze the
process of opinion formation in the frame of generalized Sznajd model which protects opinion of small
communities.
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1. Introduction

The understanding of mechanisms of opinion
formation in the modern society is at the heart
of a newly emerged research field, known as so-
ciophysics [1]. A number of voter models has
been developed during the last few decades for un-
derstanding of nontrivial features of opinion for-
mation in a society (see Refs. [2–6] for details).
However, these models are generally considered
on abstract regular lattices, which are very dif-
ferent from a scale-free structure of modern so-
cial networks with hundreds of millions of users.
In particular, such social networks as LiveJournal
[7], Facebook [8] or Twitter [9] allow to have a
rapid information exchange over a large fraction
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of network users and to share social events, mak-
ing an essential contribution to the mass opinion
formation. These social networks have a growing
influence on the social and political life.

A straightforward way of taking into account
the main features of such networks was recently
proposed in Ref. [10]: the opinion on each
given node of a scale-free network is assumed to
be formed by opinions of its linked neighbors,
weighted with their PageRank probability. The
latter quantity is interpreted as a probability of
finding a random surfer on a given node [11, 12].
Obviously, this approach introduces the notion of
importance of a node, naturally reproducing the
real society, where each person has its degree of
authority. Mathematically the PageRank is de-
fined as the right eigenvector with unit eigenvalue
of Google matrix of a given network [12]. Al-
though the PageRank algorithm was initially pro-
posed for an efficient ranking of web pages [11], it
turned out to be useful for the analysis of broad
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class of real networks including e.g. scientific jour-
nal rating, neuronal and world trade networks,
etc. [13–16]. The rules of Google matrix construc-
tion for a given directed network are described in
[11, 12, 15].

In the present work we study the PageRank
Opinion Formation (PROF) model, proposed in
[10], on another family of directed networks,
known as Ulam networks. The Ulam method, in-
troduced in Ref. [17], was initially proposed for
constructing a matrix approximant for a Perron-
Frobenius operator of dynamical systems (we note
that the Google matrix also falls in the same
class of operators). The Ulam conjecture [17] was
shown to be true for various types of generic fully
chaotic maps on an interval [18–21]. Recent stud-
ies have shown that this method naturally gen-
erates a class of directed networks, which prop-
erties have certain similarities with the WWW
directed networks [22, 23]. Thus the Ulam net-
works demonstrate a sensitivity to the damping
parameter α of the corresponding Google matrix
and a power law decay of its PageRank. Here
we are interested in two particular examples: the
typical Chirikov map with dissipation and the one
dimensional intermittency map. The first one, in-
troduced in Ref. [24] for a description of contin-
uous chaotic flows, has been studied in [22, 25].
The second one is generated from intermittency
maps, studied in systems exhibiting intermittency
phenomenon, featuring anomalous diffusion and
transport [26–30].

In this work we analyze the properties of PROF
model on the Ulam networks and study the influ-
ence of network elite on opinion formation pro-
cess. We also consider the Sznajd model [31],
generalized for scale-free networks following [10].
This model incorporates the effect of groups, con-
sisting of voters of the same opinion following the
trade union slogan united we stand, divided we

fall.

In the rest, the paper is organized as follows:
in the next section we give a brief description of
the Ulam method and PROF model and present
our numerical results. In Section 3 we combine
the PROF and Sznajd models and analyze their
properties on Ulam networks. The discussion of

the results is given in Section 4.

2. The PROF model and Ulam networks

We start with a brief outline of the Ulam
method for dynamical maps following the descrip-
tion given in [22, 23]. As the first model we use
the one-dimensional (1d) intermittency map de-
scribed in [23]:

x̄ = f(x) =







x+ (2x)z1/2, for 0 ≤ x < 1/2
(2x− 1− (1− x)z2 + 1/2z2)/
(1 + 1/2z2), for 1/2 ≤ x < 1

(1)

where x̄ notes the new value of variable x. The
Ulam network generated by this map is con-
structed in the following way: the whole interval
0 < x < 1 is divided to N equal cells and Nc

trajectories (randomly distributed inside a cell)
are iterated on one map iteration from cell j, to
obtain matrix elements for transitions to cell i:
Sij = Ni(j)/Nc, where Ni(j) is the number of tra-
jectories arrived from cell j to cell i. From the
matrix Sij, one constructs the Google matrix G,
defined as:

G = αS+ (1− α)E/N, (2)

where Eij = 1 and α is the damping factor. We
use a probability normalization of the eigenstate
|ψ1〉 (with a unit eigenvalue) of the matrix (2),
which results in the PageRank Pj of the network
(see [23] for a detailed description of its proper-
ties). We also arrange all N nodes in monotonic
decreasing order of the PageRank probability. In
what follows we set the damping factor of the
Google matrix of the intermittency map (1) to
α = 1. We also fix the parameters of (1) to z1 = 2
and z2 = 0.2. This choice gives a power law de-
cay of the PageRank (sorted in descending order):
Pj ∝ 1/j [23].

