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Abstract – We study numerically the thermoelectricity of the classical Wigner crystal placed in
a periodic potential and being in contact with a thermal bath modeled by the Langevin dynamics.
At low temperatures the system has sliding and pinned phases with the Aubry transition between
them. We show that in the Aubry pinned phase the dimensionless Seebeck coefficient can reach
very high values of several hundreds. At the same time the charge and thermal conductivity of
the crystal drop significantly inside this phase. Still we find that the largest values of ZT factor
are reached in the Aubry phase and for the studied parameter range we obtain ZT ≤ 4.5. We
argue that this system can provide an optimal regime for reaching high ZT factors and realistic
modeling of thermoelecriticy. Possible experimental realizations of this model are discussed.

Copyright c© EPLA, 2013

Introduction. – Computer microelectronic elements
go to nanoscale sizes and the control of electrical currents
and related heat flows becomes a technological challenge
(see, e.g., [1,2]). By the thermoelectric effect a tempera-
ture difference ∆T generates an electrical current that can
be compensated by a voltage difference ∆V . The ratio
S = ∆V/∆T is known as the Seebeck coefficient, or ther-
mopower, which plays an important role in the thermo-
electric material properties. The thermoelectric materials
are ranked by a figure-of-merit factor ZT = S2σT/κ [3],
where σ is the electric conductivity, T is the material tem-
perature and κ is the thermal conductivity. To be com-
petitive with usual refrigerators one needs to find mate-
rials with ZT > 3 [1]. Various experimental groups try
to reach this high value by skillful methods trying to re-
duce the thermal conductivity κ of samples keeping high
electron conductivity σ and high S (see, e.g., [4–8]). At
room temperature the maximal values ZT ≈ 2.4 have been
reached in semiconductor superlattices [4] while for silicon
nanowires a factor ZT ≈ 1 has been demonstrated [5,6].
This shows that the volume reduction allows to decrease
the thermal conductivity of lattice phonons and to increase
ZT values.

It is interesting to consider the situations when the con-
tribution of lattice phonons is completely suppressed to see
if in such a case one can obtain even larger ZT factors.

Such extreme regime can be realized with an electron gas,
e.g. in two dimensions (2DEG), where at T ∼ 1K a con-
tribution of lattice phonons is completely suppressed. In
such a regime recent experiments [9] reported giant See-
beck coefficients S ∼ 30mV/K obtained in a high resis-
tivity domain.

While it is challenging to eliminate the contribution of
lattice phonons experimentally it is rather easy to real-
ize such a situation in numerical simulations simply re-
placing a lattice of atoms by a fixed periodic potential.
After that we are faced with the problem of the ther-
moelectricity of the Wigner crystal in a periodic poten-
tial. In this letter we study this problem in one dimension
(1D), which can be viewed as a mathematical model of
silicon nanowires. We note that the ground state and
low-temperature properties of this system in classical and
quantum regimes have been investigated in [10]. It has
been shown that at a typical incommensurate electron
density the Wigner crystal slides easily in a potential
of weak amplitude while above a critical amplitude the
electrons are pinned by a lattice. The results [10] show
that the properties of the Wigner crystal are similar to
those of the Frenkel-Kontorova model where the transi-
tion between sliding and pinned phases is known as the
Aubry transition [11] (see a detailed description in [12]).
The positions of electrons on a periodic lattice are locally
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described by the Chirikov standard map [13,14]. Similar
dynamical properties appear also for the Wigner crystal
in wiggling snaked nanochannels [15].

The previous studies of the Wigner crystal in a peri-
odic potential [10] have been concentrated on analysis of
the ground-state properties at lower temperatures. Here
we analyze the transport properties of the crystal at fi-
nite temperatures studying its electron and thermal con-
ductivities. Our approach allows to obtain the Seebeck
coefficient and the figure of merit ZT at different regimes
and various parameters. We note that there has been a
significant interest in the heat transport and thermal con-
ductivity in nonlinear lattices [16,17] but till present there
have been no studies on thermoelectricity of interacting
electrons in periodic lattices. We present the investiga-
tions of this generic case in this letter.

Model description. – The Hamiltonian of the 1D
Wigner crystal in a periodic potential reads

H =
∑

i

⎛

⎝

p2
i

2
+ K cos xi +

1

2

∑

j �=i

1

|xi − xj |

⎞

⎠ , (1)

where xi, pi are the coordinate and momentum of the elec-
tron i, K is an amplitude of periodic potential or lattice.
As in [10] we use units e = m = kB = 1, where e and m are
the electron charge and mass, kB is the Boltzmann con-
stant and the lattice period is 2π. The rescaling back to
physical units is given in [10]. It is interesting to note that
at e = kB = 1 we have S as a dimensionless coefficient, e.g.
S = 30mV/K from [9] corresponds to S = 2585. Gener-
ally, in an ergodic regime induced by a developed dynam-
ical chaos or thermal bath, one expects to have S ∼ 1
since a variation of potential or temperature should pro-
duce approximately the same charge redistribution. Thus,
in our opinion, large values of the dimensionless Seebeck
coefficient S indicate a strongly nonergodic regime of sys-
tem dynamics. We will see below confirmations of this
statement.

We concentrate our studies on a case of typical irrational
electron density ne = ν/2π, per lattice period, given by
the golden rotation number ν = νg = 1.618 . . . . As in [10]
we use the Fibonacci rational approximates with N elec-
trons (0 ≤ i ≤ N − 1) on M lattice periods (e.g., 34 and
21 or 55 and 34).

According to [10] the Aubry transition at density νg

takes place at K = Kc = 0.0462 so that the Wigner crys-
tal is in a sliding phase for K < Kc and it is pinned by the
potential at K > Kc. In the latter case there are exponen-
tially many static configurations being exponentially close
in energy to the Aubry cantori ground state. The sliding
phase corresponds to the continuous Kolmogorov-Arnold-
Moser (KAM) curves with νg rotation number.

To study the thermoelectic effect (1) we add interactions
with a substrate, which plays a role of a thermal bath with
a given temperature distribution T (x) along the x-axis of
the electron chain. We also add a static electric field Edc.

0

1·105

2·105

8 9 10 11 12 13
x/2π

t

Fig. 1: (Colour on-line) Electron density variation in space and
time from one Langevin trajectory at K/Kc = 2.6, T/Kc =
0.11, η = 0.02, N = 34, M = L/2π = 21; density changes
from zero (dark blue) to maximal density (dark red); only a
fragment of x space is shown.

The thermal bath is modeled by the Langevin force (see,
e.g., [16]) so that the equations of electron motion are

ṗi = −∂H/∂xi + Edc − ηpi + gξi(t), ẋi = pi. (2)

Here, the parameter η phenomenologically describes dissi-
pative relaxation processes, and the amplitude of Langevin
force is given by the fluctuation-dissipation theorem g =√

2ηT . The normally distributed random variables ξi are
as usually defined by correlators 〈ξi(t)〉 = 0, 〈ξi(t)ξj(t

′)〉 =
δijδ(t − t′). The time evolution is obtained by the 4th-
order Runge-Kutta integration with a time step ∆t, at
each such a step the Langevin contribution is taken into
account. We checked that the results are not sensitive to
the step ∆t by its variation by a factor ten, the data are
mainly obtained with ∆t = 0.02. We use the hard-wall
boundary conditions for electrons at the ends of the chain
x = 0;L with the total system length L = 2πM . We also
note that the Coulomb interaction couples all electrons
in the sample. However, the results of [10,15] show that
only nearest neighbors are effectively count. Due to that
we present the numerical results for this approximation.
We ensured that our results are not sensitive to including
other neighbors.

A typical variation of the electron density in space x and
time t is shown in fig. 1 for the Aubry pinned phase. Tran-
sitions, induced by thermal fluctuations, from one to two
electrons inside one potential minimum are well visible.