We construct the PROF model for the Google
matrix of the intermittency map (1) in the fol-
lowing way. We associate each node of the net-
work with a spin variable σi, taking values +1
(red color) or −1 (blue color). Afterwards, we
compute the quantity Σi over all directly linked
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neighbors j of a node i:

Σi = a
∑

j

P+
j,in + b

∑

j

P+
j,out (3)

−a
∑

j

P−

j,in − b
∑

j

P−

j,out,

where Pj,in and Pj,out denote the PageRank prob-
ability Pj of a node j pointing to node i (incom-
ing link) and a node j to which node i points to
(outgoing link). The two parameters a and b are
used to tune the importance of incoming and out-
going links with the imposed relation a + b = 1
(0 < a, b < 1). The values P+ and P− correspond
to red and blue nodes respectively. On one iter-
ation the value of a spin σi is fixed to +1 (red)
for Σi > 0 or −1 (blue) for Σi < 0. We note that
the a and b parameters define the type of a soci-
ety: for a large value a a person takes mainly the
opinion of those electors who point to him/her (a
tenacious society) and the opposite for large val-
ues of b (a conformist society).
In Fig. 1 we present the evolution of the fraction

of red nodes f(t) (f(t) = Nred/N) versus the iter-
ation time t. We distinguish two important cases,
namely, when initially opinions are randomly dis-
tributed over the network, and when the first Ntop

nodes of the highest PageRank probability are of
the same opinion, e.g. of a red color. For a ran-
dom distribution the system converges to its final
state after tc ≈ 25 iterations for a = b = 0.5.
Iterations are defined as in [10].
In Fig. 1 we show the time evolution of opin-

ion for the initial state where the society elite,
corresponding to the top nodes Ntop of highest
PageRank probability, has the same opinion (dot-
ted curves). In this case the elite can impose its
opinion to a faction of society which is by a factor
2− 3 larger than the initial fraction. However, in
comparison with the social or university networks
considered in [10] this increase is less significant
that is due to a smaller number of linked nodes
for the Ulam network of intermittency map.
For a comprehensive analyzes of the depen-

dence of the final fraction of red nodes ff on the
initial state fi, we consider below the evolution
of f(t) for a large number of Nr initial (random)
distributions of red nodes (Fig. 2). We find that

0 5 10 15 20 25 30

0.1
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0.7

t

f(
t)

Figure 1: Time evolution of the opinion, given by a fraction
of red nodes f(t), as a function of number of time iteration
t (a = b = 0.5). Full curves correspond to different initial
fractions fi = f(0) at a random realization: fi = 0.45
(red); 0.5 (green); 0.55 (blue). The dotted curves stand
for the initial state with the first Ntop nodes of the highest
PageRank probability being red: Ntop = 100 (red); Ntop =
500 (green); Ntop = 1000 (blue). The total matrix size is
N = 104; α = 1.

there is a certain critical value fc such, that ini-
tial fractions fi of red nodes completely die out
if fi < fc, or become dominant for fi > 1 − fc.
For a = 0.2 the value of fc is fc ≈ 0.45, while for
a = 0.65 we have fc ≈ 0.35. In contrast to re-
sults obtained in [10] we find that the system has
no bistability for a < 0.7: the final state is fixed
for a concrete homogeneous initial distribution of
opinions. However, for a dominating tenacious so-
ciety at a > 0.7 there is a small probability that a
small initial fraction of red nodes leads to a com-
plete domination of red color for values of fi > fc
(see Fig. 2 left bottom panel). For the case of
a = 0.8, we have fc ≈ 0.3. Obviously, the results
are symmetric with respect to a change of red and
blue colors.

We also analyze how the final state depends on
the number of the elite members Ntop with the
highest PageRank of the same opinion (Fig. 3).
We see that for any type of a society (any a) there
exists a value of N c

top such that the elite can con-
vince the whole society, if Ntop > N c

top. Note that
the value of N c

top depends on the tenacious param-
eter a. The larger the tenacious parameter is, the
smaller number of the elite members of a same
opinion can bring the system to unanimity.
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Figure 2: Density plot of probability Wf to find a final red
fraction ff , shown in y-axis, in dependence on an initial
red fraction fi, shown in x-axis; data are shown inside the
unit square 0 < fi, ff < 1. The values of Wf are defined
as a relative number of realizations found inside each of
20 × 20 cells, which cover the whole unit square. Here
Nr = 103 realizations of randomly distributed red and
blue colors are used to obtain Wf values (with convergence
time up to t = 150). Here a = 0.2 (left top panel), 0.5 (left
bottom panel), 0.65 (right top panel), 0.8 (right bottom
panel); N = 104. The probability Wf is proportional to
color changing from zero (blue) to unity (brown).