Numerical results for the Seebeck coefficient. –

To compute S we impose a constant temperature gradient
on the Langevin substrate with a temperature difference
∆T at the sample ends. Then we compute the local elec-
tron temperature Te(x) = 〈p2(x)〉t where the time average
of electron velocities are done over a large time interval
with up to t = 107. To eliminate periodic oscillations
along the chain we divide it on M bins of size 2π and do
all averaging inside each bin. Typical examples of varia-
tions of electron temperature Te(x) and electron rescaled
density ν(x) = 2πne(x) along the chain are shown for a
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Fig. 2: (Colour on-line) Left panels: dependence of electron
temperature Te(x) (top, blue points) and rescaled density ν(x)
(bottom, black points) on the distance x along the chain placed
on the Langevin substrate with a constant temperature gra-
dient (blue line) at average temperature T̄ = 0.01 and tem-
perature difference ΔT = 0.2T̄ ; the black line shows the fit
of density variation in the bulk part of the sample. Right
panel: density variation produced by a static electric field
Edc = 4× 10−4 at a constant substrate temperature T = 0.01;
the black line shows the fit of the gradient in the bulk part of
the sample. Here N = 34, M = 21, K = 1.52Kc, η = 0.02,
averaging is done over the time interval t = 107; S = 3.3 at
T = 0.01 ≈ 0.22Kc.

given ∆T in fig. 2 (left panels). The chain ends are influ-
enced by the boundary conditions, but in the main bulk
part of the sample we obtain a linear gradient variation
of Te(x) and ν(x). The linear fit of Te(x) and ν(x) in the
bulk part allows to determine the response of the Wigner
crystal on the substrate temperature variation. In a simi-
lar way at fixed substrate temperature T we can find the
density variation ν(x) induced by a static field Edc at the
voltage difference ∆V = EdcL, as it is shown in fig. 2 (right
panel). For the computation of S we find convenient to
apply such a voltage ∆V which at fixed T creates the same
density gradient as those induced by the temperature dif-
ference ∆T at Edc = 0. Then by definition S = ∆V/∆T .
The data are obtained in the linear response regime when
∆T,Edc are sufficiently small.

The dependences of the obtained Seebeck coefficient S
on K and T are presented in fig. 3. The data show that
at K < Kc we have S ∼ 1 practically for all tempera-
tures. Here the Lanvegin thermostat efficiently produces
an ergodic distribution over all configurations of electrons
and we have S ∼ 1 in agreement with the above ergodic
argument. For K > Kc we find a significant increase of S
at low temperatures T < Kc. In this regime the crystal is
pinned by the lattice and different configuration states are
separated by potential barriers ∆U ∼ K −Kc so that the
transitions between configurations are suppressed by the
Boltzmann factor exp(−∆U/T ). Thus here long times are
needed to have a transition between configurations [10]. In
such a regime large voltage ∆V is required to produce the
same density gradient as those given by a fixed ∆T . This
leads to large S values generated by big and rare thermal
fluctuations.

To check the stability of obtained results in the noner-
godic regime with large S we use three different numerical

1

10

102

0 2 4 6
K/Kc

1

10

102

1

10

102

S

1

10

102

10−1 1
T/Kc

1

10

102

10−1 1
T/Kc

S

K = 0

Fig. 3: (Colour on-line) Left panel: dependence of the Seebeck
coefficient S on the rescaled potential amplitude K/Kc at tem-
peratures T/Kc = 0.065, 0.11, 0.22 and 0.65 shown by black,
blue, green and red colours, respectively from top to bottom.
The full and open symbols correspond, respectively, to chains
with N = 34, M = 21 and N = 55, M = 34. Right panel: de-
pendence of S on T/Kc at different K/Kc = 0, 0.75, 1.5, 2.2, 3
shown, respectively, by black, violet, blue, green and red points;
N = 34, M = 21; the dashed gray line shows the case K = 0
for noninteracting particles. The stars show the corresponding
results from the left plane at the same N, M . Dotted curves
are drawn as a guide to the eye. Here and in other figures the
statistical error bars are shown when they are larger than the
symbol size. Here η = 0.02.