3. The generalized PROF-Sznajd model

In this section we consider the properties of the
combination of PROF and Sznajd models [31].
The Sznajd model features the idea of groups of a
society and thus incorporates a well-known prin-
ciple ”United we stand, divided we fall”. A thor-
ough analyzes of the problem on regular lattice
networks can be found in Ref. [32]. The present
generalization (which results in the PROF-Sznajd
model) is applicable to scale-free and Ulam net-
works. We define the notion of group of nodes at
each discrete time step τ following Ref. [10]:

1. we pick randomly a node i in the network
and consider the state of the Ng − 1 highest
PageRank nodes pointing to it;

2. if the node i and all other Ng − 1 nodes
have the same color (same spin orientation),
these Ng nodes form a group, whose effective
PageRank value is the sum of all the member
values Pg =

∑Ng

j Pj. If it is not the case, we
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Figure 3: Left panel: final fraction of red nodes ff versus
Ntop/N , for a = 0.4 (red), 0.6 (green), 0.8 (blue). Right
panel: dependence of the final fraction of red nodes ff on
the parameter a, for initial state with different number of
the first Ntop nodes of the highest PageRank being red:
Ntop = 100 (red); 1000 (green). Here N = 104.

leave the nodes unchanged and perform the
next time step;

3. consider all the nodes pointing to any mem-
ber of the group and check all these nodes n
directly linked to the group: if an individual
node PageRank value Pn is less than the de-
fined above Pg, the node joins the group by
taking the same color (polarization) as the
group nodes and increase Pg by the value of
Pn; if it is not the case, a node is left un-
changed.

In Fig. 4 we present a typical behavior of the
PROF-Sznajd model on Ulam network generated
by the intermittency map. Firstly, we find that
the convergence time is longer than that of the
PROF model, which is the generic feature of the
Sznajd model. The system converges to its final
state after a time τc of the order of τc ∼ 10N .
Note that there are still some fluctuations in the
steady state regime, which were absent in the con-
ventional PROF model. Another observation con-
cerns the group size Ng: we find that the size of
the group does not affect much the properties of
the model: there is a small decrease in the resis-
tivity of minorities with the group size increase
(of around 2% with a change from Ng = 3 to
Ng = 4). Furthermore, the network practically
does not have nodes with more than four incom-
ing links, hence, we find that considering a group
size with Ng > 5 loses its sense.
The right panel of Fig. 4 shows a density plot of

probability Wf , constructed in a similar to Fig. 2
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Figure 4: Left panel: time evolution of the fraction of
red nodes f(τ) of the PROF-Sznajd model, with different
initial fractions of red nodes and the group size Ng (at
one random realization each): fi = 0.55, Ng = 3 (red);
fi = 0.55, Ng = 4 (green); fi = 0.7, Ng = 3 (blue);
fi = 0.7, Ng = 4 (black). Right panel: the same as in
Fig. 2, but for the PROF-Sznajd model with group size
Ng = 3, with convergence time up to τ = 5 · 105; colors
are as in Fig. 2. Here N = 104.

way. We see, that the rate of surviving of small
fractions of (red) nodes is drastically small (we ad-
dress this result to the poor incoming link struc-
ture of the Ulam network). The initial states are
suppressed if fi . 0.45. But for 0.45 < fi < 0.5
(0.5 < fi < 0.55) there is a small probability of
approximately 8% that the fraction will become
dominant (be suppressed). Outside of this small
range of fi we don’t find any regions of bistability:
the final state of the system is fixed.
For the PROF-Sznajd model we are addition-

ally interested in the Ulam network, generated by
another dynamical map, the typical Chirikov map
with dissipation:

{

yt+1 = ηyt + k sin(xt + θt),
xt+1 = xt + yt+1.

(4)

Here the dynamical variables x and y are taken
at integer moments of time t. Also x has a mean-
ing of phase variable and y is a conjugated mo-
mentum or action. For a detailed description of
this dynamical system, see Ref. [22]. The map
region is 0 ≤ x < 2π and −π ≤ y < π, with
2π-periodic boundary conditions. The phases
θt = θt+T are T random phases periodically re-
peated along time t. Here we consider the T10
case with T = 10, analyzed in Ref. [22]. The val-
ues of parameters are set to η = 0.99, k = 0.22.
The list of 10 values of θt phases can be found in
the Appendix of Ref. [22]. For the construction

of the Ulam network we divide the phase space to
nx × ny cells (nx = ny = 100). Afterwards, Nc

trajectories are propagated from each given cell j
during T map iterations to obtain elements of the
adjacency matrix Sij for transitions to cell i (in
the same manner as for the mapping (1)). The
total matrix size is N = 104.