methods: a) cold start from the Aubry ground state at
a given K and T = 0, followed by a warm up to the
required T and then computing of the responses to a tem-
perature gradient or electric field; in this approach the sys-
tem evolves during a relaxation time trel ∼ 106 until the
density response is stabilized, then the computations of
gradients are performed on a time scale tcom determined
by the condition of target statistical accuracy (typically
tcom ∼ 107); b) zero potential start from the ground state
at K = 0 and given T followed by a sweep over K with
a step ∆K (typically ∆K = 0.01); at each step the re-
sponses of the current state to Edc or ∆T are determined;
after trel = 5 × 104 the gradients are computed on times
tcom ≥ 104 determined by target accuracy; the next step
to K + ∆K starts from the reached steady state at the
previous K value, continuing up to the required Kmax

value, that completes one sweep in K; then we repeat
sweeps about 20 to 200 times to improve statistical accu-
racy; c) hot start from the Aubry ground state at given
K with a warm up to Tmax = 0.05 ≈ Kc, followed by a
sweep from T = Tmax down to T = Tmin = 0.003 with
equidistant steps in lnT , in a way similar to b) with a
similar number of sweeps.

The data in the left and right panels of fig. 3 are ob-
tained by the methods b) and c), respectively. The stars
in the right panel show the corresponding data from the
left plane. A good agreement between methods b) and
c) confirms the validity of the obtained results. The re-
sults from a more time-consuming method a) give a simi-
lar agreement with the methods b), c) of fig. 3 (data not
shown). The comparison of results with N = 34 and 55
electrons shows their independence of the chain length.
However, at K ≫ Kc and T ≪ Kc very long computa-
tions are required to obtain statistically reliable results.
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1
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K/Kc

κ
κ0

Fig. 4: (Colour on-line) Left panel: rescaled electron conduc-
tivity σ/σ0 as a function of K/Kc shown at rescaled tempera-
tures T/Kc = 0.065, 0.22, 0.65 by black, green and red points,
respectively. Right panel: rescaled thermal conductivity κ/κ0

as a function of K/Kc shown at same temperatures and colours
as in the left panel. Here we have N = 34, M = 21, η = 0.02,
σ0 = νg/(2πη), κ0 = σ0Kc.

The obtained results show that large values of S > 100
can be reached in the pinned phase K > Kc at low tem-
peratures. The growth of S is roughly proportional to
the inverse Boltzmann factor. This nonergodic regime is
characterized by big fluctuations. We think that a similar
regime appeared in 2DEG experiments with even larger
values S ∼ 103 [9].

Properties of charge and thermal conductivities.

– The large values of S do not guaranty high values of the
figure-of-merit factor ZT which depends also on charge
and thermal conductivities σ, κ.

To determine σ we use the periodic boundary condi-
tions (electrons on a circle) and compute the average ve-
locity vel of the Wigner crystal in a weak electric field
Edc (acting along the circle) being in a linear response
regime. The averaging is done over a typical time interval
t = 107 and over all electrons. Then the charge current
is j = nevel = νvel/2π and σ = j/Edc. In absence of
potential at K = 0 we have a crystal moving as a whole
with vel = Edc/η and corresponding to the conductivity
σ = σ0 = νg/(2πη) (νg ≈ 1.618 . . .). This theoretical
result is well reproduced by numerical simulations as is
shown in fig. 4 (left panel).

For K < Kc the conductivity σ is practically indepen-
dent of T , K. However, for K > Kc we have a sharp
exponential drop of σ with increasing K and decreasing
temperature. This drop is satisfactorily described by the
thermal activation dependence σ ∝ exp(−(K−Kc)/T ), at
least when K is significantly larger Kc. We note that the
temperature dependence differs significantly from those in
2DEG experiments [9] where resistivity becomes indepen-
dent of T for T < 1K. We attribute this to 2D features of
these experiments and to quantum effects being important
at T ∼ 1K. Indeed, the quantum fluctuations can produce
sliding of the Wigner crystal even in the classically pinned
phase as it is shown for 1D in [10].

Another important feature of σ variation with the sys-
tem parameters is that σ ∼ 1/η for K < Kc and that σ
is practically independent of η for K > Kc. There is only

a moderate variation of S2σ by a factor 4 when T/Kc

changes from 0.1 to 10. We discuss this point in more
detail later.

The thermal gradient produces not only the charge den-
sity variation but also a heat flow J . This flow is related to
the temperature gradient by the Fourier law with the ther-
mal conductivity κ: J = κ∂T/∂x (see, e.g., [2,16]). The
flow J can be determined from the analysis of forces acting
on a given electron i from left and right sides, respectively:
fL

i =
∑

j<i 1/|xi − xj |
2, fR

i = −
∑

j>i 1/|xi − xj |
2. The

time averaged energy flows, from left and right sides, to
an electron i moving with a velocity vi are, respectively,
JL,R = 〈fL,R

i vi〉t. In a steady state the mean electron
energy is independent of time and JL + JR = 0. But
the difference of these flows gives the heat flow along the
chain: J = (JR − JL)/2 = 〈(fR

i − fL
i )vi/2〉t. This com-

putation of the heat flow, done with hard wall boundary
conditions, allows us to determine the thermal conductiv-
ity via the relation κ = JL/∆T . Within numerical error
bars we find κ to be independent of small ∆T and number
of electrons N (21 ≤ N ≤ 144).

In principle, each electron interacts also with the sub-
strate. However, in the central part of the chain the elec-
tron temperature is equal to the local temperature of the
substrate due to local thermal equilibrium. This fact is
directly seen in fig. 2 (left top panel, cf. blue points and
straight line). Thus, we perform additional averaging of
the heat flow in the central 1/3 part of the chain improving
the statistical accuracy of data.

The dependence of the computed thermal conductivity
κ on the amplitude of the potential K is shown in fig. 4
(right panel). It is convenient to present κ via a ratio to
κ0 = σ0Kc to have results in dimensionless units. Similar
to the charge conductivity σ, we find that κ ≈ 3.9κ0 at
K < Kc being practically independent of temperature T
for T < Kc. However, the transition to zero temperature
and η = 0 is singular due to divergence of κ in weakly
nonlinear regular chains as discussed in [16].

In the pinned phase at K > Kc we see an exponential
drop of κ with increase of K and decrease of T at T < Kc.
As for σ, we find that for K > Kc the thermal conductivity
is practically independent of dissipation rate η. We will
discuss this in more detail below.

Results for the figure-of-merit factor ZT . – Now
we determined all required characteristics and can analyze
what ZT values are typical for our system and how ZT
depends on the parameters.

The typical results are presented in fig. 5 where at
the chosen parameters we have ZT < 3.5. At fixed
T = 0.65Kc we have an optimal value of K with a max-
imum of ZT at a certain K ∼ 2Kc, its position moves
slightly to larger K with an increase of T (left panels). At
fixed K = 2.6Kc, taken approximately at the maximum of
ZT (left bottom panel), there is a visible logarithmic-type
growth of ZT with increasing T approximately by a factor
7 in a range 0.1 ≤ T/Kc ≤ 50 (right panels). A further
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Fig. 5: (Colour on-line) Left panels: dependence of ZT on
K/Kc at temperatures T/Kc = 0.11 (top) and T/Kc = 0.65
(bottom); the black points and open triangles correspond, re-
spectively, to η = 0.02 and η = 0.05 at N = 34, M = 21. Right
panels: top, dependence of ZT on T/Kc for K/Kc = 0.75 at
η = 0.02, N = 34, M = 21; bottom, the same as in the top
panel at K/Kc = 2.6 and N = 34, M = 21 (black points);
N = 89, M = 55 (green circles); N = 144, M = 89 (red stars).

increase up to T ≫ 5Kc ≈ 0.25 is not very interesting
since then we start to have temperature to be larger than
the energy of the Coulomb interaction EW between elec-
trons (T > EW = νg/2π ≈ 0.25) and the model goes to
another limit of rigid-type balls which is not very realistic.