For this network we find a higher strength of
resistivity of minorities, since it has a richer link
structure. On Fig. 5 we plot the average of the
final fraction of red nodes ff versus the initial
fraction fi. We see here that minor opinions die
out if fi . 0.3. The damping factor of the Google
matrix here is set to α = 0.95, which gives a power
law decay of the PageRank with a slope of 0.48
(see Ref. [22]). We also looked at the ff versus fi
behavior for other values of the damping factor.
As mentioned above, the Google matrix proper-
ties of Ulam networks are sensitive to the values of
α. Nevertheless, our calculations showed, that for
0.95 < α < 1, qualitative behavior of the PROF-
Sznajd model remains similar to that of Fig. 5.
On the other hand, as pointed out in Ref. [10],
the increase of the slope of the power law decay of
the PageRank should result in a bistable behavior
of the PROF and PROF-Sznajd models on social
and university networks. However, this argument
does not hold true for Ulam networks: although
the slope of the PageRank increases with growth
of α (e.g. for α = 0.98 we have Pj ∝ 1/j0.7, while
for α = 0.99 we have Pj ∝ 1/j0.9), bistability
does not emerge. Thus we conclude that a pres-
ence of bistability behavior is associated not only
with the slope of the PageRank decay, but also
with the intrinsic structure of the network itself.

For the PROF-Sznajd T10 model we find that
the elite of the society cannot convince any elec-
tor, if its fraction is initially relatively small. In
particularly, the first Ntop nodes of the highest
PageRank with the same opinion are suppressed
for Ntop/N . 0.2. For Ntop/N & 0.2, the elite
becomes capable to influence the opinion of other
electors, but the convergence process as well as
the final state starts exhibiting fluctuations of a
significant amplitude. These fluctuations become
smaller for higher values of Ntop and almost dis-
appear for Ntop/N & 0.7 where the society comes
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Figure 5: Left panel: The average of the final fraction of
red nodes 〈ff 〉 versus the initial fraction fi for the PROF-
Sznajd model of T10 model of the typical Chirikov map
(α = 0.95, nx = ny = 100, N = 104). Here, Nr = 103

realizations with a convergence time up to τ = 3 · 105 are
used to obtain the average 〈ff 〉 (the group size is Ng = 3).
Right panel: time evolution of the fraction of red nodes
f(τ) for the same model, for the initial state with the first
Ntop nodes of the highest PageRank being red: Ntop =
1500 (red); Ntop = 4000 (green); Ntop = 8000 (blue).

to unanimity.

Finally, we shortly describe the initial and final
distributions of red nodes in the coordinate space.
It is of interest to consider the case of initial state
with Ntop red nodes with the highest PageRank,
since for random distributions the final and initial
states are homogeneously distributed over phase
plane. Figure 6 shows the initial and final distri-
butions for Ntop = 2200. We find that the top
elite nodes first tend to convince other members
of the elite corresponding to the denser regions on
the right panel of Fig. 6 with high values of the
PageRank probability.

Figure 6: Coordinate distribution of red nodes in (y, x)
phase space of the PROF-Sznajd T 10 model (α = 0.95,
nx = ny = 100, N = 104); the phase plane is shown in
2π × 2π square. Left panel shows the initial state with
Ntop = 2200 nodes of the highest PageRank being red and
fi = 0.22; right panel corresponds to the final state with
ff = 0.5758.

4. Discussion

In this work we analyzed the features of
a recently proposed PageRank opinion forma-
tion model on two examples of Ulam networks.
The Ulam networks generated by the discussed
above one dimensional intermittency and typical
Chrikov maps exhibit some intrinsic properties
similar to the WWW. This fact makes the ana-
lyzes relevant to the opinion formation process in
real societies. We pointed out that the elite of a
society does not have a considerable influence on
the decision making process of the electors for an
equal mixture of conformist and tenacious society.
However, the influence of the elite becomes tangi-
ble for a dominating tenacious society. In contrast
to the university networks analyzed in [10] we find
practically no regions of bistability behaviour for
a random distribution of initial opinions. Only a
dominating tenacious society shows some signs of
bistability.
We also considered a generalization of the Sz-

najd model for Ulam networks (PROF-Sznajd
model). We found here that the system still prac-
tically does not feature bistable regimes. On the
basis of our studies we conclude that the PageR-
ank decay exponent does not influence the bista-
bility for the Ulam networks considered in this
work. We argue that the chaotic maps consid-
ered generate strong stretching of small regions of
phase space but do not generate significant num-
ber of loop returns. We think that this feature is
different from university networks which are char-
acterized by a significant number of loops. We
presume that this internal feature of the Ulam
networks is at the origin of significant difference
in opinion formation on these two types of scale-
free networks. The presented results can be useful
for analysis of opinion formation on other types
of scale-free directed networks.
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