The results for two values of dissipation η = 0.02; 0.05
shown in fig. 5 indicate that ZT drops with an increase of
η. To understand the effects of η in a better way we show
the dependence of the ratio RS = S(η = 0.05)/S(η =
0.02) on K/Kc at fixed T/Kc = 0.65 in fig. 6. The de-
pendence of similar ratios Rσ and Rκ for σ and κ are
also shown there. We find Rσ ≈ Rκ ≈ 0.5 at K ≪ Kc

and Rσ ≈ Rκ ≈ 1 for K > Kc. At K ≪ Kc the ra-
tios are close to the expected value 0.4 following from the
theoretical scaling σ0 ∝ 1/η and from a similar expected
dependence κ0 ∝ 1/η. However, in the pinned phase the
dependence of σ and κ on η practically disappears. The
physical mechanism of this effect is due to the fact that
the electrons are pinned by the lattice and Wigner crystal
phonons are localized, and hence, their mean free path be-
comes smaller than its value at K = 0 when it is given by
the dissipative exchange with the Langevin substrate. The
ratio RS is not sensitive to the variation of K/Kc even if S
changes strongly with K (see fig. 3). A similar behaviour
of ratios is obtained at lower T/Kc ≈ 0.1 with somewhat
more sharp change between limit values 0.5 and 1 around
K/Kc ≈ 2. We also checked that the ratios constructed
for other values of η (e.g., η = 0.01, 0.1, instead of above
η = 0.05) also saturate at unit value for K/Kc > 2. Thus,
at K/Kc > 2, the localization effects, induced by pinning,
dominate over mean free path at K = 0.

The dependence of ZT on η is also shown in fig. 6. We
see that a decrease of η generates a slow growth of ZT
even if at so low value as η = 0.01 we still have ZT < 2.
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Fig. 6: (Colour on-line) Left panels: dependence of ratios Rσ

(top) and Rκ (bottom) on K/Kc at T/Kc = 0.65. Right top
panel: the same as in left panels for the ratio RS . All ratios
are defined in the text. Right bottom panel: dependence of
ZT on η at T/Kc = 0.65 at N = 34, M = 21 (black points);
N = 89, M = 55 (green circles); N = 144, M = 89 (red stars)
at fixed K/Kc = 2.6 and T/Kc = 0.65.
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Fig. 7: (Colour on-line) Dependence of ZT on K/Kc and T/Kc

shown by colour changing from ZT = 0 (black) to maximal
ZT = 4.5 (light rose); contour curves show the values ZT =
1, 2, 3, 4. Here η = 0.02, N = 34, M = 21.

Here, we give numerical values of η in our computational
units. It is more physical to look of a dimensionless ratio
η/ω0 where ω0 is a maximal frequency of small oscillations
near a vicinity of the Aubry ground state at K = Kc. Ac-
cording to the results [10] we have ω0 ≈ 2

√
Kc ≈ 0.4.

Thus all our data are obtained in the regime of long re-
laxation time scale (η/ω0 ≪ 1). Also data obtained for
longer chains N = 89, M = 55 and N = 144, M = 89
give no significant variation of ZT with chain length (see
figs. 5,6).

The global dependence of ZT on K/Kc and T/Kc is
presented in fig. 7 for the investigated parameter range
T/Kc < 9,K/Kc ≤ 4.5. The maximal value ZT ≈ 4.5 is
reached at the largest ratios K/Kc ≈ 4.5 and T/Kc ≈ 4.
However, at such large values of K,T we start to enter
in the regime of potential and temperature being larger
than the Coulomb energy EW = νg/2π so that it may be
difficult to find materials which realize effectively such a
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strong potential. For a more realistic condition T ≤ Kc

we have ZT < 2. We also note that for K > 5Kc ≈ EW

the electrons are located in a strongly pinned phase with
very strong fluctuations of transitions between different
minima at T ≤ Kc.

Discussion. – Our studies of the Wigner crystal in a
periodic potential show that in the Aubry pinned phase
at K > Kc the Wigner crystal has very larger Seebeck
coefficients S which grow exponentially with a decrease of
temperature or increase of the potential amplitude. How-
ever, at the same time the charge and thermal conductiv-
ities drop significantly. As a result, for all the variety of
cases studied we obtain the maximal value of ZT ≤ 2 for
the realistic parameter range K < 5Kc, T < Kc. Thus,
there is a rather nontrivial compensation of three quanti-
ties S, σ, κ which determine the figure of merit, ZT . In
total, the pinned phase has larger ZT values, compared
to the sliding phase at K < Kc. For a high temperature
T ≈ 4Kc and strongly pinned regime K ≈ 4Kc we even
obtain ZT ≈ 4. However, it remains questionable if such
high potential amplitudes and temperatures are reachable
in real materials.

We hope that it is possible to reach even larger ZT in
the Aubry pinned phase at optimized system parameters.
We find that ZT weakly increases with a decrease of the
seed relaxation rate η. Thus a further decrease of η may al-
low to reach ZT > 3 at low potential amplitudes K ≈ 3Kc

and temperatures T ≈ Kc. However, special efforts should
be performed to determine this seed η for real materials
since in the pinned phase the charge and thermal conduc-
tivities drop significantly, compared to the sliding phase,
becoming practically independent of seed relaxation rate.

It is also possible that further temperature increase sig-
nificantly above T > 5Kc may produce even ZT > 5 at
K > 5Kc. However, the growth of ZT with T is slow,
being close to a logarithmic growth, so that such high T
and K may be not interesting in practice.

Thus the task to reach ZT > 3 at low temperatures
seems to be hard even in our simple model where the ther-
mal conductivity of atomic lattice phonons is eliminated
from the beginning and only electronic conductivity con-
tribution is left. In this sense our model provides a supe-
rior bound for the ZT factor in 1D. We expect that for
the Wigner crystal in two- and three-dimensional poten-
tials the factor ZT will be reduced, compared to 1D case,
since it will be more difficult to localize the phonons of a
Wigner crystal. Thus, in a certain sense we expect that
our model provides the most optimal conditions for large
ZT values and still we remain at ZT < 2 for realistic not
very high temperatures T < Kc.

Finally, we provide some physical values of our model
parameters. In physical units we can estimate the criti-
cal potential amplitude as Uc = Kce

2/(ǫd), where ǫ is a

dielectric constant, ∆x is a lattice period and d = ν∆x/2π
is a rescaled lattice constant [10]. For values typical for a
charge density wave regime [18] we have ǫ ∼ 10, ν ∼ 1,
∆x ∼ 1 nm and Uc ∼ 40mV ∼ 500K so that the Aubry
pinned phase should be visible at room temperature. The
obtained Uc value is rather high that justifies the fact that
we investigated thermoelectricity in the frame of the clas-
sical mechanics of interacting electrons. In any case the
real thermoelectric devices should work at room tempera-
ture and in this regime the classical treatment of electron
transport can be considered as a good first approximation.

We think that it would be useful to perform exper-
imental studies of electron transport in a periodic po-
tential. We hope that such type of experiments can be
possible with charge density waves (see, e.g., [18] and
references therein), strongly interacting electrons in ul-
traclean carbon nanotubes with interaction energies of
100mV [19], experiments with electrons on a surface of
liquid helium [20], and cold ions in optical lattices [21].
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